
Time-Memory Trade-Off Attacks on

Multiplications and T -functions

Joydip Mitra1 and Palash Sarkar2

1 Management Development Institute
Post Box No. 60, Mehrauli Road, Sukhrali

Gurgaon 122001, Haryana, India
joydip@mdi.ac.in

2 Cryptology Research Group
Applied Statistics Unit

Indian Statistical Institute
203, B.T. Road, Kolkata

India 700108.
palash@isical.ac.in

Abstract. T–functions are a new class of primitives which have recently
been introduced by Klimov and Shamir. The several concrete proposals
by the authors have multiplication and squaring as core nonlinear op-
erations. Firstly, we present time-memory trade-off algorithms to solve
the problems related to multiplication and squaring. Secondly, we apply
these algorithms to two of the proposals of multi-word T -functions. For
the proposal based on multiplication we can recover the 128 unknown bits
of the state vector in 240 time whereas for the proposal based on squaring
the 128 unknown bits can be recovered in 221 time. The required amount
of key stream is a few (less than five) 128-bit blocks. Experimental data
from implementation suggests that our attacks work well in practice and
hence such proposals are not secure enough for stand-alone usage. Fi-
nally, we suggest the use of conjugate permutations to possibly improve
the security of T–functions while retaining some attractive theoretical
properties.
Keywords: stream cipher, T–functions, multiplication, cryptanalysis,
time-memory trade-off.

1 Introduction

Stream ciphers are a fundamental primitive in cryptography. Encryption is per-
formed by XORing the message bit sequence with a pseudo-random bit sequence
while decryption is performed by XORing the cipher bit sequence once more with
the same pseudo-random bit sequence.

The cryptographic strength of a stream cipher depends on the unpredictabil-
ity of the pseudo-random bit sequence. The other important issue is efficiency of
the pseudo-random generator. Most practical proposals for stream ciphers strive
to achieve a good balance between speed and security. Typically stream ciphers

463

are built out of linear feedback shift registers, nonlinear Boolean functions and
S-boxes. See [4] for various models of stream ciphers.

Recently Klimov and Shamir [1–3] have proposed a new class of primitives
for design of stream ciphers. They call their primitive T–functions and have
developed a nice theory for analysing T–functions. From an efficiency point of
view, T–functions are extremely attractive, since they can be built using fast and
easily available operations on most processors. From a security point of view,
there are many nice features including the single cycle property of the underlying
permutation.

Klimov and Shamir [3] have also introduced multi-word T–functions and
have extended their theory to cover such functions. In [3], they present several
concrete constructions of multi-word T–functions. A key constituent of their pro-
posals is multiplication modulo 264.

Our Contributions: In the first part of the paper, we study the following
problem related to multiplication. Suppose x, y and z are n-bit integers satisfying
xy mod 2n = z. Further, suppose the m most significant bits of x, y and z are
known. The problem is to compute all possible combinations of the (n−m) least
significant bits of x and y such that the multiplication holds.

We present a time-memory trade-off algorithm to solve this problem and
make a detailed study of the effectiveness of the algorithm under different sce-
narios. We also study the related problem of squaring, i.e., when x = y. It turns
out that the algorithm for multiplication is not efficient for squaring and hence
we develop a separate algorithm to solve this problem. Apart from the appli-
cation to T–functions, our algorithm can possibly be used for analysing other
ciphers based on multiplication.

The second part of the paper consists of analysing the security of two con-
crete proposals of multi-word T–functions from [3]. The first proposal involves
multiplication and the T -function operates on a state vector consisting of four
64-bit words. The pseudo-random bit sequence obtained from the state vector
consists of the 32 most significant bits of each of the four 64-bit words. Thus
the state vector has 128 unknown bits. We perform a detailed analysis of this
T -function. The major step in the analysis consists of an application of (a mod-
ification) of the algorithm to solve multiplication as mentioned above. The final
result that we obtain is that the 128 unknown bits can be computed in 240

time which makes this proposal unsafe for stand-alone use as a pseudo-random
generator.

The second proposal that we consider also operates on a state vector of
four 64-bit words and produces 128 bits as before. The difference is that this
proposal involves squaring instead of multiplication. Consequently, our analysis
of this proposal involves the algorithm to solve squaring. In this case, we obtain
an algorithm that determines the 128 unknown bits in 221 time. Hence this
proposal is much more insecure than the one based on multiplication.

The required amount of known pseudo-random key stream for both the above
attacks is only a few (less than five) 128-bit consecutive key stream blocks. In

464

most cases, we expect the attack to work with only three 128-bit consecutive key
stream blocks. This shows that these two proposals, and probably other similar
proposals, are not secure enough for stand-alone usage.

One possibility for improving the security is to extract less number of bits
from each state vector. We consider this possibility for the multiplication based
T–function mentioned above, where only 16 most significant bits of each 64-
bit word of the state vector is produced as output. Thus a total of 64 bits are
produced from each state vector and 192 bits are unknown. Our attack also
applies to this situation and the 192 unknown bits can be obtained in 2112 time.
Though infeasible in practice, this constitutes a theoretical attack on the system.

