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Abstract. We propose a group signature scheme with constant-size
public key and signature length that does not require trapdoor. So sys-
tem parameters can be shared by multiple groups belonging to different
organizations. The scheme is provably secure in the formal model re-
cently proposed by Bellare, Shi and Zhang (BSZ04), using random ora-
cle model, Decisional Bilinear Diffie-Hellman and Strong Diffie-Hellman
assumptions. We give a more efficient variant scheme and prove its secu-
rity in a formal model which is a modification of BSZ04 model and has a
weaker anonymity requirement. Both schemes are very efficient and the
sizes of signatures are approximately one half and one third, respectively,
of the sizes of the well-known ACJT00 scheme. We also use the schemes
to construct a traceable signature scheme.

1 Introduction

Group signature schemes, introduced by Chaum and Van Heyst [14], allow a
group member to sign a message on behalf of the group without revealing his
identity and without allowing the message to be linkable to other signed messages
that are verifiable with the same public key. Participants in a group signature
scheme are a set of group members and a group manager. The role of the group
manager is to register new users by issuing membership certificates that con-
tain registration details, and in case of dispute about a signed message, revoking
anonymity of the signed message by ‘opening’ the signature. In some schemes
the functions of the group manager can be split between two managers: an issuer
and an opener. This is a desirable property that allows distribution of trust. It is
required that no collusion of the issuer and the opener can frame a group mem-
ber. Group signatures are among the most important cryptographic primitives
for providing privacy and have been used for applications such as anonymous
credentials [2], identity escrow [21], voting and bidding [1], and electronic cash
[23]. Kiayias et al. [18] also introduced the traceable signature primitive, which
is basically the group signature system with added properties allowing a variety
of levels for protecting user privacy.

In early group signature schemes [9, 14, 15] the size of the public key and
the signature grew with the size of the group and so the schemes were imprac-
tical for large groups. Schemes with fixed size group public key and signature
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length have been first proposed in [13] and later extended in [12, 1, 2]. In Crypto
2000, Ateniese et al. (ACJT00) [1] proposed an efficient group signature scheme
with very short length and low computation cost. This scheme is also the only
scheme that has been proved to satisfy the informal list of security requirements
of group signature schemes. Ateniese and de Medeiros (AdM03) proposed an
efficient group signature scheme [2] that is ‘without trapdoor’ in the sense that
none of parties in the system including the group manager need to know the
trapdoor. That is the system trapdoor is only used during the initialisation and
to generate system parameters. The advantage of this property is that the same
trapdoor information can be used to initiate different groups. The importance
and usefulness of this property in real-world applications, for example when the
group signature scheme is used as a building block of an anonymous credential
system among a number of organizations that need to communicate and trans-
fer information about users while protecting their privacy, have been outlined in
[2]. A drawback of AdM03 scheme is that it has a single group manager who is
responsible for registration of users and opening of signatures, and it is not pos-
sible to separate the two functionalities. In AdM03 scheme, the group manager
stores the certificate (r, s) of each member. The signature of a group member
contains elements χ and E1 satisfying the equation E1 = χr, and so, to revoke
a signature, the group manager (or any party with the knowledge of the certifi-
cates) can try all certificates to find the one satisfying the equation. This is an
computationally expensive process. The security proof (corrected version) is for
the informal list of security requirements, and is given in the generic model [3].

Security of a group signature scheme has been traditionally proved by show-
ing that it satisfies a list of informally defined requirements. Bellare et al. [4] gave
a formal security model (BSZ04) for (partially) dynamic groups with four secu-
rity requirements (Correctness, Anonymity, Traceability and Non-frameability).
The model uses various oracles including an Open oracle that takes a signed
message and reveals the identity of the signer. The ACJT00 scheme although
satisfies the conventional list of requirements but cannot be proved secure in the
formal model mainly because of the inclusion of the Open oracle in the model.
Kiayias et al. [19] proposed an extension (KY04 scheme) of ACJT00 scheme that
is proved secure in their formal model. A new direction in constructing group
signature schemes is to use bilinear pairings to shorten the lengths of the signa-
ture and key. Boneh et al. [7] proposed a short group signature scheme (BBS04)
based on the Strong Diffie-Hellman assumption and a new assumption called
the Decisional Linear assumption. The scheme is provably secure in a formal
model where the Opening oracle is not available and the Non-frameability prop-
erty is not required, in comparison with the BSZ04 model. They also showed
how to construct an extension, which provides Non-frameability (exculpability).
Based on the LRSW assumption [22], Camenisch and Lysyanskaya [11] proposed
a group signature scheme (CL04) derived from a signature scheme which allows
an efficient zero-knowledge proof of the knowledge of a signature on a committed
message, and used it to construct an efficient anonymous credential system.



Efficient and Provably Secure Trapdoor-free Group Signature Schemes . . . 369

Our contribution
In this paper, we first propose a new efficient group signature scheme with a num-
ber of attractive properties and prove its security in the BSZ04 model under the
Decisional Bilinear Diffie-Hellman and Strong Diffie-Hellman assumptions, using
random oracle model. We then give an efficient variant of this scheme and prove
its security in the reduced version of BSZ04 model. The only difference between
the original BSZ04 model and the reduced version is in modelling anonymity
property, as in the reduced version, the adversary does not have access to the
Open oracle. This is a plausible model for all cases that the opener is a highly
trusted entity and cannot be accessed by the adversary. We also extend the
variant scheme to a provably secure traceable signature scheme.

