
Towards Plaintext-Aware Public-Key Encryption

without Random Oracles

Mihir Bellare and Adriana Palacio

Dept. of Computer Science & Engineering, University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093, USA.

Email: {mihir,apalacio}@cs.ucsd.edu
URL: http://www-cse.ucsd.edu/users/{mihir,apalacio}

Abstract. We consider the problem of defining and achieving plaintext-
aware encryption without random oracles in the classical public-key
model. We provide definitions for a hierarchy of notions of increasing
strength: PA0, PA1 and PA2, chosen so that PA1+IND-CPA → IND-
CCA1 and PA2+IND-CPA → IND-CCA2. Towards achieving the new
notions of plaintext awareness, we show that a scheme due to Damg̊ard
[12], denoted DEG, and the “lite” version of the Cramer-Shoup scheme
[11], denoted CS-lite, are both PA0 under the DHK0 assumption of [12],
and PA1 under an extension of this assumption called DHK1. As a result,
DEG is the most efficient proven IND-CCA1 scheme known.

1 Introduction

The theory of encryption is concerned with defining and implementing notions
of security for encryption schemes [22, 23, 17, 25, 27, 15]. One of the themes in its
history is the emergence of notions of security of increasing strength that over
time find applications and acceptance.

Our work pursues, from the same perspective, a notion that is stronger than
any previous ones, namely plaintext awareness. Our goal is to strengthen the
foundations of this notion by lifting it out of the random-oracle model where
it currently resides. Towards this end, we provide definitions of a hierarchy of
notions of plaintext awareness, relate them to existing notions, and implement
some of them. We consider this a first step in the area, however, since important
questions are left unresolved. We begin below by reviewing existing work and
providing some motivation for our work.

1.1 Background

Intuitively, an encryption scheme is plaintext aware (PA) if the “only” way that
an adversary can produce a valid ciphertext is to apply the encryption algorithm
to the public key and a message. In other words, any adversary against a PA
scheme that produces a ciphertext “knows” the corresponding plaintext.

Random-Oracle model work. The notion of PA encryption was first sug-
gested by Bellare and Rogaway [6], with the motivation that PA+IND-CPA

47

should imply IND-CCA2. That is, security against chosen-plaintext attack cou-
pled with plaintext awareness should imply security against adaptive chosen-
ciphertext attack. The intuition, namely, that if an adversary knows the plain-
text corresponding to a ciphertext it produces, then a decryption oracle must be
useless to it, goes back to [8, 9]. Bellare and Rogaway [6] provided a formalization
of PA in the random oracle (RO) model. They asked that for every adversary A

taking the public key and outputting a ciphertext, there exist an extractor that,
given the same public key and a transcript of the interaction of A with its RO,
is able to decrypt the ciphertext output by A. We will refer to this notion as
PA-BR.

Subsequently, it was found that PA-BR was too weak for PA-BR+IND-CPA
to imply IND-CCA2. Bellare, Desai, Pointcheval and Rogaway [4] traced the
cause of this to the fact that PA-BR did not capture the ability of the adversary
to obtain ciphertexts via eavesdropping on communications made to the receiver.
(Such eavesdropping can put into the adversary’s hands ciphertexts whose de-
cryptions it does not know, lending it the ability to create other ciphertexts
whose decryptions it does not know.) They provided an appropriately enhanced
definition (still in the RO model) that we denote by PA-BDPR, and showed that
PA-BDPR+IND-CPA → IND-CCA2.

Plaintext awareness is exploited, even though typically implicitly rather than
explicitly, in the proofs of the IND-CCA2 security of numerous RO-model en-
cryption schemes, e.g., [16, 28, 7].

PA and the RO model. By restricting the above-mentioned RO-model defini-
tions to schemes and adversaries that do not query the RO, one obtains natural
counterpart standard (i.e., non-RO) model definitions of PA. These standard-
model definitions turn out, however, not to be achievable without sacrificing
privacy, because the extractor can simply be used for decryption. This indicates
that the use of the RO model in the definitions of [6, 4] is central.

Indeed, PA as per [6, 4] is “designed” for the RO model in the sense that
the definition aims to capture certain properties of certain RO-model schemes,
namely, the fact that possession of the transcript of the interaction of an adver-
sary with its RO permits decryption of ciphertexts formed by this adversary. It
is not clear what counterpart this intuition has in the standard model.

The lack of a standard-model definition of PA results in several gaps. One
such arises when we consider that RO-model PA schemes are eventually instan-
tiated to get standard-model schemes. In that case, what property are these
instantiated schemes even supposed to possess? There is no definition that we
might even discuss as a target.

PA via key registration. PA without ROs was first considered by Herzog,
Liskov and Micali [21], who define and implement it in an extension of the usual
public-key setting. In their setting, the sender (not just the receiver) has a public
key, and, in a key-registration phase that precedes encryption, proves knowledge
of the corresponding secret key to a key-registration authority via an interactive
proof of knowledge. Encryption is a function of the public keys of both the sender

48

and the receiver, and the PA extractor works by extracting the sender secret key
using the knowledge extractor of the interactive proof of knowledge.