We have implemented the algorithm to solve multiplication and our esti-
mate of the expected run-time is supported by experimental data. We have also
implemented the attack on a scaled down version of the multiplication based
T–function. Instead of a state vector consisting of four 64-bit words we have
worked with four 32-bit words. In this case, we can actually recover the 64 un-
known bits of the state vector. This shows that our attack works quite well in
practice. We have also implemented the algorithm to solve the squaring prob-
lem and the corresponding attack on the 64-bit version of the squaring based
T -function proposal. Experiments show that the attack performs as predicted
by the theoretical analysis.

Finally, we suggest a method based on conjugate permutations to possibly
improve the security of T -functions while maintaining some desirable features
such as the single cycle property.

2 Multiplication

We consider the following problem. Suppose two n-bit integers x and y are
multiplied modulo 2n to obtain an n-bit integer z. The m most significant bits
(MSBs) of x, y and z are known and we have to find all possible solutions for
the (n − m) least significant bits (LSBs) of x and y such that xy mod 2n = z.
This problem can be stated more precisely as follows:
Problem : Mult

Input : Three integers x(1), y(1) and z(1) such that, 0 ≤ x(1), y(1), z(1) < 2m.
Task : Find all pairs of integers (x(0), y(0)) such that, 0 ≤ x(0), y(0) < 2n−m,
x = 2n−mx(1) + x(0), y = 2n−my(1) + y(0) and

⌊

xy mod 2n

2n−m

⌋

=
⌊ xy

2n−m

⌋

mod 2m = z(1). (1)

Note that the operation x mod 2t returns the t LSBs of x and the operation
bx/2tc returns x � t, i.e. the binary representation of x right shifted t times.
The number of unknown bits in the pair (x(0), y(0)) is 2(n − m) and the m known
bits on the right hand side of (1) imposes m restrictions on these unknowns.
Hence, on an average, one should expect 22(n−m)−m = 22n−3m distinct pairs of
(x(0), y(0)) to be solutions to Mult. See Section 5 for an emperical justification
of this statement.

465

We first consider the naive approaches to solve Mult. There are (2n − 2m)
unknown bits and one approach is to try all possible combinations of these un-
known bits. This approach requires 22n−2m time. The second naive approach
using an offline table computation can be described as follows. For each pos-
sible pair of n-bit integers (x, y) compute the product z = xy mod 2n. Store
in Tab[x(1), y(1), z(1)] the set of all pairs (x(0), y(0)) which are solutions to Mult

for the instance x(1), y(1), z(1). This table takes 22n time to prepare and store.
The preparation of the table can be done offline. Given a particular instance
x(1), y(1), z(1) of Mult the solutions can be directly obtained from the entries of
the row Tab[x(1), y(1), z(1)]. Since, on an average, there are 22n−3m solutions, at
least this amount of online time will be required in producing the solutions.

Thus the online time will be at least 22n−3m (requiring 22n precomputation
time and a table of size 22n) and at most 22n−2m (using exhaustive online search
but without using any look-up table). We describe solutions to Mult whose online
time complexity is between the two extreme values and which uses a table of
moderate size. Thus our algorithms can be considered to be time-memory trade-
off algorithms.

To improve readability, we will use the same notation for an integer and its
binary representation. Also the length of a binary string will be denoted by |.|.
Thus a binary string x of length |x| = k denotes an integer x ∈ {0, . . . , 2k − 1}.
For two binary strings x1 and x2, by (x2, x1) we denote the binary string x
obtained by concatenating x2 and x1. Using the integer representation of x1, x2

and x we have x = 2|x1|x2 + x1.
Using this notation, we write x = x(1)2n−m + x(0), y = y(1)2n−m + y(0) and

z = z(1)2n−m + z(0), where |x| = |y| = |z| = n, |x(1)| = |y(1)| = |z(1)| = m and
|x(0)| = |y(0)| = |z(0)| = n − m. We now introduce parameters n0, n1 and n2

defined by the following equations.

x = X(2)2n1+n0 + X(1)2n0 + X(0)

y = Y (1)2n1 + Y (0)

z = Z(1)2n1+n0 + Z(0)







(2)

where |X(2)| = n2, |X(1)| = n1, |X(0)| = n0, |Y (1)| = n − n1, |Y (0)| = n1,
|Z(1)| = n2 and |Z(0)| = n1 + n0. We require these parameters to satisfy certain
conditions. These conditions are given below.

1. n0 + n1 + n2 = n : This is required since x, y and z are n-bit integers.
2. n0 ≤ n − m : This ensures that X(0) is a suffix of x(0).

3. n2 ≤ m : This ensures that X(2) is a prefix of x(1).

4. n1 ≤ n − m : This ensures that Y (0) is a suffix of y(0).
5. n1 ≤ n2 : This ensures that the expected number of entries in

each row of Tab[] (see later) is one. The case n1 > n2

is also feasible but does not provide better results.
6. n2 + n1 > m : The case n2 + n1 ≤ m is also feasible, but does not

provide better results and hence we do not consider it.