All proposed schemes have fixed lengths for group public key and signature,
and so can be used for large size groups. Using elliptic curve cryptography in
our schemes results in shorter lengths for signatures and keys. For example, for
a comparable level of security as the ACJT00 scheme with 1024 bit composite
modulus, our group signature schemes require elliptic curve groups of order 170
bit prime, resulting in the sizes of signatures in our two schemes to be one third
and one half, respectively, of the size in ACJT00 scheme. For higher security
levels this ratio will be smaller.

Our schemes can be converted into identity escrow systems or extended to
support efficient membership revocation, as shown in [26]. The schemes are
trapdoor-free. The only other trap-door free scheme is the AdM03 scheme, which
uses a trapdoor in the initialisation of the system and assumes that the initial-
ising party “safely forgets” the trapdoor. An advantage of our schemes over
AdM03 scheme is that they allow separation of issuer and the opener, hence
distribution of trust. Finally in our schemes, the interactive protocol underly-
ing the signature scheme achieves honest verifier perfect zero-knowledge without
any computational assumption whereas in the ACJT00 and KY04 schemes, the
corresponding protocols achieve honest verifier statistical zero-knowledge under
the Strong RSA assumption.

The paper is organized as follows. Section 2 gives related background and
section 3 describes our group signature scheme and its security proofs. Section
4 gives a modification of BSZ04 formal model and a variant group signature
scheme, and proves that the variant scheme and ACJT00 scheme are secure
in the modified model. Section 5 describes our traceable signature scheme and
section 6 provides efficiency comparison with ACJT00 scheme.

2 Preliminaries

2.1 Bilinear Pairings

Let G1,G2 be cyclic additive groups generated by P1 and P2, respectively, both
with order p, a prime, and GM be a cyclic multiplicative group with the same
order. Suppose there is an isomorphism ψ : G2 → G1 such that ψ(P2) = P1. Let
e : G1 ×G2 → GM be a bilinear pairing with the following properties:
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1. Bilinearity: e(aP, bQ) = e(P,Q)ab for all P ∈ G1, Q ∈ G2, a, b ∈ Zp

2. Non-degeneracy: e(P1, P2) 6= 1
3. Computability: There is an efficient algorithm to compute e(P,Q) for all
P ∈ G1, Q ∈ G2

For simplicity, hereafter, we set G1 = G2 and P1 = P2 but our group signature
schemes can be easily modified for the case when G1 6= G2. For a group G of
prime order, hereafter, we denote the set G∗ = G\{O} where O is the identity
element of the group.

We define a Bilinear Pairing Instance Generator as a Probabilistic Polynomial
Time (PPT) algorithm G that takes as input a security parameter 1l and returns
a uniformly random tuple t = (p,G1,GM , e, P ) of bilinear pairing parameters,
including a prime number p of size l, a cyclic additive group G1 of order p, a
multiplicative group GM of order p, a bilinear map e : G1 × G1 → GM and a
generator P of G1.

2.2 Complexity Assumptions

For a function f : N→ R
+, if for every positive number α, there exists a positive

integer l0 such that for every integer l > l0, it holds that f(l) < l−α, then f
is said to be negligible. If there exists a positive number α0 such that for every
positive integer l, it holds that f(l) < lα0 , then f is said to be polynomial-bound.

The q-SDH assumption originates from a weaker assumption introduced by
Mitsunari et. al. [24] to construct traitor tracing schemes [28] and later used by
Zhang et al. [30] and Boneh et al. [5] to construct short signatures. It intuitively
means that there is no PPT algorithm that can compute a pair (c, 1

x+c
P ), where

c ∈ Zp, from a tuple (P, xP, . . . , xqP ), where x ∈R Z∗
p.

q-Strong Diffie-Hellman (q-SDH) Assumption. For every PPT algorithm

A, the following function Adv
q-SDH
A (l) is negligible.

Adv
q-SDH
A (l) = Pr[(A(t, P, xP, . . . , xqP ) = (c,

1

x+ c
P )) ∧ (c ∈ Zp)]

where t = (p,G1,GM , e, P )← G(1l) and x← Z∗
p.

Intuitively, the DBDH assumption [6] states that there is no PPT algo-
rithm that can distinguish between a tuple (aP, bP, cP, e(P, P )abc) and a tuple
(aP, bP, cP, Γ ), where Γ ∈R G

∗
M (i.e., chosen uniformly random from G

∗
M ) and

a, b, c ∈R Z∗
p. It is defined as follows.

Decisional Bilinear Diffie-Hellman (DBDH) Assumption. For every PPT

algorithm A, the following function AdvDBDH
A (l) is negligible.