Their work also points to an application of plaintext-aware encryption where
the use of the latter is crucial in the sense that IND-CCA2-secure encryption
does not suffice, namely to securely instantiate the ideal encryption functions of
the Dolev-Yao model [14].

1.2 Our goals and motivation

The goal of this work is to provide definitions and constructions for plaintext-
aware public-key encryption in the standard and classical setting of public-key
encryption, namely the one where the receiver (but not the sender) has a public
key, and anyone (not just a registered sender) can encrypt a message for the
receiver as a function of the receiver’s public key. In this setting there is no
key-registration authority or key-registration protocol akin to [21].

Motivations include the following. As in the RO model, we would like a
tool enabling the construction of public-key encryption schemes secure against
chosen-ciphertext attack. We would also like to have some well-defined notion
that can be viewed as a target for instantiated RO-model PA schemes. (One
could then evaluate these schemes with regard to meeting the target.)

Additionally, we would like to enable the possibility of instantiating the ideal
encryption functions of the Dolev-Yao model [14] without recourse to either
random oracles or the key-registration model. Note that the last is an application
where, as per [21], PA is required and IND-CCA2 does not suffice, meaning
plaintext-awareness is crucial. (However, see also [1].)

As we will see later, consideration of PA in the standard model brings other
benefits, such as some insight, or at least an alternative perspective, on the
design of existing encryption schemes secure against chosen-ciphertext attack.
Let us now discuss our contributions.

1.3 Definitions

The first contribution of this paper is to provide definitions for plaintext-aware
encryption in the standard model and standard public-key setting.

Overview. We provide a hierarchy consisting of three notions of increasing
strength that we denote by PA0, PA1 and PA2. There are several motivations
for this. One is that these will be seen (in conjunction with IND-CPA) to imply
security against chosen-ciphertext attacks of different strengths. Another is that,
as will become apparent, PA is difficult to achieve, and progress can be made by
first achieving it in weaker forms. Finally, it is useful, pedagogically, to bring in
new definitional elements incrementally.

A closer look. Our basic definitional framework considers a polynomial-time
adversary C , called a ciphertext creator, that takes input the public key and
can query ciphertexts to an oracle. A polynomial-time algorithm C

∗ is said to
be a successful extractor for C if it can provide replies to the oracle queries of C

49

IND-CPA IND-CCA1 IND-CCA2

PA0+IND-CPA PA1+IND-CPA PA2+IND-CPA

1
2

4
3

5

Fig. 1. An arrow is an implication, and, in the directed graph given by the arrows,
there is a path from A to B if and only if A implies B. The hatched arrows represent
separations. Solid lines represent results from this paper, while dashed lines represent
results from prior work [4, 15]. The number on an arrow or hatched arrow refers to the
theorem in this paper that establishes this relationship. Absence of a number on a solid
arrow means the result is trivial.

that are computationally indistinguishable from those provided by a decryption
oracle.

An important element of the above framework is that the extractor gets as
input the same public key as the ciphertext creator, as well as the coin tosses

of the ciphertext creator. This reflects the intuition that the extractor is the
“subconscious” of the adversary, and begins with exactly the same information
as the adversary itself.

We say that an encryption scheme is PA0 (respectively, PA1) if there exists
a successful extractor for any ciphertext creator that makes only a single oracle
query (respectively, a polynomial number of oracle queries).

Eavesdropping capability in PA2 is captured by providing the ciphertext
creator C with an additional oracle that returns ciphertexts, but care has to be
taken in defining this oracle. It does not suffice to let it be an encryption oracle
because we want to model the ability of the adversary to obtain ciphertexts whose
decryptions it may not know. Our formalization of PA2 allows the additional
oracle to compute a plaintext, as a function of the query made to it and coins
unknown to C , and return the encryption of this plaintext to C .

Formal definitions of PA0, PA1 and PA2 are in Section 3.

1.4 Relations

PA by itself is not a notion of privacy, and so we are typically interested in PA
coupled with the minimal notion of privacy, namely IND-CPA [22, 23]. We con-
sider six notions, namely, PA0+IND-CPA, PA1+IND-CPA and PA2+IND-CPA,
on the one hand, and the standard notions of privacy IND-CPA, IND-CCA1
[25] and IND-CCA2 [27], on the other. We provide implications and separa-
tions among these six notions in the style of [4, 15]. The results are depicted in
Figure 1. For notions A, B, an implication, represented by A → B, means that
every encryption scheme satisfying notion A also satisfies notion B, and a sep-
aration, represented by A 6→ B, means that there exists an encryption scheme
satisfying notion A but not satisfying notion B. (The latter assumes there ex-
ists some encryption scheme satisfying notion A, since otherwise the question is
vacuous.)

50

Figure 1 shows a minimal set of arrows and hatched arrows, but the relation
between any two notions is resolved by the given relations. For example, IND-
CCA1 6→ PA1+IND-CPA, because, otherwise, there would be a path from IND-
CCA2 to PA0+IND-CPA, contradicting the hatched arrow labeled 3. Similarly,
we get PA0 6→ PA1 6→ PA2, meaning the three notions of plaintext awareness
are of increasing strength.

