
Strong Conditional Oblivious Transfer and

Computing on Intervals

Ian F. Blake1 and Vladimir Kolesnikov2

1 Dept. Elec. and Comp. Eng, University of Toronto, Toronto, ON, M5S 3G4,
Canada, ifblake@comm.utoronto.ca

2 Dept. Comp. Sci., University of Toronto, Toronto, ON, M5S 3G4, Canada,
vlad@cs.utoronto.ca

Abstract. We consider the problem of securely computing the Greater
Than (GT) predicate and its generalization – securely determining mem-
bership in a union of intervals. We approach these problems from the
point of view of Q-Conditional Oblivious Transfer (Q-COT), introduced
by Di Crescenzo, Ostrovsky and Rajagopalan [4]. Q-COT is an oblivi-
ous transfer that occurs iff predicate Q evaluates to true on the parties’
inputs. We are working in the semi-honest model with computationally
unbounded receiver.

In this paper, we propose: (i) a stronger, simple and intuitive definition
of COT, which we call strong COT, or Q-SCOT. (ii) A simpler and
more efficient one-round protocol for securely computing GT and GT-
SCOT. (iii) A simple and efficient modular construction reducing SCOT
based on membership in a union of intervals (UI-SCOT) to GT-SCOT,
producing an efficient one-round UI-SCOT.

1 Introduction

This work falls into the area of constructing efficient secure multi-party protocols
for interesting functionalities. The more basic the functionality, the more com-
mon is its use, and the more significant is the value of any improvement of the
corresponding protocol. We start with presenting the problems we investigate
and their motivation.

The base functionality we consider - Greater Than (GT) - is one of the
most basic and commonly used. Secure evaluation of GT is also one of the most
famous and well-researched problems in cryptography. There exist a vast number
of applications relying on it, such as auction systems or price negotiations.

Another typical example would be secure distributed database mining. The
setting is as follows: several parties, each having a private database, wish to
determine some properties of, or perform computations on, their joint database.
Many interesting properties and computations, such as transaction classifica-
tion or rule mining, involve evaluating a large number of instances of GT [12,
14]. Because of the large size of the databases, even a minor efficiency gain in
computing GT results in significant performance improvements.

507

Other functionalities – memberships in a set of intervals and their conjunc-
tions and disjunctions – are less studied, but nevertheless are very useful. Their
immediate uses lie in appointment scheduling, flexible timestamp verification,
expression evaluation, in the areas of computational geometry, biometrics, and
many others. Certain kinds of set membership problems, as studied by Freedman,
Nissim and Pinkas [7], can be represented succinctly as instances of problems
we consider. For example, the problem of membership in a set consisting of all
even integers on a large interval (y, z) can be represented as a conjunction of
two small instances of interval memberships (S = {x|x0 < 1∧ x ∈ (y, z)}, where
x0 is the low bit of x). In such cases, using our solutions may have significant
advantages over the general set intersection solution of [7].

The setting with computationally unbounded receiver (Alice) is very ap-
pealing, both for oblivious transfer and general computations. Numerous papers
consider unconditional security against one or more parties, in particular, the
receiver, e.g. [2, 3, 5, 11, 17]. Practical one-round computation with unbounded
first party (Alice) currently seems to be hard to achieve. The best known gen-
eral approach [21] offers only polynomial efficiency and only for computing NC1

circuits. At the same time, if Alice is bounded, we could use very efficient Yao’s
garbled circuit approach ([15, 17, 20, 22]) at the cost linear with the size of the
circuit. We solve the posed problems in the difficult setting (unbounded Alice),
while achieving performance only slightly worse than the best known approach
in the easier (bounded Alice) setting.

1.1 Our Contributions and Outline of the Work

After presenting preliminary definitions and constructions in Sect. 1.2, we start
with a discussion of Conditional Oblivious Transfer (COT) (Sect. 2). We wish to
strengthen the current definition of [4] in several respects. Firstly, we observe that
the definition of [4] does not require the privacy of the sender’s private input.
Secondly, we propose and justify the “1-out-of-2” Q-COT, where the receiver
obtains one of two possible secret messages depending on Q, but without learning
the value of Q. This is opposed to the “all-or-nothing” approach of [4] where the
receiver receives either a message or nothing, which necessarily reveals the value
of Q. Our approach significantly adds to the flexibility of COT functionalities
and allows for more powerful compositions of COT protocols. We propose a
definition of strong conditional oblivious transfer (SCOT) that incorporates the
above observations and some other (minor) points.

Then, in Sect. 3, we discuss previous work on the GT problem and present
our main tool – an efficient protocol for computing GT-SCOT built from a
homomorphic encryption scheme. We exploit the structure of the GT predicate
in a novel way to arrive at a solution that is more efficient and flexible than
the best previously known (of Fischlin [6]) for our model with unbounded Alice.
Additionally, our construction is the first to offer transfer of c-bit secrets, with
c ≈ 1000 for practical applications, at no extra cost, with one invocation of the
protocol, as opposed to the necessary c invocations of Fischlin’s protocol. This
results in additional significant efficiency gains.