We now define binary strings U (1), U (2) and V (1) in the following manner. The
strings U (1) and U (2) are such that x(0) = (U (1), X(0)) and X(1) = (U (2), U (1)),

466

where |U (1)| = n − m − n0, |U (2)| = m − n2. Then x(1) = (X(2), U (2)). The
string V (1) is such that y(0) = (V (1), Y (0)), where |V (1)| = n − m − n1. Then
Y (1) = (y(1), V (1)). Note that the portion U (2) of X(1) is provided as part of the
input whereas the part U (1) of X(1) has to be determined. Also the string V (1)

is part of y(0) and has to be determined. These substrings are shown in Figure 1.

-� -�x(1) x(0)

-� -� -� -�

X(2) U (2) U (1) X(0)
-�

X(1)

-� -�
y(1) y(0)

-� -�

V (1) Y (0)
-�

Y (1)

-� -�z(1) z(0)

-� -�

Z(1) Z(0)

Fig. 1. Definitions of substrings

Our algorithm is based on the following result.

Proposition 1.
⌊ xy

2n−n2

⌋

= r + d + c, where r =

⌊

Y (1)x2n1

2n−n2

⌋

, d = Y (0)X(2) +
⌊

Y (0)X(1)2n0

2n−n2

⌋

and c ∈ {0, 1, 2}.

Proof : We write

⌊ xy

2n−n2

⌋

=

⌊

xY (1)2n1

2n−n2
+ Y (0)X(2) +

Y (0)X(1)2n0

2n−n2
+

Y (0)X(0)

2n−n2

⌋

.

Note that r =

⌊

xY (1)2n1

2n−n2

⌋

=

⌊

X(2)Y (1)2n1 + X(1)Y (1) +
X(0)Y (1)2n1

2n0+n1

⌋

. Now

⌊

X(0)Y (1)2n1

2n0+n1
+

Y (0)X(1)2n0

2n−n2
+

Y (0)X(0)

2n−n2

⌋

467

=

⌊

X(0)Y (1)2n1

2n0+n1

⌋

+

⌊

Y (0)X(1)2n0

2n−n2

⌋

+

⌊

Y (0)X(0)

2n−n2

⌋

+ c

for some c ∈ {0, 1, 2}. Further, since Y (0) < 2n1 , X(0) < 2n0 , we have X(0)Y (0) <
2n0+n1 = 2n−n2 and hence

⌊

Y (0)X(0)/2n−n2
⌋

= 0. Putting all these together
gives us the required result. ut

Based on Proposition 1 we have the following algorithm to solve Mult. The
algorithm uses a table Tab[] which is prepared in the first phase and is used to
solve Mult in the second phase.

Algorithm 1

Input: x(1), y(1) and z(1).

1. Write x(2) = (X(2), U (2)), where |X(2)| = n2 and |U (2)| = m − n2;
2. set Z(1) to the n2 most significant bits of z(1);

3. for U (1) ∈ {0, 1}n−m−n0

4. set X(1) = (U (2), U (1));
5. for Y (0) ∈ {0, 1}n1

6. compute d(1) = Y (0)X(2) + b(Y (0)X(1)2n0)/2n−n2c mod 2n2 ;
7. Tab[d(1)] = Tab[d(1)] ∪ {Y (0)};
8. end for;

9. for (X(0), V (1)) ∈ {0, 1}n0 × {0, 1}n−m−n1

10. set Y (1) = (y(1), V (1)); set x = (X(2), X(1), X(0));

11. compute r(1) = b(xY (1)2n1)/2n−n2c mod 2n2 ;
12. for c ∈ {0, 1, 2}

13. compute d(2) = Z(1) − r(1) − c (mod 2n2);

14. for each Y (0) ∈ Tab[d(2)]
15. set y = (Y (1), Y (0));

16. if (b(xy)/2n−mc mod 2m = z(1)) then

17. set x(0) = (U (1), X(0)) and y(0) = (V (1), Y (0));
18. output (x(0), y(0));
19. end if;
20. end for;
21. end for;
22. end for;
23. end for;

2.1 Complexity of Algorithm 1

The space complexity of Algorithm 1 is the space required to store Tab[]. By

construction Tab[] has 2|d
(1)| = 2n2 rows and a total of 2|Y

(0) | = 2n1 entries in
all the rows. By Condition 5 after Equation (2) we have n1 ≤ n2 and hence on
an average the number of entries in each row of Tab[] is at most one.

The time required by Algorithm 1 depends on the number of entries in a row
of Tab[]. The expected number of such entries is one and this allows us to obtain

468

the expected run-time R of Algorithm 1:

R = 2|U
(1)|

(

2|Y
(0)| + 3 × 2|X

(0)| × 2|V
(1) |

)

= 2n−m−n0(2n1 + 3 × 2n−m−n1+n0)
= 2n−m−n0+n1 + 3 × 22(n−m)−n1











(3)

We now consider two cases and obtain the value of R in each case.
Case 1: n2 = m. Hence n0+n1 = n−m. In this case R = 22n1 +3×22(n−m)−n1 .
Subcase 1a: n = 64 and m = 32. Then R = 22n1 + 3× 264−n1 . This expression
is minimized when n1 = 22, whence R = 244 + 3 × 242 = 7 × 242.
Subcase 1b: n = 64 and m = 16. Then R = 22n1 +3×296−n1 . Since n1 ≤ n2 =
m = 16, the maximum value of n1 is 16. Choosing n1 = 16 gives R = 232+3×280.
Case 2: n2 < m. This case is more complicated to analyse and we first perform
a special case analysis by setting n2 = n1. Then n0 = n−2n1 and R = 23n1−m +
3 × 22(n−m)−n1 .
Subcase 2a: n = 64 and m = 32. Choosing n1 = 24 we have R = 240+3×240 =
242.