The main implications are that PA1+IND-CPA implies IND-CCA1 and
PA2+IND-CPA implies IND-CCA2. The PA1+IND-CPA → IND-CCA1 result
shows that even a notion of PA not taking eavesdropping adversaries into account
is strong enough to imply security against a significant class of chosen-ciphertext
attacks. Since the PA+IND-CPA → IND-CCA2 implication has been a moti-
vating target for definitions of PA, the PA2+IND-CPA → IND-CCA2 result
provides some validation for the definition of PA2.

Among the separations, we note that IND-CCA2 does not imply PA0, mean-
ing even the strongest form of security against chosen-ciphertext attack is not
enough to guarantee the weakest form of plaintext awareness.

1.5 Constructions

The next problem we address is to find provably-secure plaintext-aware encryp-
tion schemes.

Approaches. A natural approach to consider is to include a non-interactive
zero-knowledge proof of knowledge [13] of the message in the ciphertext. How-
ever, as we explain in [2], this fails to achieve PA.

As such approaches are considered and discarded, it becomes apparent that
achieving even the weaker forms of PA in the standard (as opposed to RO)
model may be difficult. We have been able to make progress, however, under
some strong assumptions that we now describe.

DHK assumptions. Let G be the order q subgroup of Z
∗
2q+1, where q, 2q + 1

are primes, and let g be a generator of G. Damg̊ard [12] introduced and used an
assumption that states, roughly, that an adversary given ga and outputting a
pair of the form (gb, gab) must “know” b. The latter is captured by requiring an
extractor that given the adversary coins and inputs can output b. We call our
formalization of this assumption (cf. Assumption 2) DHK0.1 We also introduce
an extension of this assumption called DHK1 (cf. Assumption 1), in which the
adversary does not just output one pair (gb, gab), but instead interacts with the

1 Another formalization, called DA-1, is used by Hada and Tanaka [19]. (We refer
to the full version of their paper [19], which points out that the formalization of
the preliminary version [20] is wrong.) This differs from DHK0 in being for a non-
uniform setting. DA-1 is called KEA1 by [5], based on Naor’s terminology [24]: KEA
stands for “knowledge of exponent.” Hada and Tanaka [19] also introduced and used
another assumption, that they call DA-2 and is called KEA2 in [5], but the latter
show that this assumption is false. The DHK0/DA-1/KEA1 assumptions, to the best
of our knowledge, are not known to be false.

51

extractor, feeding it such pairs adaptively and each time expecting back the
discrete logarithm of the first component of the pair.

The DEG scheme. Damg̊ard presented a simple ElGamal variant that we call
DEG. It is efficient, requiring only three exponentiations to encrypt and two to
decrypt.

We prove that DEG is PA0 under the DHK0 assumption and PA1 under
the DHK1 assumption. Since DEG is easily seen to be IND-CPA under the
DDH assumption, and we saw above that PA1+IND-CPA → IND-CCA1, a
consequence is that DEG is IND-CCA1 assuming DHK1 and DDH. DEG is in
fact the most efficient IND-CCA1 scheme known to date to be provably secure
in the standard model.

Damg̊ard [12] claims that DEG meets a notion of security under ciphertext
attack that we call RPR-CCA1, assuming DHK0 and assuming the ElGamal
scheme meets a notion called RPR-CPA. (Both notions are recalled in the full
version of this paper [2], and are weaker than IND-CCA1 and IND-CPA, re-
spectively). As we explain in [2], his proof has a flaw, but his overall approach
and intuition are valid, and the proof can be fixed by simply assuming DHK1 in
place of DHK0. In summary, our contribution is (1) to show that DEG meets a
stronger and more standard notion of security than RPR-CCA1, namely IND-
CCA1, and (2) to show it is PA0 and PA1, indicating that it has even stronger
properties, and providing some formal support for the intuition given in [12]
about the security underlying the scheme.

CS-lite. CS-lite is a simpler and more efficient version of the Cramer-Shoup
encryption scheme [11] that is IND-CCA1 under the DDH assumption. We show
that CS-lite is PA0 under the DHK0 assumption and PA1 under the DHK1
assumption. (IND-CPA under DDH being easy to see, this again implies CS-lite is
IND-CCA1 under DHK1 and DDH, but in this case the conclusion is not novel.)
What we believe is interesting about our results is that they show that some form
of plaintext awareness underlies the CS-lite scheme, and this provides perhaps
an alternative viewpoint on the source of its security. We remark, however, that
DEG is more efficient than CS-lite.

Warning and discussion. DHK0 and DHK1 are strong and non-standard
assumptions. As pointed out by Naor [24], they are not efficiently falsifiable.
(However, such assumptions can be shown to be false as exemplified in [5]).
However standard-model schemes, even under strong assumptions, might provide
better guarantees than RO model schemes, for we know that the latter may
not provide real-world security guarantees at all [10, 26, 18, 3]. Also, PA without
random oracles is challenging to achieve, and we consider it important to “break
ground” by showing it is possible, even if under strong assumptions.