AdvDBDH
A (l) = |Pr[A(t, aP, bP, cP, e(P, P )abc) = 1]−

Pr[A(t, aP, bP, cP, Γ ) = 1]|

where t = (p,G1,GM , e, P )← G(1l), Γ ← G∗
M and a, b, c← Z∗

p.
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2.3 Bilinear Pairing versions of El Gamal public key system

Based on the DBDH assumption, we can construct two bilinear pairing ver-
sions of El Gamal public key system. El GamalBP1 provides Indistinguishability
against adaptive Chosen Plaintext Attack (IND-CPA) and El GamalBP2 provides
Indistinguishability against adaptive Chosen Ciphertext Attack (IND-CCA) in
the random oracle model. Due to space limitation, we only provide description
of El GamalBP2. This is the bilinear pairing version of the scheme presented and
proved by Fouque and Pointcheval [17]. Description of El GamalBP1 can be found
in the full version of this paper [25].
Key generation: Let p,G1,GM , e be bilinear pairing parameters, as defined above,
and G be a generator of G1. Suppose xa, xb ∈R Z∗

p and Θa = e(G,G)xa and Θb =
e(G,G)xb . The public key pk = (G,Θa, Θb) and the secret key is sk = (xa, xb).
Choose a hash function H1 : {0, 1}∗ → Zp (a random oracle).
Encryption: Plaintext ∆ ∈ GM can be encrypted by choosing ta, tb ∈R Z∗

p

and computing (Ea, Λa) = (taG,∆Θ
ta
a ), (Eb, Λb) = (tbG,∆Θ

tb

b ) and a non-
interactive zero-knowledge proof ς = (c, ρa, ρb) of equality of plaintexts between
(Ea, Λa) and (Eb, Λb). The proof ς can be computed by choosing wa, wb ∈R Zp

and computing c = H1(G||Θa||Θb||Ea||Λa||Eb||Λb||waG||wbG||Θwa
a Θwb

b ), ρa =
wa − tac and ρb = wb + tbc. The ciphertext is (Ea, Λa, Eb, Λb, ς).
Decryption: Given a ciphertext (Ea, Λa, Eb, Λb, ς), first check the validity of ς by
verifying

c
?
= H1(G||Θa||Θb||Ea||Λa||Eb||Λb||ρaG+ cEa||ρbG− cEb||Θ

ρa

a Θρb

b (Λa/Λb)
c)

then compute the plaintext ∆ = Λa/e(Ea, G)xa = Λb/e(Eb, G)xb .
Security: The security of El GamalBP2 system is stated in Theorem 1.

Theorem 1. El GamalBP2 encryption scheme is IND-CCA if DBDH assump-
tion holds, in the random oracle model.

3 The Group Signature scheme

3.1 Overview

Our group signature scheme is built upon two ordinary signature schemes. The
first one is used in the Join, Iss protocol for the issuer to generate a signature
(ai, Si) for each xi, which is randomly generated by both a member and the
issuer, but known only to the member. The second ordinary signature scheme
is used in the GSig algorithm as the non-interactive version of a zero-knowledge
protocol, that proves the signer’s knowledge of (ai, Si) and xi. The security of
the two signature schemes underlies the security of the group signature scheme.

Our group signature scheme is constructed in cyclic groups with bilinear
mappings. For simplicity, we present the scheme when the groups G1 and G2

are the same, however, it can be easily modified for the general case when G1 6=
G2. The users do not perform any pairing operation when signing, but pairing
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operation play an important role in the verification algorithm GVf. Intuitively,
bilinear pairings allow a party, given A,B,C,D ∈ G1, to prove that logAB =
logCD without knowing logAB or logAC. This is not possible in cyclic groups
without bilinear pairings and where the DDH assumption holds.

3.2 Descriptions

We describe our group signature scheme according to the BSZ04 model, which
is omitted in this paper due to space limitation. Our group signature scheme
consists of two group managers (the issuer and the opener), and users with
unique identities i ∈ N (the set of positive integers). Each user can join the group
and become a group member. The scheme is specified as a tuple GS1 =(GKg,

UKg, Join, Iss, GSig, GVf, Open, Judge) of polynomial-time algorithms which are
defined as follows. We assume that the group size and the number of queries
asked by the adversary are polynomially-bounded by the security parameter l.

GKg: Suppose l is a security parameter and the Bilinear Pairing Instance Gen-
erator G generates a tuple of bilinear pairing parameters t = (p,G1,GM , e, P )←
G(1l), that is also the publicly shared parameters. Choose a hash function
H2 : {0, 1}∗ → Zp, which is assumed to be a random oracle in the security
proofs. Choose P0, G,H ∈R G1, x, x

′
a, x

′
b ∈R Z∗

p and compute Ppub = xP , Θa =

e(G,G)x′

a and Θb = e(G,G)x′

b . The group public key is gpk = (P, P0, Ppub, H,G,
Θa, Θb), the issuing key is ik = x, and the opening key is ok = (x′a, x

′
b).