508

Then, in Sect. 4, we show how to use the bandwidth of our GT-COT solu-
tion and present protocols for efficiently computing SCOT based on the interval
membership (I-SCOT) and SCOT based on the membership in a union of k
intervals (k-UI-SCOT). Because of their modularity, these protocols can also be
constructed based on Fischlin’s solution at the efficiency loss described in the
previous paragraph. Because they leak the private inputs of the sender, we do
not know of an efficient way to extend solutions of [4] to compute these func-
tionalities. We remark on how to use UI-SCOT to compute the conjunction or
disjunction of the memberships in unions of intervals. Finally, we compare and
summarize resource requirements of schemes of Fischlin, Di Crescenzo et al., and
ours in the Table in Sect. 4.2.

1.2 Definitions and Preliminaries

We start by introducing the necessary terminology and notation, and refer the
reader to Goldreich [9] for in-depth discussion. We are working in a setting
with two semi-honest participants, who use randomness in their computation.
By a two-party functionality we mean a possibly random process that maps
two inputs to two outputs. We denote the view (i.e. its randomness, input and
messages received) of a party P executing a protocol Π with a party R on
respective inputs x and y by VIEWΠ

P (x, y). We note that VIEWΠ
P (x, y) is a

random variable over the random coins of P and R.
We stress that although our constructions and analysis are presented for

a fixed security and correctness3 parameters ν and λ, we have in mind their
asymptotic notions. Therefore, for example, when talking about a view of a
party VIEWΠ

P (x, y), we mean an ensemble {VIEWΠ
P (x, y)}ν,λ of views.

We denote statistical closeness of ensembles of random variables X and Y
by X

s
≡ Y and their computational indistinguishability by X

c
≡ Y . We say

a function µ : N 7→ R is negligible if for every positive polynomial p(·) there
exists an N , such that for all n > N, µ(n) < 1/p(n). We say a probability is
overwhelming if it is negligibly different from 1.

Homomorphic Encryption. Our constructions use semantically secure pub-
lic key probabilistic additive homomorphic encryption. Informally, a scheme is
probabilistic (or randomized), if its encryption function uses randomness to en-
crypt a plaintext as one of many possible ciphertexts. It allows re-randomization
if a random encryption of a plaintext can be computed from its ciphertext and
the public key. In our work, we will rely on the unlinkability of encryptions
of the same message. An encryption scheme (G, E, D) is homomorphic, if for
some operations ⊕ and ⊗ (defined on possibly different domains), it holds that
D(E(x⊕ y)) = D(E(x)⊗E(y)). A scheme is called additively (multiplicatively)
homomorphic if it is homomorphic with respect to the corresponding operation
(e.g. additive scheme allows to compute E(x + y) from E(x) and E(y)). Many
of the commonly used schemes are homomorphic. For example, the ElGamal

3 Correctness parameter specifies the allowed probability of error in the protocols.

509

scheme is multiplicatively homomorphic, and Goldwasser-Micali [10] and Pail-
lier [18] schemes are additively homomorphic. Unfortunately, it is not known
whether there exists a scheme that is algebraically (i.e. both additively and mul-
tiplicatively) homomorphic. We note that an additively homomorphic scheme
allows multiplication by a known constant, i.e. computing E(cx) from E(x) and
c, via repeated addition.

The Paillier Cryptosystem. Our protocols require an additional property of
the encryption scheme: the large plaintext size, or bandwidth. The Paillier scheme
[18] satisfies all our requirements, and we will instantiate all our protocols with
it. We present it for completeness, but omit the number-theoretic justification.

Key generation: Let N be an RSA modulus N = pq, where p, q are large
primes. Let g be an integer of order Nα modulo N 2, for some integer α. The
public key pk = (N, g) and the secret key sk = λ(N) = lcm((p − 1), (q − 1)),
where λ(N) is the Carmichael’s lambda function.

Encryption: to encrypt m ∈ ZZN , compute Enc(m) = gmrN mod N2, where
r ∈R ZZ∗

N .

Decryption: to decrypt a ciphertext c, compute m = L(cλ(N) mod N2)

L(gλ(N) mod N2)
mod N ,

where L(u) = u−1
N

takes as input an element from the set SN = {u < N2|u = 1
mod N}.

Re-randomization: to re-randomize a ciphertext c, multiply it by a random
encryption of 0, i.e. compute crN mod N2, for r ∈R ZZ∗

N .
The underlying security assumption is that the so-called composite residuos-

ity class problem is intractable (called the CCRA assumption). It it potentially
stronger than the RSA assumption, as well as the quadratic residuosity assump-
tion, used in [6]. We refer the interested reader to [18] for further details.