Open questions. The central open question is to find an IND-CPA+PA2
scheme provably secure under some plausible assumption. We suggest, in partic-
ular, that an interesting question is whether the Cramer-Shoup scheme, already
known to be IND-CCA2, is PA2 under some appropriate assumption. (Intu-

52

itively, it seems to be PA2.) It would also be nice to achieve PA0 or PA1 under
weaker and more standard assumptions than those used here.

2 Notation and standard definitions

We let N = {1, 2, 3, . . .}. We denote by ε the empty string, by |x| the length of
a string x, by x̄ the bitwise complement of x, by “‖” the string-concatenation
operator, and by 1k the string of k ∈ N ones. We denote by [] the empty list.
Given a list L and an element x, L @ x denotes the list consisting of the elements
in L followed by x. If S is a randomized algorithm, then S(x, y, . . . ; R) denotes

its output on inputs x, y, . . . and coins R; s
$

← S(x, y, . . .) denotes the result of
picking R at random and setting s = S(x, y, . . . ; R); and [S(x, y, . . .)] denotes
the set of all points having positive probability of being output by S on inputs
x, y, Unless otherwise indicated, an algorithm is randomized.

Encryption schemes. We recall the standard syntax. An asymmetric (also
called public-key) encryption scheme is a tuple AE = (K, E ,D, MsgSp) whose
components are as follows. The polynomial-time key-generation algorithm K
takes input 1k, where k ∈ N is the security parameter, and returns a pair (pk, sk)
consisting of a public key and matching secret key. The polynomial-time encryp-
tion algorithm E takes a public key pk and a message M to return a ciphertext
C. The deterministic, polynomial-time decryption algorithm D takes a secret
key sk and a ciphertext C to return either a message M or the special sym-
bol ⊥ indicating that the ciphertext is invalid. The polynomial-time computable
message-space function MsgSp associates to each public key pk a set MsgSp(pk)
called the message space of pk. It is required that for every k ∈ N

Pr
h

(pk, sk)
$

← K(1k) ; M
$

← MsgSp(pk) ; C
$

← E(pk, M) : D(sk, C) = M
i

= 1 .

Standard security notions. We recall the definitions of IND-CPA, IND-
CCA1, and IND-CCA2 security that originate in [22], [25], and [27], respectively.
We use the formalizations of [4]. Let AE = (K, E ,D, MsgSp) be an asymmetric
encryption scheme, let k ∈ N and b ∈ {0, 1}. Let X be an algorithm with access
to an oracle. For aaa ∈ {cpa, cca1, cca2}, consider the following experiment

Experiment Expind-aaa-b
AE,X (k)

(pk, sk)
$

← K(1k) ; (M0, M1, St)
$

← X
O1(·)(find, pk) ; C

$

← E(pk, Mb)

d← X
O2(·)(guess, C, St) ; Return d

where

If aaa = cpa then O1(·) = ε and O2(·) = ε

If aaa = cca1 then O1(·) = Dsk(·) and O2(·) = ε

If aaa = cca2 then O1(·) = Dsk(·) and O2(·) = Dsk(·)

In each case it is required that M0, M1 ∈ MsgSp(pk) and |M0| = |M1|. In the
case of IND-CCA2, it is also required that X not query its decryption oracle

53

Experiment Exp
pa1-d
AE,C,D(k)

(pk, sk)
$

← K(1k) ; x
$

← C
D(sk,·)(pk) ; d

$

← D(x) ; Return d

Experiment Exp
pa1-x
AE,C,D,C∗(k)

(pk, sk)
$

← K(1k)

Choose coins R[C], R[C∗] for C, C∗, respectively ; St[C∗]← (pk, R[C])

Run C on input pk and coins R[C] until it halts, replying to its oracle queries
as follows:

– If C makes query Q then

(M, St[C∗])← C
∗(Q,St[C∗]; R[C∗]) ; Return M to C as the reply EndIf

Let x denote the output of C ; d
$

← D(x) ; Return d

Fig. 2. Experiments used to define PA1 and PA0.

with ciphertext C. We call X an ind-aaa-adversary. The ind-aaa-advantage of
X is

Advind-aaa
AE,X (k) = Pr

[

Expind-aaa-1
AE,X (k) = 1

]

− Pr
[

Expind-aaa-0
AE,X (k) = 1

]

.

For AAA ∈ {CPA, CCA1,CCA2}, AE is said to be IND-AAA secure if
Advind-aaa

AE,X (·) is negligible for every polynomial-time ind-aaa-adversary X .

3 New notions of plaintext awareness

In this section we provide our formalizations of plaintext-aware encryption. We
provide the formal definitions first and explanations later. We begin with PA1,
then define PA0 via this, and finally define PA2.

Definition 1. [PA1] Let AE = (K, E ,D, MsgSp) be an asymmetric encryption
scheme. Let C be an algorithm that has access to an oracle, takes as input a
public key pk, and returns a string. Let D be an algorithm that takes a string
and returns a bit. Let C

∗ be an algorithm that takes a string and some state
information, and returns a message or the symbol ⊥, and a new state. We call C
a ciphertext-creator adversary, D a distinguisher, and C

∗ a pa1-extractor. For
k ∈ N, we define the experiments shown in Figure 2. The pa1-advantage of C

relative to D and C
∗ is

Advpa1
AE,C,D,C∗(k) = Pr

[

Exppa1-d
AE,C,D(k) = 1

]

− Pr
[

Exppa1-x
AE,C,D,C∗(k) = 1

]

.