In general n2 6= n1. However, we have verified that for n = 64 and m = 32
and for all possible distinct values of n0, n1 and n2, the value of R is minimized
for n2 = n1 = 24 and n0 = 16. Thus the special case is also optimal for the
general case. In fact, for n = 64 and m = 32, R = 242 is the minimum possible
expected run-time for Algorithm 1.

2.2 Offline Table Preparation

The expected run-time of Algorithm 1 can be made optimal by using a larger table
which can be prepared offline. We describe this idea for n = 64 and m = 32.
Write x = 232x(1) + x(0) and y = 232y(1) + y(0). We write b(xy)/232c = d + r,
where d = b(xy(0))/232c and r = xy(1).

In the offline table preparation phase, for each (x(1), x(0), y(0)) ∈ {0, 1}32 ×
{0, 1}32 × {0, 1}32, we compute d = b(xy(0))/232c mod 232 and set
Tab[x(1), x(0), d] = Tab[x(1), x(0), d] ∪ {y(0)}.

In the online phase, we are given x(1), y(1) and z(1). For each possible value
of x(0) ∈ {0, 1}32, we compute r = xy(1) mod 232; d = r − z(1) mod 232 and for
each y(0) ∈ Tab[x(1), x(0), d] output (x(0), y(0)).

The run-time for table preparation is 296; the space required to store Tab[]
is also 296 and the (expected) runtime of the online phase is 232. Since there are
232 solutions, the online run-time is the minimum possible. This comes at an
expense of huge offline processing time and space.

3 Squaring

In the case x = y, the problem Mult reduces to squaring which can be formally
stated as follows.

469

Problem : Sqr

Input : Two integers x(1) and z(1) such that, 0 ≤ x(1), z(1) < 2m.
Task : Find all integers x(0) such that, 0 ≤ x(0) < 2n−m, x = 2n−mx(1) + x(0)

and
⌊

x2 mod 2n

2n−m

⌋

=

⌊

x2

2n−m

⌋

mod 2m = z(1). (4)

Note that there are (n−m) unknown bits and m constraints. Hence the expected
number of solutions is max(1, 2n−2m). If n = 2m, then the expected number of
solutions is one. Algorithm 1 is not very efficient for Sqr so that we have to deal
with the problem separately.

Let n0, n1 be such that n0 +n1 = n−m and x = 2n−mX(2) +2n0X(1)+X(0),
where |X(2)| = m, |X(1)| = n1 and |X(0)| = n0 with n0 ≤ m.

Proposition 2.

⌊

x2

2n1+2n0

⌋

=

⌊

z(1)

2n0

⌋

= r + d + c, where r = 2n1

(

X(2)
)2

+
⌊

(

X(1)
)2

2n1

⌋

+ 2X(2)X(1), d =

⌊

2X(2)X(0)

2n0

⌋

and c ∈ {0, 1, 2, 3}.

Based on Proposition 2, we have the following algorithm to solve Sqr.

Algorithm 2

Input: x(1), z(1).

1. set k = n − (n1 + 2n0) = m − n0;

2. for X(0) ∈ {0, 1}n0

3. compute d = b(2X(2)X(0))/2n0c mod 2k;

4. Tab[d] = Tab[d] ∪ {X (0)};
5. end for;
6. for X(1) ∈ {0, 1}n1

7. compute r = 2n1(X(2))2 + b(X(1))2/2n1c + 2X(2)X(1) mod 2k;
8. for each c ∈ {0, . . . , 3}

9. compute d = bz(1)/2n0c − r − c mod 2k;

10. for each X(0) ∈ Tab[d]
11. if (bx2/2n−mc mod 2m = z(1)) then output (X(1), X(0));
12. end for;
13. end for;
14. end for;

The space complexity of Algorithm 2 is 2m−n0 and the (expected) time complex-
ity is R = 2n0 + 4 × 2n1 .

Case 1: n = 64, m = 32. In this case we choose n0 = n1 = 16. Then the space
complexity is 216 and the time complexity is R = 216 + 4 × 216 = 5 × 216. This
particular choice of n0 and n1 minimizes the value of R.

Case 2: n = 64, m = 16. Choosing n0 = 8 and n1 = 40 gives a run-time
R = 28 + 4 × 240.

470

4 Attacks on T -functions

We consider two specific proposals of multiword T -functions from [3] and de-
scribe attacks on them. These T–functions operate on an internal state vector
which consists of four 64-bit words. Applying a T–function once to the state
vector changes the value of each of the four 64-bit words. As suggested in [3],
the extracted output consists of the most significant 32 bits of each of the four
64-bit words of the state vector. Thus applying the T–function repeatedly to the
state vector produces a sequence of 128-bit (four 32-bit words) output blocks.
These output blocks are treated as the generated pseudo-random sequence. The
secret key consists of the initial 256-bit (four 64-bit words) value of the state
vector.