2 Strong Conditional Oblivious Transfer

The notion of COT was introduced by Di Crescenzo, Ostrovsky and Rajagopalan
[4] in the context of timed-release encryption. It is a variant of Oblivious Transfer
(OT) introduced by Rabin [19]. Intuitively, in COT, the two participants, a
receiver R and a sender S, have private inputs x and y respectively, and share
a public predicate Q(·, ·). S has a secret s he wishes (obliviously to himself) to
transfer to R iff Q(x, y) = 1. If Q(x, y) = 0, no information about s is transferred
to R. R’s private input and the value of the predicate remain computationally
hidden from S.

2.1 Our Definitions

We start by describing several ways of strengthening the existing definition with
the goal of increasing modularity and widening the applicability of SCOT pro-
tocols. Our own construction for UI-SCOT, for example, requires its building
blocks to have the proposed features.

510

First, while sufficient for the proposed timed-release encryption scheme, the
definition of [4] lacks the requirement of secrecy of the sender’s private input.
We would like the new definition to include this requirement.

Secondly, we prefer the “1-out-of-2” approach. In our proposed setting, the
sender possesses two secrets s0 and s1, and wishes (obliviously to himself) to send
s1 if Q(x, y) = 1, and to send s0 otherwise. Unlike the COT “all-or-nothing” def-
inition, this allows SCOT protocols to have the property of not revealing Q(x, y)
to the receiver. This proposal strengthens the definition since while a SCOT
protocol can be trivially modified to satisfy COT definitions of [4], the opposite
does not (efficiently) hold4. Further, note that it follows from our requirements
that a Q-SCOT protocol can be trivially modified into a (¬Q)-SCOT protocol.
This also does not hold for COT. We will use this important property in our
constructions later in the paper.

Finally, as a minor point, we only require statistical, as opposed to perfect,
correctness and security against R, to allow for easier analysis of the protocols
and wider applicability of the SCOT notion.

We now present our definition. Let sender S and receiver R be the partic-
ipants of the protocol. Let ν be the security parameter and λ be the correct-
ness parameter, upperbounding error probability by O(2−λ). Let DI and DS

be the respective domains of parties’ private inputs and sender’s secrets. Let
dI = |DI | and dS = |DS |. We assume that both domains are known to both
parties. Let R have input x ∈ DI , and S has input (y ∈ DI , s0, s1 ∈ DS). Let
Q : DI × DI 7→ {0, 1} be a predicate. Consider the SCOT functionality:

Functionality 1

fQ−SCOT(x, (y, s0, s1)) =

{

(s1, empty string) if Q(x, y) = 1,

(s0, empty string) otherwise
(1)

There are many models in which we can consider computing this function-
ality. Each of the two parties may be malicious or semi-honest and each party
may or may not be computationally limited5. We wish to give one definition
that refers to all possible models and rely on existing definitions of secure com-
putations in these models. We refer the reader to Goldreich [9] for in-depth
presentations of definitions of security in many interesting models.

Definition 1. (Q-Strong Conditional Oblivious Transfer)
We say that a protocol Π is a Q-strong conditional oblivious transfer protocol

with respect to a given model, if it securely implements functionality fQ−SCOT

(1) in the given model.

We note that this general definition covers the case when Q is probabilistic.

4 Clearly, because secure multi-party computation can be based on OT (Kilian [13]),
COT implies SCOT. This solution, however, is inefficient.

5 Of course, in some of the combinations it is not possible to have nontrivial secure
SCOT protocols, such as when both parties are computationally unlimited.

511

One of the more practical and interesting settings is the model with the semi-
honest unlimited receiver, semi-honest polytime sender and deterministic Q. We
discuss our constructions in this model, and thus wish to explicate the definition
for this setting.

Definition 2. Let receiver R, sender S, their inputs x and y, secrets s1 and
s0, unary parameters ν and λ, and predicate Q be as discussed above. We say
that Π is a strong conditional oblivious transfer protocol for predicate Q in the
semi-honest model with computationally unlimited receiver and polytime sender
if

– Transfer Validity. With overwhelming probability in λ: If Q(x, y) = 1, R
obtains s1, otherwise R obtains s0.

– Security against R. (R obtains essentially no information other than the
transferred secret) There exists a simulator SimR, such that for any x, y, s, s′

from appropriate domains:

if Q(x, y) then {SimR(x, s)}ν

s
≡ {VIEWΠ

R (x, (y, s′, s))}ν

if ¬Q(x, y) then {SimR(x, s)}ν

s
≡ {VIEWΠ

R (x, (y, s, s′))}ν

– Security against S. (S gets no efficiently computable information about x)
There exists an efficient simulator SimS, such that for any x, (y, s0, s1) from
appropriate domains:

{SimS(y, s0, s1)}ν

c
≡ {VIEWΠ

S (x, (y, s0, s1))}ν .