We say that C
∗ is a successful pa1-extractor for C if for every polynomial-time

distinguisher D the function Advpa1
AE,C,D,C∗(·) is negligible. We say AE is PA1

secure if for any polynomial-time ciphertext creator there exists a successful
polynomial-time pa1-extractor.

Definition 2. [PA0] Let AE be an asymmetric encryption scheme. We call a
ciphertext-creator adversary that makes exactly one oracle query a pa0 ciphertext

54

creator. We call a pa1-extractor for a pa0 ciphertext creator a pa0-extractor. We
say that AE is PA0 secure if for any polynomial-time pa0 ciphertext creator
there exists a successful polynomial-time pa0-extractor.

We now explain the ideas behind the above formalisms. The core of the for-
malization of plaintext awareness of asymmetric encryption scheme AE =
(K, E ,D, MsgSp) considers a polynomial-time ciphertext-creator adversary C

that takes input a public key pk, has access to an oracle and returns a string.
The adversary tries to distinguish between the cases that its oracle is D(sk, ·), or
it is an extractor algorithm C

∗ that takes as input the same public key pk. PA1
security requires that there exist a polynomial-time C

∗ such that C ’s outputs
in the two cases are indistinguishable. We allow C

∗ to be stateful, maintaining
state St[C∗] across invocations. Importantly, C

∗ is provided with the coin tosses

of C ; otherwise, C
∗ would be functionally equivalent to the decryption algo-

rithm and thus could not exist unless AE were insecure with regard to providing
privacy. We remark that this formulation is stronger than one not involving a
distinguisher D, in which C simply outputs a bit representing its guess, since
C

∗ gets the coins of C , but not the coins of D.

PA0 security considers only adversaries that make a single query in their
attempt to determine if the oracle is a decryption oracle or an extractor.

Definition 3. [PA2] Let AE = (K, E ,D, MsgSp) be an asymmetric encryption
scheme. Let C be an algorithm that has access to an oracle, takes as input a
public key pk, and returns a string. Let P be an algorithm that takes a string
and some state information, and returns a message and a new state. Let D be
an algorithm that takes a string and returns a bit. Let C

∗ be an algorithm
that takes a string, a list of strings and some state information, and returns
a message or the symbol ⊥, and a new state. We call C a ciphertext-creator
adversary, P a plaintext-creator adversary, D a distinguisher, and C

∗ a pa2-
extractor. For k ∈ N, we define the experiments shown in Figure 3. It is required
that, in these experiments, C not make a query (dec, C) for which C ∈ Clist.
The pa2-advantage of C relative to P, D and C

∗ is

Adv
pa2
AE,C,P,D,C∗ (k) = Pr

h

Exp
pa2-d
AE,C,P,D(k) = 1

i

− Pr
ˆ

Exp
pa2-x
AE,C,P,D,C∗ (k) = 1

˜

.

We say that C
∗ is a successful pa2-extractor for C if for every polynomial-

time plaintext creator P and distinguisher D, the function Advpa2
AE,C,P,D,C∗(·)

is negligible. We say AE is PA2 secure if for any polynomial-time ciphertext
creator there exists a successful polynomial-time pa2-extractor.

In the definition of PA2, the core setting of PA1 is enhanced to model the
real-life capability of a ciphertext creator to obtain ciphertexts via eavesdropping
on communications made by a third party to the receiver (cf. [4]). Providing C

with an encryption oracle does not capture this because eavesdropping puts into
C ’s hands ciphertexts of which it does not know the corresponding plaintext,
and, although we disallow C to query these to its oracle, it might be able to
use them to create other ciphertexts whose corresponding plaintext it does not
know and on which the extractor fails.

55

Experiment Exp
pa2-d
AE,C,P,D(k)

(pk, sk)
$

← K(1k) ; Clist← []

Choose coins R[C], R[P] for C,P, respectively ; St[P]← ε

Run C on input pk and coins R[C] until it halts, replying to its oracle queries
as follows:

– If C makes query (dec, Q) then

M ← D(sk, Q) ; Return M to C as the reply EndIf

– If C makes query (enc, Q) then

(M, St[P])← P(Q,St[P]; R[P]) ; C
$

← E(pk, M) ; Clist← Clist@C

Return C to C as the reply EndIf

Let x denote the output of C ; d
$

← D(x) ; Return d

Experiment Exp
pa2-x
AE,C,P,D,C∗(k)

(pk, sk)
$

← K(1k) ; Clist← []

Choose coins R[C], R[P], R[C∗] for C, P,C∗, respectively
St[P]← ε ; St[C∗]← (pk, R[C])

Run C on input pk and coins R[C] until it halts, replying to its oracle queries
as follows:

– If C makes query (dec, Q) then

(M, St[C∗])← C
∗(Q,Clist, St[C∗]; R[C∗])

Return M to C as the reply EndIf

– If C makes query (enc, Q) then

(M, St[P])← P(Q,St[P]; R[P]) ; C
$

← E(pk, M) ; Clist← Clist@C

Return C to C as the reply EndIf

Let x denote the output of C ; d
$

← D(x) ; Return d

Fig. 3. Experiments used to define PA2.