UKg: This algorithm generates keys that provide authenticity for messages sent
by the user in the (Join, Iss) protocol. This algorithm is the key generation algo-
rithm KS of any digital signature scheme (KS , Sign, V er) that is unforgeable
against chosen message attacks (UNF-CMA). A user i runs the UKg algorithm
that takes as input a security parameter 1l and outputs a personal public and
private signature key pair (upk[i], usk[i]). Public Key Infrastructure (PKI) can
be used here. Although any UNF-CMA signature scheme can be used, but using
schemes, whose security is based on DBDH or SDH assumptions, will reduce
the underlying assumptions of our group signature scheme. One example of such
scheme is in [5].

Join, Iss: In this protocol, a user i and the issuer first jointly generate a random
value xi ∈ Z∗

p whose value is only known by the user. The issuer then generates
(ai, Si) for the user so that e(aiP + Ppub, Si) = e(P, xiP + P0). The user uses
usk[i] to sign his messages in the protocol. Note that the formal model assumes
the communication to be private and authenticated. We also assume that the
communication is protected from replay attacks. The protocol is as follows.

1. user i −→ issuer: I = yP + rH , where y, r ∈R Z∗
p.

2. user i←− issuer: u, v ∈R Z∗
p.

3. The user computes xi = uy + v, Pi = xiP .
4. user i −→ issuer: Pi and a proof of knowledge of (xi, r

′) such that Pi = xiP
and vP + uI − Pi = r′H (see [12] for this proof).
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5. The issuer verifies the proof, then chooses ai ∈R Z∗
p different from all corre-

sponding elements previously issued, and computes Si = 1

ai+x
(Pi + P0).

6. user i←− issuer: ai, Si.
7. The user computes ∆i = e(P, Si), verifies if e(aiP + Ppub, Si) = e(P, xiP +
P0), and stores the private signing key gsk[i] = (xi, ai, Si, ∆i). Note that
only the user knows xi. The issuer also computes ∆i and makes an entry in
the table reg: reg[i] = (i,∆i, 〈Join, Iss〉 transcript).

GSig: A group signature of a user i shows his knowledge of (ai, Si) and a secret
xi such that: e(aiP + Ppub, Si) = e(P, xiP + P0). The signature does not reveal
any information about his knowledge to anyone, except for the opener, who can
compute ∆i by decrypting an encryption of that value. The algorithm for a user
i to sign a message m ∈ {0, 1}∗ is as follows.

1. Encrypt ∆i by El GamalBP2 with public key (G,Θa, Θb) as (Ea = tG, Λa =
∆iΘ

t
a, Eb, Λb, ς).

2. Perform the non-interactive version of a protocol, which we call the Signing
protocol, as follows. Generate r1, ..., r3, k0, ..., k5 ∈R Z

∗
p and compute

(a) U = r1(aiP + Ppub); V = r2Si; W = r1r2(xiP + P0); X = r2U + r3H ;
T1 = k1P + k2Ppub + k0H ; T2 = k3P + k2P0; T3 = k4U + k0H ; T4 =
k5G− k4Ea; Π = Θk5

a Λ−k4

a .
(b) c = H2(gpk||Ea||Λa||Eb||Λb||ς ||U ||V ||W ||X ||T1||...||T4||Π ||m).
(c) Compute in Zp: s0 = k0 + cr3; s1 = k1 + cr1r2ai; s2 = k2 + cr1r2;

s3 = k3 + cr1r2xi; s4 = k4 + cr2; s5 = k5 + cr2t.
3. Output the signature (c, s0, ..., s5, U, V,W,X,Ea, Λa, Eb, Λb, ς) for m.

GVf : The verification algorithm for m, (c, s0, ..., s5, U, V,W,X,Ea, Λa, Eb, Λb, ς)
outputs accept if and only if verifying the proof ς outputs accept and the following
two equations hold: e(U, V ) = e(P,W ) and c = H2(P ||P0||Ppub||H ||G||Θ||Ea||Λa

||Eb||Λb||ς ||U ||V ||W ||X ||s1P+s2Ppub +s0H−cX ||s3P+s2P0−cW ||s4U+s0H−
cX ||s5G− s4Ea||Θs5

a Λ
−s4

a e(P, cV )||m).

Open: To open m and its valid signature (c, s0, ..., s5, U, V,W,X,Ea, Λa, Eb, Λb,
ς) to find the signer, the opener performs the following steps.

1. Use GVf algorithm to check the signature’s validity. If the algorithm rejects,
return (0, ε), where ε denotes an empty string.

2. Compute ∆i = Λae(Ea, G)−x′

a and find the corresponding entry i in the
table reg. If no entry is found, return (0, ε).

3. Return reg[i] and a non-interactive zero-knowledge proof % of knowledge of
x′a so that Θa = e(G,G)x′

a and Λa/∆i = e(Ea, G)x′

a (see [12] for this proof).

Judge: On an output by the Open algorithm for a message m and its signature
ω, the Judge algorithm is performed as follows:

1. If Open algorithm outputs (0, ε), run GVf algorithm on m,ω. If GVf rejects,
return accept; otherwise, return reject.
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2. If Open algorithm outputs (reg[i], %), return reject if one of the following
happens: (i) on m,ω, GVf algorithm rejects; (ii) verification of the proof
% rejects; (iii) the 〈Join, Iss〉 transcript is invalid with regard to upk[i]; (iv)
∆i 6= e(P, Si) where Si is extracted from the 〈Join, Iss〉 transcript. Otherwise,
return accept.