As further justification, we wish to point out an interesting use of Q-SCOT
protocols. When sufficiently long secrets are chosen randomly by S, upon com-
pletion of a Q-SCOT protocol, R does not know either the value of Q, or the
non-transferred secret. Thus this can be viewed as a convenient way to share the
value of Q among R and S. Further, the secret that R received may serve as a
proof to S of the value of Q. This is not possible with COT, as R is only able
to provide such proof if Q(x, y) = 1.

3 The GT-SCOT Protocol

Research specifically addressing the GT problem is quite extensive. It was con-
sidered (as a special case) in the context of general secure multi-party com-
putation [1, 15, 17, 20, 23, 22], whose solution is now well-known and celebrated.
This general approach is impractical. However, because the circuit for comput-
ing GT is quite small, it is the best currently known one-round solution in the
model with the computationally bounded Alice. As people searched for efficient
solutions to special classes of problems in different models, more efficient GT so-
lutions implicitly appeared. Naor and Nissim [16] presented a general approach
to securely computing functions with low communication overhead. While the
application of their solution to GT is quite efficient in the message length, it
needs at least O(log n + log 1

ε
) 1-out-of-O(n) oblivious transfers and the same

512

number of rounds, where ε is the tolerated probability of error. Sander, Young
and Yung [21] showed that all functionalities in NC1 (including GT) can be
computed by a one-round polytime protocol. Their solution is secure against
unbounded Alice. Unfortunately, when used with the natural shallow GT cir-
cuit6 (which seems to be optimal for their approach), it requires at least n4

modular multiplications and n4 log N communication (where n is the input size,
and N is the GM modulus used).

Finally, in 2001, Fischlin [6] proposed a solution that significantly reduced
the number of modular multiplications, while also reducing the message size and
maintaining the minimal one-round efficiency. This is the best previously known
solution to the GT problem in the model with unbounded Alice. The number of
modular multiplications required to complete his protocol is 8nλ, where 2−λ is
the allowed error probability. The message complexity (in bits) is n log N(λ+1).
Fischlin also extends this protocol (at the cost of approximately doubling the
communication and computation costs) to satisfy our definition of GT-SCOT,
with the exception of leaking the value of the predicate. We remark that this
extension can be further extended to fully satisfy our definitions at the expense
of further approximately doubling the communication and computation costs.

3.1 Our Construction

Our constructions use semantically secure additively homomorphic encryption
schemes with large message domains. For the ease and clarity of presentation
and to enable resource analysis, we “instantiate” our protocols with the original
Paillier scheme. We remark that the Paillier scheme has received much attention
in the literature recently, and several variants, including an elliptic curve version
[8], have appeared. Using more efficient implementations may further improve
our results.

Let (Gen, Enc, Dec) be the instance generation, encryption and decryption
algorithms, respectively, of such a scheme. As in Definition 2, let R and S be the
receiver and the sender with inputs x and y respectively and common parameters
ν and λ. Let x, y ∈ DI and s0, s1 ∈ DS . Let dS = |DS | and, without loss of
generality, dI = |DI | = 2n.

Throughout this section, we will work with numbers which we will need
to represent as binary vectors. For x ∈ IN, unless specified otherwise, xi will
denote the ith most significant bit in the n-bit binary representation of x, in-
cluding leading zeros, if applicable. Where it is clear from the context, by x
we may mean the vector < x1, x2, ..., xn >, and by Enc(x) we mean a vec-
tor < Enc(x1), Enc(x2), ..., Enc(xn) >. We will also write Enc(x) instead of
Encpk(x), where pk is clear from the context.

For the clarity of presentation, we describe the setup phase outside of the
protocol. We stress that it is run as part of R’s first move, and in particular,
after the parties’ inputs x, and (y, s0, s1) have been fixed.

6 The circuit based on the formula used by Fischlin’s protocol [6].

513

Setup Phase. R sets up the Paillier encryption scheme with group size
N = pq by running Gen and generating secret and public keys (sk and pk). He
chooses the number of bits in N to be max{ν, |dS | + λ}.

We will view DS as a subset of ZZN , and will perform operations on elements
of DS modulo N .

Observation 1 We envision the following practical parameter choices for our
GT protocols. First, choose N and λ to satisfy the security and correctness re-
quirements of the encryption scheme. In practice, log N(≈ 1000) � λ(≈ 40..80),
so we set |dS | = log N −λ > 900 bits of the bandwidth of the encryption scheme
to be used for sending secrets. If DS needs to be much larger than that, it may be
more practical to split it in blocks of size |dS | and run GT-SCOT several times.
Choosing parameters in this manner also simplifies comparison of our results to
others, and we follow this approach in Sect. 4.2.