Modeling eavesdropping requires balancing two elements: providing C with a
capability to obtain ciphertexts of plaintexts it does not know, yet capturing the
fact that C might have partial information about the plaintexts, or control of
the distribution from which these plaintexts are drawn. We introduce a compan-
ion plaintext-creator adversary P who, upon receiving a communication from
C , creates a plaintext and forwards it to an encryption oracle. The ciphertext
emanating from the encryption oracle is sent to both C and C

∗. C has some
control over P via its communication to P, but we ensure this is not total by
denying C and C

∗ the coin tosses of P, and also by asking that C
∗ depend on

C but not on P.

The extractor C
∗ is, as before, provided with the coin tosses of C . Two types

of oracle queries are allowed to C . Via a query (dec, Q), it can ask its oracle to
decrypt ciphertext Q. Alternatively, it can make a query (enc, Q) to call P with
argument Q, upon which the latter computes a message M and forwards it to
the encryption oracle, which returns the resulting ciphertext to C , and C

∗ in

56

the case that C ’s oracle is C
∗. We observe that if an asymmetric encryption

scheme is PA2 secure then it is PA1 secure, and if it is PA1 secure then it is PA0
secure.

See [2] for extensive comparisons of these definitions with previous ones, and
also for stronger, statistical versions of these notions.

4 Relations among notions

We now state the formal results corresponding to Figure 1, beginning with the
two motivating applications of our notions of plaintext awareness. Proofs of these
results are provided in the full version of this paper [2].

Theorem 1. [PA1+IND-CPA ⇒ IND-CCA1] Let AE be an asymmetric

encryption scheme. If AE is PA1 secure and IND-CPA secure, then it is IND-

CCA1 secure.

Theorem 2. [PA2+IND-CPA ⇒ IND-CCA2] Let AE be an asymmetric

encryption scheme. If AE is PA2 secure and IND-CPA secure, then it is IND-

CCA2 secure.

Theorem 3. [IND-CCA2 6⇒ PA0+IND-CPA] Assume there exists an IND-

CCA2-secure asymmetric encryption scheme. Then there exists an IND-CCA2-

secure asymmetric encryption scheme that is not PA0 secure.

Theorem 4. [PA1+IND-CPA 6⇒ IND-CCA2] Assume there exists a PA1

secure and IND-CPA-secure asymmetric encryption scheme. Then there exists

a PA1 secure and IND-CPA-secure asymmetric encryption scheme that is not

IND-CCA2 secure.

Theorem 5. [PA0+IND-CPA 6⇒ IND-CCA1] Assume there exists a PA0

secure and IND-CPA-secure asymmetric encryption scheme. Then there exists

a PA0 secure and IND-CPA-secure asymmetric encryption scheme that is not

IND-CCA1 secure.

5 Constructions

Prime-order groups. If p, q are primes such that p = 2q + 1, then we let Gq

denote the subgroup of quadratic residues of Z
∗
p. Recall this is a cyclic subgroup

of order q. If g is a generator of Gq then dlogq,g(X) denotes the discrete loga-
rithm of X ∈ Gq to base g. A prime-order-group generator is a polynomial-time
algorithm G that on input 1k returns a triple (p, q, g) such that p, q are primes
with p = 2q + 1, g is a generator of Gq , and 2k−1 < p < 2k (p is k bits long).

The DHK assumptions. Let G be a prime-order-group generator, and suppose
(p, q, g) ∈ [G(1k)]. We say that (A, B, W) is a DH-triple if there exist a, b ∈ Zq

such that A = ga mod p, B = gb mod p and W = gab mod p. We say that (B, W)

57

Experiment Expdhk1
G,H,H∗(k)

(p, q, g)
$

← G(1k) ; a
$

← Zq ; A← ga mod p

Choose coins R[H], R[H∗] for H , H∗, respectively ; St[H∗]← ((p, q, g,A), R[H])

Run H on input p, q, g,A and coins R[H] until it halts, replying to its oracle
queries as follows:

– If H makes query (B, W) then

(b, St[H∗])← H
∗((B,W), St[H∗]; R[H∗])

If W ≡ Ba (mod p) and B 6≡ gb (mod p) then return 1

Else return b to H as the reply EndIf EndIf

Return 0

Fig. 4. Experiment used to define the DHK1 and DHK0 assumptions.

is a DH-pair relative to A if (A, B, W) is a DH-triple. One way for an adversary
H taking input p, q, g, A to output a DH-pair (B, W) relative to A is to pick
—and thus “know”— some b ∈ Zq , set B = gb mod p and W = Ab mod p, and
output (B, W). Damg̊ard [12] makes an assumption which, informally, says that
this is the “only” way that a polynomial-time adversary H can output a DH-pair
relative to A. His framework to capture this requires that there exist a suitable
extractor H

∗ that can compute dlogq,g(B) whenever H outputs some DH-pair
(B, W) relative to A.