For the attack we will assume that several consecutive output blocks are
known. We actually require only two consecutive output blocks to perform the
attack and a few more to verify the correctness. The goal of our attack is to
obtain the complete 256-bit (four 64-bit words) value of the internal state vector
at some point of time.

For a 64-bit word w, let msb(w) (resp. lsb(w)) denote the 32 most (resp. least)
significant bits of w. Let (x0, x1, x2, x3) be the internal state vector at some
point of time. Let (y0, y1, y2, y3) be the state vector after application of T to
(x0, x1, x2, x3), i.e., (y0, y1, y2, y3) = T (x0, x1, x2, x3). The outputs correspond-
ing to (x0, x1, x2, x3) and (y0, y1, y2, y3) are (msb(x0), msb(x1), msb(x2), msb(x3))
and (msb(y0), msb(y1), msb(y2), msb(y3)) respectively. We assume that these out-
puts are known and our attack is to compute (lsb(x0), lsb(x1), lsb(x2), lsb(x3)).

There are a total of 128 unknown bits in (x0, x1, x2, x3) and a method to
obtain them in time less than 2128 constitutes an attack on the system. Our
algorithms are much more efficient – the attacks in Section 4.1 and Section 4.2
require time 240 and 221 respectively to compute the 128 unknown bits.

4.1 Attack on Multiplication Based T–function

Consider the following T–function:

T









x0

x1

x2

x3









=









x0 ⊕ s ⊕ (2(x1 ∨ C1)x2)
x1 ⊕ (s ∧ a0) ⊕ (2x2(x3 ∨ C3))
x2 ⊕ (s ∧ a1) ⊕ (2(x3 ∨ C3)x0)
x3 ⊕ (s ∧ a2) ⊕ (2x0(x1 ∨ C1))









=









y0

y1

y2

y3









(5)

where a0 = x0, ai = ai−1 ∧xi, 1 ≤ i < 4, s = a3 ⊕ (a3 +C0). Also, C0 is odd and
known, C1 = (12481248)16 and C3 = (48124812)16 (Equation (13) in Klimov
and Shamir [3]). Each of C1 and C3 are considered to be 64-bit words where the
leading 32 bits are all zeros.

During use of this T -function as pseudo-random generator, the quantities
msb(xi), msb(yi) are known for i = 0, 1, 2, 3. Our attempt will be to obtain
lsb(xi) for i = 0, 1, 2, 3. This proceeds in several steps.
Step 1:

471

First note that msb(w1 ⊕ w2) = msb(w1) ⊕ msb(w2) and msb(w1 ∧ w2) =
msb(w1) ∧ msb(w2). Hence we have msb(a0) = msb(x0), msb(a1) = msb(x0) ∧
msb(x1), msb(a2) = msb(x0) ∧ msb(x1) ∧ msb(x2) and msb(a3) = msb(x0) ∧
msb(x1) ∧ msb(x2) ∧ msb(a3). The quantity s involves an addition mod 264 and
cannot be directly tackled in this manner. However, we can determine the upper
part of s with only one bit of uncertainty in the following manner. First note
that we have, msb(a3 + C0 mod 264) = msb(a3) + msb(C0) + ε mod 232 where ε
is the carry of lsb(a3) + lsb(C0) and hence ε = 0, 1. Thus

msb(s) = msb(a3) ⊕
(

msb(a3) + msb(C0) + ε mod 232
)

and hence msb(s) can take only two values as determined by ε.
Thus, with respect to the known 32 most significant bits, equation 5 reduces

to








msb (2(x1 ∨ C1)x2)
msb (2x2(x3 ∨ C3))
msb (2(x3 ∨ C3)x0)
msb (2x0(x1 ∨ C1))









=









msb(y0) ⊕ msb(x0) ⊕ msb(s)
msb(y1) ⊕ msb(x1) ⊕ (msb(s) ∧ msb(a0))
msb(y2) ⊕ msb(x2) ⊕ (msb(s) ∧ msb(a1))
msb(y3) ⊕ msb(x3) ⊕ (msb(s) ∧ msb(a2))









. (6)

Equation (6) gives a relation between known quantities. Let W0 = 2x0, W1 =
(x1 ∨ C1), W2 = 2x2 and W3 = (x3 ∨ C3). Also let K0 = msb(y0) ⊕ msb(x0) ⊕
msb(s), K1 = msb(y1)⊕msb(x1)⊕(msb(s) ∧ msb(a0)), K2 = msb(y2)⊕msb(x2)⊕
(msb(s) ∧ msb(a1)) and K3 = msb(y3)⊕msb(x3)⊕(msb(s) ∧ msb(a2)). Our next
step is to solve for W0, W1, W2 and W3 such that

msb(W1W2) = K0, msb(W2W3) = K1, msb(W3W0) = K2, msb(W0W1) = K3.(7)

Since there are two choices of ε, the rest of the steps have to be carried out for
each value of ε.
Step 2:

We use Algorithm 1 to solve (7). There are, however, a few adjustments, which
improve the run-time of Algorithm 1. Note that due to masking with C1 and C3,
eight bits of each of lsb(W1) and lsb(W3) are fixed and known. Also W0 = 2x0.
We know msb(x0) which means we do not know the last bit of msb(W0) which
is equal to the first bit of lsb(x0). To apply Algorithm 1 we have to know all the
32 bits of msb(W0). This means that we have to guess the last bit of msb(W0).
On the other hand, since W0 = 2x0, the last bit of W0 (and hence of lsb(W0)) is
zero. Similar considerations hold for W2.