Observation 2 There is a negligible (in λ) minority of elements of DS in the
group of size N .

For our protocols, we are only interested in binary comparisons, i.e. one of
{>, <,≤,≥}. We can trivially reduce {≥,≤} to {>, <}. Furthermore, we assume
that x 6= y. This can be enforced by mapping, for instance, x 7→ 2x, y 7→ 2y + 1.
The mapping can be done entirely by S. Similarly, we assume that s0 6= s1. The
case when s0 = s1 can be reduced to the s0 6= s1 case by, for example, S setting
y = max{DI} and s1 ∈R DS \ {s0}, ensuring that x < y and s0 is always sent.

We now present the GT-SCOT construction. The intuition behind each step
is presented immediately below, in the proof of the corresponding security the-
orem.

Construction 1 (Computing functionality GT-SCOT)

1. R runs the setup phase, then encrypts each bit xi of x with the generated pk
and sends (pk, Enc(x1), ..., Enc(xn)) to S.

2. S computes the following, for each i = 1..n:

(a) an encryption of the difference vector d, where di = xi − yi.

(b) an encryption of the flag vector f , where fi = xi XOR yi = (xi − yi)
2 =

xi − 2xiyi + yi.

(c) an encryption of vector γ, where γ0 = 0 and γi = 2γi−1 + fi.

(d) an encryption of vector δ, where δi = di + ri(γi − 1), where ri ∈R ZZN .

(e) a random encryption of vector µ, where µi = s1−s0

2 δi + s1+s0

2

and sends a random permutation π(Enc(µ)) to R.

3. R obtains π(Enc(µ)), decrypts it, and determines the output as follows: if µ
contains a single v ∈ DS, output v, otherwise abort.

Theorem 1. The protocol of Construction 1 is a GT-SCOT protocol in the
semi-honest model, assuming semantic security of the employed encryption scheme.

514

Proof. (sketch): We will now show that the protocol correctly computes the
desired functionality. It is easy to see that the homomorphic properties of the
encryption scheme allow S to perform all necessary operations. In particular,
step 2b is possible because yi are known to S.

Observe that the flag vector f is a {0, 1}-vector, with the ones in positions
where x and y differ. Furthermore, γ is a vector with the following structure: it
starts with zero or more zeros, then a one, then a sequence of non-ones. Moreover,
with overwhelming probability the non-zero elements (γi − 1) are not multiples
of either p or q, i.e. are in ZZ∗

N . This is because the fraction of multiples of p or
q in ZN is negligible, and p and q are chosen randomly and independently of x
and y.

Let ind1 be the (only) position where γind1
= 1. This position is where x and

y first differ, and thus dind1 determines GT(x, y). The transformation (γ, d) → δ
of step 2d randomizes all coordinates of δ, while setting δind1

to the value of
dind1

. Because, with overwhelming probability, (γi − 1) ∈ ZZ∗
N , multiplying it by

ri ∈R ZZN randomizes δ perfectly in ZZN .

With overwhelming probability, the transformation (δ, s0, s1) → µ of step
2e is a permutation on ZZN that maps −1 7→ s0, 1 7→ s1. Indeed, it is not
such a permutation only when (s1 − s0) is a multiple of p or q, the event that
occurs with negligible probability, because p and q are are chosen randomly
and independently of s1 and s0. This permutation preserves the randomness
properties of all elements of the vector, and (as is easy to verify) performs the
mapping we are looking for. The random re-encryption step hides the information
that may be contained in the randomness of the encryption. Finally, the random
permutation π(µ) of step 2 hides the index of the determining di.

It easily follows from Observation 2 that the probability that there is not
exactly one element of size |dS | in the decrypted by R vector, is negligible. Thus,
with overwhelming probability, R terminates and outputs the correct value.

Security of R (against the semi-honest S) trivially holds because of the se-
mantic security properties of the employed encryption scheme.

We now prove security of S against an unlimited semi-honest R by construct-
ing a protocol view simulator SimR(x, s), where x is the input, and s is the output
of the protocol. SimR(x, s) has to generate a distribution statistically close to the
view of R in a real execution - VIEWR(x, (y, s0, s1)) = {x, r, Enc(π(µ))}, where
r is the randomness used by R to generate pk and sk (of the setup phase) and
the random encryptions of the first message, and π(µ) is defined in the protocol
construction. SimR(x, s) proceeds as follows. It first generates a random string
r′ of appropriate length (to match r). It uses r′ to compute the keys sk and
pk (including N). It then computes a candidate µ′: for i = 1..n, pick random
µ′

i ∈R ZZN . It then replaces a random element of µ′ with the received s, and
outputs {x, r′, Encpk′(µ′)}, where Encpk′(µ′) is a vector of random encryptions
of coordinates of µ′ under the pk′. Because of the previously presented argu-
ments of the randomness of all elements of π(µ) (other than the one that carries
the secret) and the randomness of re-encryption, it is easy to see that SimR

generates a distribution statistically close to the view of R. We note that the

515

simulation is not perfect, since the transfer of the other secret is possible during
the real execution, with negligible probability. ut

We observe that a GT-SCOT protocol, such as presented above, immediately
implies solution to GT, in the semi-honest model. Indeed, running GT-SCOT
with at least one of the secrets si known to R (say s1 = 1), immediately yields
the desired functionality. Moreover, for GT, the transformation of step 2e is
unnecessary (while the re-randomization of the same step is still required).