Remarks:

– Our scheme is trapdoor-free. This improves efficiency and manageability, and
various groups can share the same initial set-up p,G1,GM , e, P, P0, G,H .

– Our Signing protocol achieves honest verifier perfect zero-knowledge and
does not rely on any complexity assumption. This indicates a higher level of
unconditional security: from a signature, an adversary with unlimited power
(but without access to the reg table) can compute only a part of the signer’s
registration information (Si), whereas, in the ACJT00 and KY04 schemes,
the adversary can find all parts of the signer’s private signing key.

3.3 Security Proofs

Theorem 2. The group signature scheme GS1 provides Correctness.

Theorem 3. The group signature scheme GS1 provides Anonymity in the ran-
dom oracle model if the Decisional Bilinear Diffie-Hellman assumption holds.

Theorem 4. The group signature scheme GS1 provides Traceability in the ran-
dom oracle model if the q-Strong Diffie-Hellman assumption holds, where q is
the upper bound of the group size.

Theorem 5. The group signature scheme GS1 provides Non-frameability in the
random oracle model if the Discrete Logarithm assumption holds over the group
G1 and the digital signature scheme (KS, Sign, V er) is UNF-CMA.

Proofs of these theorems can be found in the full version [25]. We provide
here the proofs of two important properties that underlie these theorems, i. e.
the Zero-knowledge property of the Signing protocol in GSig algorithm and the
Coalition-Resistance of GS1 and GS2. In our definition, Coalition-Resistance
intuitively means that a colluding group of signers, with the knowledge of the
opening key and access to some oracles, should not be able to generate a new valid
user private signing key. For a group signature scheme GS, a PPT adversary A,
a PPT predicate U that can determine the validity of a user private signing key,
and any security parameter l ∈ N, the formula of the experiment for Coalition-
Resistance is as follows.

Experiment Expcoal.re
GS,A,U(l)

(gpk, ik, ok)← GKg(1l); CU← ∅; HU← ∅
gsk′ ← A(gpk, ok : CrptU(·, ·), SndToI(·, ·), AddU(·), RReg(·), USK(·))
If gsk′ ∈ {gsk[i]| i ∈ CU ∪ HU} then return 0 else return U(gpk, gsk′)
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HU is a set of honest users; CU - a set of corrupted users; GSet - a set of message-
signature pairs ; AddU(·) - add user oracle; CrptU(·, ·) - corrupt user oracle;
SndToI(·, ·) - send to issuer oracle; USK(·) - user secret keys oracle; RReg(·) - read
registration table oracle. The group signature scheme GS provides Coalition-

Resistance if the following function Advcoal.re
GS,A,U (l) is negligible.

Advcoal.re
GS,A,U (l) = Pr[Expcoal.re

GS,A,U (l) = 1]

Lemma 1. The interactive Signing protocol underlying the GSig algorithm is a
(honest-verifier) perfect zero-knowledge proof of knowledge of (ai, Si), xi and t
such that e(aiP + Ppub, Si) = e(P, xiP + P0), Ea = tG and Λa = e(P, Si)Θ

t
a.

Proof. The proof for completeness is straightforward. The proofs of Soundness
and Zero-knowledge property are as follows.
Soundness: If the protocol accepts with non-negligible probability, we show that
the prover must have the knowledge of (ai, Si), xi and t satisfying the rela-
tions stated in the theorem. Suppose the protocol accepts for the same commit-
ment (U, V,W,X, T1, ..., T4, Π), two different pairs of challenges and responses

(c, s0, ...s5) and (c′, s′0, ..., s
′
5). Let fi =

si−s′

i

c−c′
, i = 0, ..., 5, then: X = f1P +

f2Ppub + f0H ; W = f3P + f2P0; X = f4U + f0H ; Ea = f5f
−1
4 G; e(P, V ) =

Θ−f5

a Λf4

a ; so U = f1f
−1
4 P + f2f

−1
4 Ppub.

Let ai = f1f
−1
2 , Si = f−1

4 V , xi = f3f
−1
2 , t = f5f

−1
4 , then Ea = tG, Λa =

e(P, Si)Θ
t
a and e(aiP +Ppub, Si) = e(P, xiP +P0), as e(U, V ) = e(P,W ). So the

prover have the knowledge of (ai, Si), xi and t satisfying the relations.
Zero-knowledge: The simulator chooses c, s0, ...s5 ∈R Zp, b ∈R Z∗

p, X,V ∈R G1

and compute U = bP , W = bV , T1 = s1P + s2Ppub + s0H − cX , T2 = s3P +
s2P0− cW , T3 = s4U + s0H − cX , T4 = s5G− s4Ea and Π = Θs5

a Λ
−s4

a e(P, cV ).
We can see that the distribution of the simulation is the same as the distribution
of the real transcript.

Lemma 2. If the q-SDH assumption holds, then the group signature schemes
GS1 and GS2, whose group sizes are bounded by q, provide Coalition-Resistance,
where the predicate U is defined as:
U(〈P, P0, Ppub, ...〉, 〈xi, ai, Si, ∆i〉) = 1⇔ e(aiP + Ppub, Si) = e(P, xiP + P0).