Now suppose we are solving for lsb(W0) and lsb(W1) from the equation
msb(W0W1) = K3. While invoking Algorithm 1, we let W1 play the role of x
and W0 play the role of y. Further, we choose n2 = n1 = 24 (Subcase 2a in
Section 2.1). Then in Algorithm 1, |U (1)| = 16, |Y (0)| = 24, |X(0)| = 16 and
|V (1)| = 8. As mentioned before, due to the masking of W (1) with C1, four bits
of each of U (1) and X(0) are fixed to be one. Hence the number of choices of
U (1) in Step 3 and X(0) in Step 9 of Algorithm 1 both reduces to 212 from 216.
The last bit of Y (0) is zero and hence the number of choices of Y (0) in Step 5

472

of Algorithm 1 reduces to 223 from 224. The length of V (1) is eight. However, we
also need to guess the last bit of msb(W0), which is the next bit after V (1). Thus
the number of possible choices of V (1) in Step 9 of Algorithm 1 increases to 29

from 28.
In Step 18, Algorithm 1 produces (lsb(W1), lsb(W0)) as output. The modifi-

cation described above also determines the last bit of msb(W1). Suppose this bit
is b. By definition, the last bit of lsb(W0) is zero. Then lsb(x0) is obtained by
prefixing b to lsb(W0) and dropping the last bit. We assume that the modified
Algorithm 1 produces (lsb(W1), lsb(x0)) as output. Similar considerations hold
for the other equations in (7).

Recall from Equation (3) that the original expression for the expected run-

time of Algorithm 1 is R = 2|U
(1)|

(

2|Y
(0)| + 3 × 2|X

(0)| × 2|V
(1)|

)

. Due to the

changes in the number of possible choices of U (1), Y (0), X(0) and V (1), as ex-
plained above, this expression reduces to

R = 216−4(224−1 + 3 × 216−4 × 29)

= 235 + 3 × 233 = 7 × 233 < 236.

The time for solving one equation in (7) is approximately 236 and hence the total
time to solve all four equations is 238. The solutions to (7) are stored in separate
lists, as we explain below. Define wi = lsb(Wi) for i = 1, 3 and wi = lsb(xi) for
i = 0, 2.

• Lst10 stores (w1, w0), sorted on w1, such that msb(W0W1) = K3.
• Lst12 stores (w1, w2), sorted on w1, such that msb(W1W2) = K0.
• Lst30 stores (w3, w0), sorted on w3, such that msb(W3W0) = K2.
• Lst32 stores (w3, w2), sorted on w3, such that msb(W2W3) = K1.

Step 3:

The next task is to “merge” the four lists to obtain solutions (w0, w1, w2, w3)
which are consistent with all four equations. This is done as follows.

• Merge Lst10 and Lst12 on w1 to obtain list Lst102
containing pairs of the form (w0, w2, w1).

• Merge Lst30 and Lst32 on w1 to obtain list Lst302
containing pairs of the form (w0, w2, w3).

• Sort each of Lst102 and Lst302 on (w0, w2).
• Merge Lst102 and Lst302 on (w0, w2) to obtain a list Fin which contains

tuples of the form (w0, w1, w2, w3) which are solutions to (7).

The time for merging and sorting (ignoring logarithmic factors) is 232 and hence
the above steps can be completed in approximately 234 steps.

We consider the expected number of solutions to (7). There are 24 unknown
bits in each of lsb(W1) and lsb(W3). On the other hand, there are 31 unknown
bits in each of lsb(W0) and lsb(W2). In addition, we have to determine the last
bits of both msb(W0) and msb(W2). Thus there are a total of 112 unknown bits
in (7). Each of the equations in (7) provide 32 restrictions on these unknown

473

bits. Hence there are a total of 128 restrictions on these 112 unknown bits. Thus,
on an average, we can expect the solution to (7) to be unique. See Section 5 for
an emperical justification of this statement.
Step 4:

The list Fin contains the possible solutions (w0, w1, w2, w3). Now wi = lsb(Wi)
for i = 1, 3 and we want lsb(xi). As mentioned before, the masking of x1 and x3

by C1 and C3 respectively fixes 8 bits each of W1 and W3. Thus from lsb(W1)
and lsb(W3) we do not obtain the values of these 16 bits of lsb(x1) and lsb(x3).
Instead, for each possible solution (w0, w1, w2, w3) in Fin and each possible value
of these 16 bits, we construct a possible solution (lsb(x0), lsb(x1), lsb(x2), lsb(x3))
and verify it using the definition of the T–function given in (5) and a few more
outputs of the pseudo-random generator. The expected number of solutions
(lsb(x0), lsb(x1), lsb(x2), lsb(x3)) is also one and the complexity of this step is
216.