3.2 Resource Analysis

We evaluate the message and modular multiplication efficiency of our construc-
tion based on the use of Paillier encryption scheme. We note that we do not
include the relatively small computational cost of key generation, to be consis-
tent with the compared results of [4] and [6]. Let n be the length of inputs x
and y in binary, N -the size of the plaintext domain of the Paillier scheme. Then
message complexity of Construction 1 is l = 2n log(N 2) = 4n logN bits.

Let w = w(y) ≤ n be the weight (i.e. the number of ones) of the binary
representation of y. To encrypt each bit, log N multiplications are required.
Observe that it is not necessary to perform expensive randomized encryption in
the intermediate steps of S. This allows us to make do with only w multiplications
for each of the steps 2a, 2b, 2n - for step 2c, and (log N + 2)n - for step 2d, and
(|si| + log N)n ≤ 2n log N - for step 2e of the protocol. We note that if we do
not perform the transformation of step 2e (when, for example, computing GT),
we only need n log N multiplications for the last step.

Decryption takes 2n logN multiplications. Thus, in total, the protocol re-
quires no more than (5n+1) log N +6n modular multiplications ((4n+1) logN +
6n for GT). We stress that transferring up to log N − λ bit secrets requires the
same resources. We observe that the encryption and re-encryption multiplica-
tions can be precomputed once the encryption scheme is initialized.

We now compare the efficiency of our approach to that of Fischlin [6], using
appropriate parameters. We first note that in practice, no known attack on the
Paillier system is better than factoring the modulus N . Clearly, factoring based
attacks would also be effective against the GM scheme with the same modulus
size. Thus, having already assumed CCRA (see Sect. 1.2), we also assume that
the security of Paillier and GM schemes with the modulus of the same size are
approximately the same.

Compared with [6], our scheme offers a factor of λ/4 improvement in message
complexity: ((4n log N) vs (n log N(λ + 1)) bits). We pay higher cost in the
number of modular multiplications: ((4n+1) logN +6n) vs (6nλ). Additionally,
our multiplications are four times slower, since we are working with modulus
length twice that of the Goldwasser-Micali encryption scheme employed in [6].
These comparisons are summarized in the Table in Sect. 4.2.

516

4 SCOT for Unions of Intervals

In this section we present new efficient protocols for I-SCOT (SCOT based on
the membership in an interval) and UI-SCOT (SCOT based on the membership
in a union of intervals), both of which are generalizations of GT-SCOT. We build
these protocols on our GT-SCOT solution. While other GT-SCOT approaches
(such as based on Fischlin’s protocol) are also suitable for these constructions,
our solution is simpler and produces more efficient protocols in terms of both
multiplication and communication complexity. In our constructions, we denote
the instance of the Q-SCOT functionality with the secrets s0, s1 on parties’
inputs x, y by Q-SCOT (s1|s0?Q(x, y)).

In Sect. 4.1 we show how to reduce UI-SCOT to I-SCOT and I-SCOT to
GT-SCOT. In our model, secure reductions provide us with secure protocols
when the underlying oracles are replaced by their secure implementations (see
Goldreich [9] for the composition theorem.) Furthermore, in our model the ora-
cles’ implementations may be run in parallel, which, with our implementations,
provides secure one-round protocols for I-SCOT to UI-SCOT.

4.1 The UI-SCOT protocol

Without loss of generality, we assume that the domain of secrets DS is an ad-
ditive group7 ZZ+

dS
. All additions of secrets will be done in DS , unless specified

otherwise. In the I-SCOT setting, S’s input x1, x2 ∈ DI represents an interval
I , and s1 (resp. s0) are to be obliviously transferred if x ∈ I (resp. x 6∈ I), for
R’s input x ∈ DI . The following diagram illustrates the idea of the reduction of
I-SCOT to GT-SCOT:

a1

b1 b2

a2

s0s0 s1

x2x1

Interval I splits DI in three parts, and S wishes to transfer s1 “on the central
part” (I) and s0 “on the side parts” (DI\I). The idea is to represent these secrets
as sums of independently random (i.e. random if taken separately) elements
(a1, a2, b1, b2 ∈ DS) which are to be transferred using GT-SCOT.