We provide a formalization of this assumption that we refer to as the DHK0
(DHK stands for Diffie-Hellman Knowledge) assumption. We also present a nat-
ural extension of this assumption that we refer to as DHK1. Here the adversary
H , given p, q, g, A, interacts with the extractor, querying it adaptively. The ex-
tractor is required to be able to return dlogq,g(B) for each DH-pair (B, W)
relative to A that is queried to it. Below we first present the DHK1 assumption,
and then define the DHK0 assumption via this.

Assumption 1. [DHK1] Let G be a prime-order-group generator. Let H be an
algorithm that has access to an oracle, takes two primes and two group elements,
and returns nothing. Let H

∗ be an algorithm that takes a pair of group elements
and some state information, and returns an exponent and a new state. We call H
a dhk1-adversary and H

∗ a dhk1-extractor. For k ∈ N we define the experiment
shown in Figure 4. The dhk1-advantage of H relative to H

∗ is

Advdhk1
G,H ,H∗(k) = Pr

[

Expdhk1
G,H ,H∗(k) = 1

]

.

We say that G satisfies the DHK1 assumption if for every polynomial-time
dhk1-adversary H there exists a polynomial-time dhk1-extractor H

∗ such that
Advdhk1

G,H ,H∗(·) is negligible.

Assumption 2. [DHK0] Let G be a prime-order-group generator. We call a
dhk1-adversary that makes exactly one oracle query a dhk0-adversary. We call
a dhk1-extractor for a dhk0-adversary a dhk0-extractor. We say that G satisfies
the Diffie-Hellman Knowledge (DHK0) assumption if for every polynomial-time

58

Algorithm K(1k)

(p, q, g)
$

← G(1k)

x1
$

← Zq ; X1 ← gx1 mod p

x2
$

← Zq ; X2 ← gx2 mod p

Return ((p, q, g,X1, X2), (p, q, g, x1, x2))

Algorithm E((p, q, g,X1, X2), M)

y
$

← Zq ; Y ← gy mod p

W ← X
y
1 mod p ; V ← X

y
2 mod p

U ← V ·M mod p

Return (Y,W, U)

Algorithm D((p, q, g, x1, x2), (Y,W, U))

If W 6≡ Y x1 (mod p) then return ⊥

Else M ← U · Y −x2 mod p ; Return M

EndIf

MsgSp((p, q, g,X1, X2)) = Gq

Fig. 5. Algorithms of the encryption scheme DEG = (K, E ,D, MsgSp) based on prime-
order-group generator G.

dhk0-adversary H there exists a polynomial-time dhk0-extractor H
∗ such that

Advdhk1
G,H ,H∗(·) is negligible.

We observe that DHK1 implies DHK0 in the sense that if a prime-order-group
generator satisfies the former assumption then it also satisfies the latter assump-
tion.

Constructions. We would like to build an asymmetric encryption scheme that
is PA0 secure (and IND-CPA secure) under the DHK0 assumption. An obvious
idea is to use ElGamal encryption. Here the public key is X = gx, where x is the
secret key, and an encryption of message M ∈ Gq has the form (Y, U), where
Y = gy mod p and U = Xy ·M mod p = gxy ·M mod p. However, we do not
know whether this scheme is PA0 secure.

We consider a modification of the ElGamal scheme that was proposed by
Damg̊ard [12]. We call this scheme Damg̊ard ElGamal or DEG. It is parameter-
ized by a prime-order group generator G, and its components are depicted in
Figure 5. The proof of the following is in the full version of this paper [2]:

Theorem 6. Let G be a prime-order-group generator and let DEG = (K, E ,
D, MsgSp) be the associated Damg̊ard ElGamal asymmetric encryption scheme

defined in Figure 5. If G satisfies the DHK0 and DDH assumptions then DEG
is PA0+IND-CPA secure. If G satisfies the DHK1 and DDH assumptions then

DEG is PA1+IND-CPA secure.

As a consequence of the above and Theorem 1, DEG is IND-CCA1 secure under
the DHK1 and DDH assumptions. DEG is in fact the most efficient known IND-
CCA1 scheme with some proof of security in the standard model.

Next we consider the “lite” version of the Cramer-Shoup asymmetric encryp-
tion scheme [11]. The scheme, denoted CS-lite, is parameterized by a prime-order
group generator G, and its components are depicted in Figure 6. This scheme is
known to be IND-CCA1 secure under the DDH assumption [11]. We are able to
show the following. The proof can be found in [2].