This completes the description of the attack. By combining all the complex-
ities, we see that the complexity of the attack is less than 240 in determining
the 128 unknown bits of (lsb(x0), lsb(x1), lsb(x2), lsb(x3)). This makes the at-
tack quite practical and suggests that this T–function should not be used as a
stand-alone pseudo-random generator.

4.2 Attack on Squaring Based T–Function

Consider the following T–function:

T









x0

x1

x2

x3









=









x0 ⊕ s ⊕ x2
1 ∧ M

x1 ⊕ s ∧ a0 ⊕ x2
2 ∧ M

x2 ⊕ s ∧ a1 ⊕ x2
3 ∧ M

x3 ⊕ s ∧ a2 ⊕ x2
0 ∧ M









(8)

where, a0 = x0, ai = ai−1∧xi, 1 ≤ i < 4, s = a3⊕ (a3 +1), and M = 1 . . . 11102.
This is Equation (10) in [3]. Since, msb(a0) = msb(x0) and msb(ai) = msb(ai−1)∧
msb(xi), 1 ≤ i < 4, we know msb(ai) for 0 ≤ i < 4. Now,

s =
(

msb(a3) × 232 + lsb(a3)
)

⊕
(

msb(a3) × 232 + lsb(a3) + 1
)

= 232 {msb(a3) ⊕ (msb(a3) + ε)} +
{

lsb(a3) ⊕
(

lsb(a3) + 1 mod 232
)}

where ε is the carry of lsb(a3)+1. If ε = 1, then lsb(a3) equals 1 . . . 1112 = 232−1.
But, lsb(a3) = lsb(x0) ∧ lsb(x1) ∧ lsb(x2) ∧ lsb(x3) and hence lsb(xi) = 1 . . . 1112

for 0 ≤ i < 4. In other words, ε = 1 ⇒ lsb(xi) = 1 . . . 1112 for 0 ≤ i < 4 and we
can verify if this is indeed the case.

If this is not the case, then ε = 0 and so, msb(s) = msb(a3) ⊕ msb(a3) =
0 . . . 0002. But then, msb(s ∧ ai) = msb(s) ∧ msb(ai) = 0 . . . 0002. Also, the 32
most significant bits of M are all ones and hence, msb(x ∧ M) = msb(x) for all
x. Hence, with respect to the 32 most significant bits, Equation (8) reduces to

T









x0

x1

x2

x3









=









x0 ⊕ x2
1

x1 ⊕ x2
2

x2 ⊕ x2
3

x3 ⊕ x2
0









=









y0

y1

y2

y3









(9)

474

with msb(xi) and msb(yi) known for 0 ≤ i < 4. Let zi = msb(xi−1)⊕msb(yi−1),
where the computation on the subscripts is done modulo 4. Then zi, 0 ≤ i ≤ 3 are
known and we need to solve for (x0, x1, x2, x3) such that the following equation
holds for i = 0, 1, 2, 3.

msb
(

x2
i mod 264

)

= zi (10)

We use Algorithm 2 to solve these four equations. Solving each equation takes
time 5 × 216 < 219 (see Case 1 of Section 3) and hence the time to solve all
four equations is less than 221. The possible solutions for lsb(x0), lsb(x1), lsb(x2)
and lsb(x3) are kept in four lists L0, L1, L2 and L3 respectively. Since n = 64 =
2× 32 = 2m, the expected number of entries in each list is one. We then form a
list Fin which contains tuples (lsb(x0), lsb(x1), lsb(x2), lsb(x3)) such that lsb(xi)
is in Li. Then for each entry in Fin, we verify the solution by evolving the T–
function in the forward direction a few times and comparing the output with
the already available pseudo-random bits.

Thus, we get an algorithm to determine the 128 unknown bits in the input of
Equation (8). It is easy to verify that the entire attack takes 221 time. This shows
that the T -function based on squaring is completely insecure as a stand-alone
pseudo-random generator.

4.3 Extracting Lesser Bits

In this subsection, we use the notation msbk(x) (resp. lsbk(x)) to denote the k
most (resp. least) significant bits of x. The state vector for the T–function in (5)
is (x0, x1, x2, x3). Suppose that instead of producing 128-bit output only the 64
bits (msb16(x0), msb16(x1), msb16(x2), msb16(x3)) are produced as output. Thus
there are 192 unknown bits in (x0, x1, x2, x3) which have to be determined. We
consider the effectiveness of our attack for this situation. The attack described
in Section 4.1 goes through for this case.

The complexity of the total attack depends on the complexity of solving
Equation 7. We use Subcase 1b of Section 2.1 along with the modification de-
scribed in Step 2 of Section 4.1. Then the run-time of the modified Algorithm 1

becomes 216−4(216−1 +3×232−4×233) = 227 +3×273. The number of unknown
bits in (7) is 2 × (48 − 8) + 2 × 48 = 176. The number of constraints in (7) is
4 × 16 = 64. Hence the expected number of solutions in Fin is 2112. The correct
solution can be determined by iterating the T–function and comparing the out-
put with the available pseudo-random string. Thus the time taken to determine
the 192 unknown bits will be 2112. Though this is infeasible in practice, it still
constitutes a theoretical attack on the system.