Proof. We prove the lemma for both GS1 and GS2. Suppose there is a PPT
adversary A that can break the Coalition-Resistance property of GS1 or GS2
with respect to the predicate U defined above. Let the set of private signing keys
generated during A’s attack be {(xi, ai, Si, ∆i)}

q
i=1 and let his output be a new

private signing key (x∗, a∗, S∗, ∆∗) with non-negligible probability (that means
(a∗, S∗) /∈ {(ai, Si)}

q
i=1

). We show a construction of a PPT adversary B that can
break the q-SDH assumption. Suppose a tuple challenge = (Q, zQ, . . . , zqQ) is
given, where z ∈R Z∗

p; we show that B can compute (c, 1/(z+c)Q), where c ∈ Zp

with non-negligible probability. We consider two cases.
Case 1: This is a trivial case, where A outputs S∗ ∈ {S1, ..., Sq} with non-
negligible probability. In this case, B chooses x, x′a, x

′
b ∈R Z∗

p and G,H ∈R G1,
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gives A the group signature public key (P = Q,P0 = zQ, Ppub = xP,H,G,Θa =

e(G,G)x′

a , Θb = e(G,G)x′

b) and the opening key (x′a, x
′
b) (no x′b, Θ

′
b in case of

GS2), and simulates a set of possible users. Then B can simulate all oracles
that A needs to access. Suppose a set of private signing keys {(xi, ai, Si, ∆i)}

q
i=1

is generated and A outputs a new (x∗, a∗, S∗, ∆∗) with non-negligible proba-
bility such that S∗ ∈ {S1, ..., Sq}. Suppose S∗ = Sj , where j ∈ {1, ..., q}, then

1

a∗+x
(x∗P +P0) = 1

aj+x
(xjP +P0), so (aj−a∗)P0 = (a∗xj−ajx

∗+xjx−x∗x)P .

Therefore, z is computable by B from this, and so is (c, 1/(z + c)Q), for any
c ∈ Zp.
Case 2: This is when the first case does not hold. That means A outputs S∗ /∈
{S1, ..., Sq} with non-negligible probability. Then B plays the following game:

1. Generate α, ai, xi ∈R Z∗
p, i = 1, ..., q, where ais are different from one an-

other, then choose m ∈R {1, ..., q}.
2. Let x = z − am (B does not know x), then the following P, Ppub, P0 are

computable by B from the tuple challenge.

P =

q∏

i=1,i6=m

(z + ai − am)Q

Ppub = xP = (z − am)

q∏

i=1,i6=m

(z + ai − am)Q

P0 = α

q∏

i=1

(z + ai − am)Q− xm

q∏

i=1,i6=m

(z + ai − am)Q

3. Generate x′a, x
′
b ∈R Z∗

p and G,H ∈R G1 and give A the group signature pub-

lic key (P, P0, Ppub, H,G,Θa = e(G,G)x′

a , Θb = e(G,G)x′

b) and the opening
key (x′a, x

′
b) (no x′b, Θ

′
b in case of GS2) and simulates a set of possible users.

4. With the capabilities above, B can simulate oracles CrptU(·, ·), RReg(·) and
USK(·)) that A needs to access. For AddU(·) or SndToI(·, ·), B simulates the
addition of an honest or corrupted user i as follows. As playing both sides of
the Join, Iss protocol or being able to extract information fromA, B simulates
the protocol as specified so that the prepared ai, xi above are computed in
the protocol to be the corresponding parts of the user i’s private signing key.
B can compute Si as follows:
– If i = m, then Sm = 1

am+x
(xmP + P0) = α

∏q
i=1,i6=m(z + ai − am)Q.

This is computable from the tuple challenge.
– If i 6= m, then Si = 1

ai+x
(xiP + P0) = (xi − xm)

∏q
j=1,j 6=m,i(z + aj −

am)Q + α
∏q

j=1,j 6=i(z + aj − am)Q. This is computable from the tuple
challenge.

5. Get the output (x∗, a∗, S∗, ∆∗) from A, where S∗ = 1

a∗+x
(x∗P + P0) =

1

z+a∗−am
(αz + x∗ − xm)

∏q
i=1,i6=m(z + ai − am)Q

We can see that the case αz+x∗−xm = α(z+a∗−am) happens with negligible
probability, as it results in S∗ = Sm. So the case αz+x∗−xm 6= α(z+a∗−am)
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happens with non-negligible probability ε1. Suppose in this case, the probability
that a∗ ∈ {a1, ..., aq} is ε2. Then the probability that a∗ /∈ {a1, ..., aq}\{am} is
ε1 −

q−1

q
ε2 (as m ∈R {1, ..., q}), which is also non-negligible if q is polynomially

bound by the security parameter l. If αz + x∗ − xm 6= α(z + a∗ − am) and
a∗ /∈ {a1, ..., aq}\{am}, then 1

z+a∗−am
Q is computable from the tuple challenge

and S∗ and so B can compute (c, 1

z+c
Q), where c = a∗ − am.