Construction 2 (Reducing I-SCOT to GT-SCOT)

1. S randomly chooses a1 ∈ DS and sets b1, a2, b2 ∈ DS to satisfy s0 = a1+b1 =
a2 + b2 and s1 = a2 + b1

2. -Reduction: R and S (in parallel) invoke oracles for GT-SCOT(a1|a2?x <
x1) and GT-SCOT(b1|b2?x < x2).

3. R obtains a′, b′ ∈ DS from GT-SCOT oracle executions and outputs a′ + b′.

7 We stress that we use GT-SCOT as black box, and, in particular, addition in DS is
unrelated to the corresponding operation in the GT-SCOT implementation.

517

Theorem 2. The protocol of Construction 2 securely reduces functionality I-
SCOT to GT-SCOT in the semi-honest model.

Proof. (sketch): The transfer validity property of this reduction trivially holds.
Since S does not receive any messages from R or oracle executions, the reduction
is secure against semi-honest S. We show how to construct SimR, simulating the
following ensemble (view of R): VIEWR(x, (x1, x2, s0, s1)) = {x, r1, r2}, where
r1, r2 are the sent (via the GT-SCOT oracles) ai, bj . Let s be the transferred se-
cret. Then SimR(x, s) = {x, r′1, r

′
2}, where r′i are independently random elements

of DS that sum up to s. Because, by construction, r1, r2 are also independently
random with the same sum, SimR perfectly simulates view of R. ut

We now wish to reduce UI-SCOT of polynomially many intervals to I-SCOT.
Here, S’s input represents a set of disjoint intervals {Ii = (xi1, xi2 ∈ DI)}, and
the secrets s0, s1 ∈ DS . S wishes to transfer s1 if x ∈

⋃

Ii, and transfer s0

otherwise. Let k be the number of intervals in the set (to avoid leaking k to R,
S can pad it to a known upper bound by adding empty intervals). We represent
⋃

Ii as the intersection of one “regular” and k−1 “cutout” intervals as illustrated
on the following diagram.

sk1

s1s1 s0s0s0 s1s0s1

s10 s10s11

s21 s20 s21

sk0 sk1

The bottom line represents the input set of intervals on the domain, and all other
lines represent the constructed (by S) intervals that together correspond to this
set. The si are the secrets to be transferred by the UI-SCOT construction, and
the sij are the intermediate secrets to be created by UI-SCOT and transferred
by the existing I-SCOT protocol. Because the input intervals are disjoint, the
cut out (thin, on the diagram) parts of the constructed intervals do not intersect,
and thus any x either belongs to all or to all but one constructed intervals.

To reduce UI-SCOT to I-SCOT, we need to choose sij ∈ DS based on the
given si. Because of the above observation we only need to satisfy the following:
s1 =

∑

i si1 and s0 = (
∑

i6=j si1) + sj0, ∀j = 1..k Observe that the second
condition is equivalent to requiring s1 − s0 = sj1 − sj0, ∀j = 1..k.

Construction 3 (Reducing UI-SCOT to I-SCOT)

1. S chooses s11, ..., s(k−1)1 ∈R DS and sets sk1 = s1 −
∑

i=1..k−1 si1 and si0 =
si1 − (s1 − s0), i = 1..k.

2. -Reduction: S and R (in parallel) invoke oracles for I-SCOT(si1|si0?x ∈ Ii),
for each i = 1..k.

3. R obtains a1, ..., ak ∈ DS from k oracle executions and outputs
∑

i ai.

Theorem 3. The protocol of Construction 3 securely reduces functionality UI-
SCOT to I-SCOT in the semi-honest model.

518

Proof. (sketch): The transfer validity property of this reduction trivially holds.
Since S does not receive any messages from R or oracle executions, the reduction
is secure against semi-honest S. We show how to construct SimR simulating the
view of R VIEWR(x, y) = {x, r1, ..., rk}, where r1, ..., rk are the oracle sent
elements of DS defined by step 1 of the construction. Let s be the transferred
secret. Then SimR(x, s) = {x, r′1, ..., r

′
k}, where r′i ∈R DS with the restriction

s =
∑

i ri. SimR perfectly simulates view of R because both ensembles are (k−1)-
wise independent random numbers that sum up to the same value s. ut

The (
∧

i
Qi(xi, yi))-COT Protocol. We now build

∧

i Qi(xi, yi))-COT (in
the sense of [4]) using oracles for corresponding Qi-SCOT. R now has input
x1, ..., xn, and S has y1, ..., yn. S wishes to send a secret s to R iff

∧

i(Qi(xi, yi)) =
1. The idea is to introduce “specialness” of s like we did for GT-SCOT, by,
for example, extending the domain of secrets DS to group D′

S = ZZ+
d′

S

, where

d′S = |D′
S | � |DS |, Then S represents s ∈ DS as a sum of random secrets

si ∈R D′
S , and runs Qi-SCOT(si|ri?Qi(xi, yi)), where ri ∈R D′

S . Indeed, if the
conjunction holds, then only the si’s will be transferred, and they will sum up
to s ∈ DS . If any (or any number of) predicates do not hold, one (or more) ri

will be transferred, which will randomize (in D′
S) the sum obtained by R.