5 Implementation

We have performed some experiments to verify some of the assumptions about
the average case behaviour. In this section, we briefly describe these results.

The first thing to consider is the expected number of solutions to Mult. As
mentioned in Section 2, the expected number of solutions is 22n−3m. We describe

475

some experimental results for n = 16 and m = 8. The expected number of so-
lutions is 28 = 256. The total number of possible instances (x(1), y(1), z(1)) is
224. The number of instances such that the number of solutions is at most 256
is around 55% of the total number of instances while the number of instances
such that the number of solutions is at most 512 is more than 99 %. The maxi-
mum number of solutions occurs for the case (x(1), y(1), z(1)) = (0, 0, 0) and such
pathological situations are extremely rare.

We have implemented the attack on a reduced version of the multiplication
based T–function described in Section 4.1. We have chosen the state vector to
be four 32-bit words instead of four 64-bit words. Correspondingly, we have
extracted the top 16 bits of each word. Also the constants C1 and C3 have been
suitably scaled down. The attack has been implemented on randomly chosen
instances and in each case the size of Fin was found to be one. This provided 28

choices for the state vector and the unique one could be found using only one
more block of the available pseudo-random bit string. Thus the attack worked
extremely well with only three consecutive blocks of output. We expect the
attack to scale up quite well when applied to the T–function having state vector
consisting of four 64-bit words.

For the problem on squaring, we have implemented Algorithm 2. In the case
n = 64 and m = 32, the complexity of Algorithm 2 is 5 × 216. Our experiments
confirm this theoretical result and hence the attack on the squaring based T–
function in Section 4.2 works as expected.

6 Possible Countermeasure

Our attacks show that T–functions are probably not secure enough for stand-
alone use especially when half of the bits of the state vector are produced as
output. As suggested by Klimov and Shamir, T–functions can be used in con-
junction with S-boxes for design of stream ciphers. We provide one suggestion
for possibly improving the security of T–functions while retaining some of the
nice theoretical properties.

There is a large and easily identifiable subclass C of T–functions such that
any function in C defines a single cycle permutation on the state space. This is
an attractive theoretical property. In our suggestion, we would like to preserve
this property. To do this we apply the notion of conjugate permutations. (A
similar idea has been used in the context of one-way permutations [5].) If π and
τ are any two permutations of a set S, then σ = τ−1 ◦ π ◦ τ has the same cycle
structure as π; further, σ and π are called conjugate permutations.

We apply it to the context of T–functions in the following manner. Suppose
π is the permutation on the set of all state vectors induced by a T–function from
C. Then π has a single cycle and any conjugate of π also has a single cycle. Note
that this property does not depend on the choice of the permutation τ . Hence
we can choose τ so as to improve the security of the overall mapping.

In our attack, the basic weakness that we exploit is that there is insufficient
intermixing of higher and lower bits. One simple operation which can help in

476

improving such intermixing is the circular shift (which is not a T–function). Thus
we can construct a permutation τ on the state space by using circular shifts
and other nonlinear operations. These operations can be arbitrarily chosen (in
particular they need not be T–functions) to ensure higher security as long as τ
is a permutation and that they are efficient to apply.

One penalty for introducing this countermeasure will be reduction in speed.
The exact amount of speed reduction will depend on the concrete proposal.
Developing such a concrete proposal based on our guideline is a future research
problem.

7 Conclusion

In this paper, we studied multiplication, squaring and T–functions. In the first
part of the paper, we presented a time-memory trade-off algorithm to solve the
problems of multiplication and squaring. These algorithms are used in the second
part of the paper to analyse two concrete proposal of multi-word T–functions
from [3]. For the proposal based on multiplication, the 128 unknown bits of
the state vector can be determined in 240 time while for the proposal based on
squaring, these bits can be determined in 221 time. Experimental results from
our implementation suggests that our attack works well in practice. Hence one
can conclude that these two (and other similar) constructions of T–functions are
not secure enough for stand-alone use. We also suggest the use of conjugate per-
mutations for possibly improving the security of T–functions while maintaining
some nice theoretical properties.

Notes: An anonymous reviewer of the paper has suggested that the problems
Mult and Sqr can be formulated as closest vector problems in a two-dimensional
lattice. Using this approach, the time complexity of Algorithm 1 will be 232 with
minimal storage space. At the time of preparing this final version, we have not
been able to obtain the details of such an algorithm. We hope to present such
details in a later communication.

References

1. A. Klimov and A. Shamir. A New Class of Invertible Mappings, Proceedings of

CHES 2002, LNCS, 2002, pp 470–483.
2. A. Klimov and A. Shamir. Cryptographic Applications of T–functions, Proceedings

of SAC 2003, LNCS.
3. A. Klimov and A. Shamir. New Cryptographic Primitives Based on Multiword

T–functions, Proceedings of FSE 2004, LNCS, to appear.
4. A. Menezes, P. C. Van Oorschot, and S. Vanstone. Handbook of Applied Cryptog-

raphy. CRC Press, Boca Raton, 1997.
5. M. Naor, O. Reingold. Constructing Pseudo-Random Permutations with a Pre-

scribed Structure, Journal of Cryptology, 15(2): 97-102 (2002).