4 Variations

4.1 Weak Anonymity requirement

We introduce this security requirement to account for a class of group signa-
ture schemes, including ACJT00 scheme, which can not be proved to achieve
Anonymity requirement. Weak Anonymity requirement is defined exactly the
same as Anonymity requirement, except that the adversary does not have ac-
cess to the Open(·, ·) oracle. In practice, when the opener is assumed to be
uncorrupted as in Anonymity requirement, it could be hard for the adversary to
have access to the Open oracle. As Open oracle is not used in the conventional
list of requirements, the same argument as in [4] shows that Weak anonymity,
Traceability and Non-frameability are sufficient to imply the conventional list of
requirements.

4.2 A Variant Group Signature scheme, GS2

The scheme GS2 is the same as GS1, except that in the signature,∆i is encrypted
by El GamalBP1 encryption scheme instead of El GamalBP2. So in GKg, x′b and
Θb are not generated and in GSig, ∆i is encrypted by El GamalBP1 public key
(G,Θa) as (Ea = tG, Λa = ∆iΘ

t
a). So there is no Eb, Λb or ς in the signature

and in the executions of GSig, GVf, Open and Judge algorithms. Security of GS2
is stated in Theorem 6, whose proof is shown in the full version [25].

Theorem 6. GS2 provides Correctness. GS2 provides Weak Anonymity if the
Decisional Bilinear Diffie-Hellman assumption holds. GS2 provides Traceability
in the random oracle model if the q-Strong Diffie-Hellman assumption holds,
where q is the upper bound of the group size. GS2 provides Non-frameability in
the random oracle model if the Discrete Logarithm assumption holds over the
group G1 and the digital signature scheme (KS, Sign, V er) is UNF-CMA.

4.3 Do ACJT00 and GS2 schemes provide Anonymity?

We first state the security of the ACJT00 scheme in Theorem 7. The ACJT00
scheme refers to the scheme proposed in [1], plus some simple extensions to
accommodate the Judge algorithm (defining the UKg algorithm as in our scheme,
using usk[i] to sign messages in the Join, Iss protocol, and verifying signatures
in the Open and Judge algorithms). The methodology of the proof for Theorem
7 is very similar to the proof of Theorem 6, and the exact details of each step
can be extracted from the proofs in [19].
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Theorem 7. The ACJT00 scheme provides Correctness; Weak Anonymity if
the DDH-Compo-KF assumption holds; Traceability in the random oracle model
if the Strong RSA assumption holds; Non-frameability in the random oracle
model if the Discrete Logarithm assumption holds over the quadratic residues
group of a product of two known large primes, and the digital signature scheme
for UKg is UNF-CMA. (See [19] for assumptions used in this theorem).

It is an open question if the ACJT00 and GS2 schemes provide Anonymity,
in line with the open problem whether a combination of an El Gamal encryption
(IND-CPA) and a Schnorr proof of knowledge of the plaintext can provide IND-
CCA. This combination has been proved to provide IND-CCA in the random
oracle model, but the proof has required either another very strong assumption
[29] or is in generic model [27]. In ACJT00 and GS2 signatures, the identity-
bound information is encrypted by variations of El Gamal encryption and the
other part of the signatures proves knowledge of the information. The Open

oracle plays a similar role as the Decryption oracle in the model of IND-CCA.

4.4 Variants based on the DDH assumption

We can build variants of GS1 and GS2, whose security is based on the DDH as-
sumption over the group GM instead of the DBDH (DDHV) assumption. Specif-
ically, ∆i will be encrypted by the normal El Gamal encryption scheme or the
twin-paradigm extension of El Gamal encryption scheme (proposed in [17]). The
Open algorithm in these variant schemes requires one less pairing operation than
in GS1 and GS2.

We can actually provide a group signature with 4 options, where the users,
the issuer and the opener use the same keys for all options. The first two options
are GS1 and GS2, offering smaller signature size and more efficient signing and
verification. The last two options are the variant schemes based on the normal
DDH assumption, with more efficient opening.

5 A Traceable Signature scheme

We extend GS2 to be a traceable signature scheme T S =(Setup, Join, Sign,

Verify, Open, Reveal, Trace, Claim, Claim-Verify) with similar advantages over the
only other traceable signature scheme [18].

Setup: This is the same as GKg for GS2, but the group public key also includes
a Q ∈R Z∗

p. The group public key is gpk = (P, P0, Ppub, Q,H,G,Θa), the issuing
key is ik = x, and the opening key is ok = x′a. Choose a hash function H3 :
{0, 1}∗ → Zp (a random oracle).

Join: This protocol is the same as the Join, Iss protocol in Section 3.2, except for
the following. The GM also chooses x̄i ∈R Z∗

p, computes Si = 1

ai+x
(Pi+x̄iQ+P0)

at step 5 and sends the user ai, Si, x̄i at step 6. In the last step, the user computes
∆i = e(P, Si), verifies if e(aiP +Ppub, Si) = e(P, xiP + x̄iQ+P0), and stores the
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private signing key gsk[i] = (xi, x̄i, ai, Si, ∆i). The GM also computes ∆i and
stores it with the protocol’s transcript.