59

Algorithm K(1k)

(p, q, g1)
$

← G(1k) ; g2
$

← Gq \ {1}

x1
$

← Zq ; x2
$

← Zq ; z
$

← Zq

X ← g
x1

1 · g
x2

2 mod p ; Z ← gz
1 mod p

Return ((p, q, g1, g2, X, Z), (p, q, g1, g2, x1, x2, z))

Algorithm E((p, q, g1, g2, X, Z), M)

r
$

← Zq

R1 ← gr
1 mod p

R2 ← gr
2 mod p

E ← Zr ·M mod p

V ← Xr mod p

Return (R1, R2, E, V)

Algorithm D((p, q, g1, g2, x1, x2, z), (R1, R2, E, V))

If V 6≡ R
x1

1 · R
x2

2 (mod p) then return ⊥

Else M ← E ·R−z
1 mod p ; Return M EndIf

MsgSp((p, q, g1, g2, X, Z)) = Gq

Fig. 6. Algorithms of the encryption scheme CS-lite = (K, E ,D, MsgSp) based on
prime-order-group generator G.

Theorem 7. Let G be a prime-order-group generator, and let CS-lite = (K, E ,
D, MsgSp) be the associated Cramer-Shoup lite asymmetric encryption scheme

defined in Figure 6. If G satisfies the DHK0 and DDH assumptions then CS-lite
is PA0+IND-CPA secure. If G satisfies the DHK1 and DDH assumptions then

CS-lite is PA1+IND-CPA secure.

Again, the above and Theorem 1 imply that CS-lite is IND-CCA1 secure under
the DHK1 and DDH assumptions. This however is not news, since we already
know that DDH alone suffices to prove it IND-CCA1 [11]. However, it does
perhaps provide a new perspective on why the scheme is IND-CCA1, namely
that this is due to its possessing some form of plaintext awareness.

In summary, we have been able to show that plaintext awareness without
ROs is efficiently achievable, even though under very strong and non-standard
assumptions.

References

1. M. Backes, B. Pfitzmann and M. Waidner. A composable cryptographic
library with nested operations. CCS 03.

2. M. Bellare and A. Palacio. Towards plaintext-aware public-key encryption
without random oracles. Full version of this extended abstract. Available at
http://www-cse.ucsd.edu/users/mihir.

3. M. Bellare, A. Boldyreva and A. Palacio. An un-instantiable random oracle
model scheme for a hybrid encryption problem. EUROCRYPT ’04.

4. M. Bellare, A. Desai, D. Pointcheval and P. Rogaway. Relations among
notions of security for public-key encryption schemes. CRYPTO ’98.

5. M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and 3-
round zero-knowledge protocols. CRYPTO ’04.

6. M. Bellare and P. Rogaway. Optimal asymmetric encryption. EUROCRYPT
’94.

60

7. D. Boneh. Simplified OAEP for the RSA and Rabin functions. CRYPTO ’01.
8. M. Blum, P. Feldman and S. Micali. Non-interactive zero-knowledge and its

applications. STOC 88.
9. M. Blum, P. Feldman and S. Micali. Proving security against chosen cipher-

text attacks. CRYPTO ’88.
10. R. Canetti, O. Goldreich and S. Halevi. The random oracle methodology,

revisited. STOC 98.
11. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-

tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, Vol. 33, No. 1, 2003, pp. 167–226.

12. I. Damgård. Towards practical public key systems secure against chosen cipher-
text attacks. CRYPTO ’91.

13. A. De Santis and G. Persiano. Zero-knowledge proofs of knowledge without
interaction. FOCS 92.

14. D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transac-
tions on Information Theory, Vol. 29, 1983, pp. 198–208.

15. D. Dolev, C. Dwork, and M. Naor. Non-Malleable cryptography. SIAM
Journal on Computing, Vol. 30, No. 2, 2000, pp. 391–437.

16. E. Fujisaki, T. Okamoto, D. Pointcheval and J. Stern. RSA-OAEP is
secure under the RSA assumption. CRYPTO ’01.

17. O. Goldreich. A uniform-complexity treatment of encryption and zero-
knowledge. Journal of Cryptology, Vol. 6, No. 1, 1993, pp. 21–53.

18. S. Goldwasser and Y. Taumann. On the (in)security of the Fiat-Shamir
paradigm. FOCS 03.

19. S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge protocols.
IACR Cryptology ePrint Archive, Report 1999/009, March 1999. Available at
http://eprint.iacr.org/1999/009/. [Revised version of [20].]

20. S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge protocols.
CRYPTO ’98. [Preliminary version of [19].]

21. J. Herzog, M. Liskov and S. Micali. Plaintext awareness via key registration.
CRYPTO ’03.

22. S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer
and System Science, Vol. 28, 1984, pp. 270–299.

23. S. Micali, C. Rackoff, and B. Sloan. The notion of security for probabilistic
cryptosystems. SIAM Journal on Computing, Vol. 17, No. 2, 1988, pp. 412–426.

24. M. Naor. Cryptographic assumptions and challenges. CRYPTO ’03.
25. M. Naor and M. Yung. Public-key cryptosystems provably secure against cho-

sen ciphertext attacks. STOC 90.
26. J. B. Nielsen. Separating Random Oracle Proofs from Complexity Theoretic

Proofs: The Non-committing Encryption Case. CRYPTO ’02
27. C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge

and chosen ciphertext attack. CRYPTO ’91.
28. V. Shoup. OAEP reconsidered. Journal of Cryptology Vol. 15, No. 4, 2002,

pp. 223–249.