Sign: The algorithm for an user i to sign a message m ∈ {0, 1}∗ is as follows.

1. Compute Ea = tG, Λa = ∆iΘ
t
a, Υ1 = Θx̄ir

a , Υ2 = Θr
a, Υ3 = Θxir

′

a and
Υ4 = Θr′

a , where t, r, r′ ∈R Z∗
p.

2. Generate r1, ..., r3, k0, ..., k6 ∈R Z∗
p and compute

(a) U = r1(aiP + Ppub); V = r2Si; W = r1r2(xiP + x̄iQ+ P0); X = r2U +
r3H ; T1 = k1P+k2Ppub +k0H ; T2 = k3P+k6Q+k2P0; T3 = k4U+k0H ;

T4 = k5G− k4Ea; Π = Θk5

a Λ−k4

a ; Ψ1 = Υ−k2

1 Υ k6

2 ; Ψ2 = Υ−k2

3 Υ k3

4 .
(b) c = H3(P ||P0||Ppub||H ||G||Θ||Ea||Λa||Eb||Λb||ς ||U ||V ||W ||X ||T1||...||T4

||Π ||Ψ1||Ψ2||m).
(c) Compute in Zp: s0 = k0 + cr3; s1 = k1 + cr1r2ai; s2 = k2 + cr1r2;

s3 = k3 + cr1r2xi; s4 = k4 + cr2; s5 = k5 + cr2t; s6 = k6 + cr1r2x̄i

3. Output the signature (c, s0, ..., s6, U, V,W,X,Ea, Λa, Υ1, Υ2, Υ3, Υ4) for m.

Verify: The verification algorithm for m, (c, s0, ..., s6, U, V,W,X,Ea, Λa, Υ1, Υ2,
Υ3, Υ4) outputs accept if and only if the following two equations hold: (i) e(U, V )
= e(P,W ) and (ii) c = H3(P ||P0||Ppub||H ||G||Θ||Ea||Λa||Eb||Λb||ς ||U ||V ||W ||X
||s1P +s2Ppub +s0H−cX ||s3P +s6Q+s2P0−cW ||s4U+s0H−cX ||s5G−s4Ea

||Θs5

a Λ
−s4

a e(P, cV )||Υ−s2

1 Υ s6

2 ||Υ
−s2

3 Υ s3

4 ||m)

Open: To open m and its valid signature (c, s0, ..., s5, U, V,W,X,Ea, Λa, Υ1, Υ2,
Υ3, Υ4) to find the signer, the GM computes ∆i = Λae(Ea, G)−x′

a and finds the
corresponding entry i in the table of stored Join transcripts. The GM returns i
and a non-interactive zero-knowledge proof % of knowledge of x′a so that Θa =
e(G,G)x′

a and Λa/∆i = e(Ea, G)x′

a (see [12] for this proof).

Reveal and Trace: Given the Join transcript of user i, the GM recovers the
tracing trapdoor tracei = x̄i. Given tracei and a message-signature pair, a des-
ignated party recovers Υ1 and Υ2 and checks if Υ1 = Υ x̄i

2 . If the equation holds,
the tracer concludes that user i has produced the signature.

Claim and Claim-Verify: Given a message-signature pair, a user i can claim
that he is the signer by recovering Υ3 and Υ4 and producing a non-interactive
proof of knowledge of the discrete-log of Υ3 base Υ4. Any party can run Claim-

Verify by verifying the signature and the proof.

Security. The security of T S is stated in Theorem 8. The proof of this theorem
uses techniques similar to those in [18] and arguments similar to the proofs for
our group signature schemes.

Theorem 8. In the random oracle model, T S provides (i) security against
misidentification attacks based on the q-SDH and the DDH assumptions, where
q is the upper bound of the group size; (ii) security against anonymity attacks
based on the DBDH and DDH assumptions; (iii) security against framing attacks
based on the DL assumption.
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6 Efficiency

The sizes of signatures and keys in our schemes are much shorter than those used
in the Strong-RSA-based schemes at a similar level of security. This difference
grows when higher level of security is required. In this section, we compare sizes
in our new group signature schemes with those in ACJT00 scheme. We assume
that our scheme is implemented using an elliptic curve or hyperelliptic curve
over a finite field. p is a 170-bit prime, G1 is a subgroup of an elliptic curve
group or a Jacobian of a hyperelliptic curve over a finite field of order p. GM is a
subgroup of a finite field of size approximately 21024. A possible choice for these
parameters can be found in [8], where G1 is derived from the curve E/GF (3ι)
defined by y2 = x3 − x + 1. We assume that system parameters in ACJT00
scheme are ε = 1.1, lp = 512, k = 160, λ1 = 838, λ2 = 600, γ1 = 1102 and
γ2 = 840. We summarize the result in Table 1.

Table 1. Comparison of sizes (in Bytes)

Signature gpk gsk ik ok Security

ACJT00 1087 768 370 128 128 Weak Anonymity

GS1 597 363 192 22 44 Anonymity

GS2 384 235 192 22 22 Weak Anonymity
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