Construction 4 (Reducing (
∧

i Qi(xi, yi))-COT to Qi-SCOT)

1. S chooses r1, ..., rn, s1, ..., sn−1 ∈R D′
S and sets (in D′

S) sn = s−
∑

i=1..n−1 si.
2. R and S in parallel invoke oracles for Qi-SCOT(si|ri?Qi(xi, yi)), ∀i = 1..n.
3. R obtains a1, ..., an ∈ D′

S from the Qi-SCOT oracle executions and sets
v =

∑

i ai. R outputs v, if v ∈ DS, and outputs ⊥ otherwise.

Theorem 4. The protocol of Construction 4 securely reduces functionality
(
∧

i Qi(xi, yi))-COT to Qi-SCOT in the semi-honest model.

Proof: The simple proof is very similar to the previous ones and is omitted. �

Corollary 1. There exists (via construction 4 and DeMorgan laws) efficient
one-round protocols for computing conjunction and disjunction of memberships
in sets of intervals, secure against computationally unlimited R.

4.2 Resource Analysis

We continue and expand the resource analysis of Sect. 3.2. Recall that λ and ν
are the correctness and security parameters. As discussed in Observation 1, we
choose ν = log N and λ as in [6]. This determines the secrets domain DS to be
of size 2ν−λ. As noted in Sect. 3.2, we do not include the cost of key generation
in any of the compared solutions.

It is easy to see that Construction 3 makes 2k calls to the underlying λ-bit
GT-COT oracle. Thus, when using our implementation of GT-SCOT, UI-SCOT
requires sending 8kn logN bits and performing about 40kn logN multiplications

519

in group of size N . Using λ-bit GT-SCOT oracle implementation based on Fis-
chlin’s GT results in almost full factor of 2k blowup in communication since
server sends most of the traffic. The 2k factor blowup in the computation also
seems necessary when using this scheme.

The following table summarizes the cost of comparable modular multiplica-
tions and communication of our protocol in relation to others.

Protocol
GT predicate c-bit GT-SCOT, c<ν-λ k-UI-SCOT

mod. mult. comm. mod. mult. comm. mod. mult. comm.

of [6] 8nλ λn log N 32ncλ 4ncλ log N 64knλ2 8knλ2 log N
of [4] 8n 4n log N N/A N/A N/A N/A

our work 16n logN 4n log N 20n logN 4n logN 40kn logN 8kn log N

We see no obvious way to transform the schemes of [4] to GT-SCOT, and thus
do not include the corresponding resource calculations.

5 Conclusions and Future Work

We presented simple, intuitive and stronger definitions for Q-SCOT. We pre-
sented a flexible and efficient scheme for securely computing the GT predicate
and GT-SCOT, in the semi-honest setting with unbounded receiver. We then
showed simple modular reductions from UI-SCOT to GT-SCOT. In addition to
the presented results, we noticed that natural efficient variants of our protocols
are resilient to several natural attacks by malicious receivers. Devising versions
of our protocols secure in the malicious model is an interesting aspect of further
consideration.

Acknowledgments. The second author would like to thank Travis Gagie,
Steven Myers, and especially Charles Rackoff for many insightful discussions.
He also thanks Marc Fischlin and Pascal Paillier for useful comments relating
to their schemes used in this paper.

References

1. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols.
In Proc. 22nd ACM Symp. on Theory of Computing, pages 503–513, 1990.

2. Christian Cachin, Jan Camenisch, Joe Kilian, and Joy Muller. One-round secure
computation and secure autonomous mobile agents. In Proceedings of the 27th
International Colloquium on Automata, Languages and Programming, 2000.

3. David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally
secure protocols. In Proc. CRYPTO 87, pages 462–462. Springer-Verlag, 1988.
Lecture Notes in Computer Science, vol. 293.

4. G. Di Crescenzo, R. Ostrovsky, and S. Rajagopalan. Conditional oblivious transfer
and time-released encryption. In Proc. CRYPTO 99, pages 74–89. Springer-Verlag,
1999. Lecture Notes in Computer Science, vol. 1592.

520

5. Yvo Desmedt. Unconditionally secure authentication schemes and practical and
theoretical consequences. In Proc. CRYPTO 85, pages 42–55. Springer, 1986.
Lecture Notes in Computer Science, vol. 218.

6. Marc Fischlin. A cost-effective pay-per-multiplication comparison method for mil-
lionaires. In RSA Security 2001 Cryptographer’s Track, pages 457–471. Springer-
Verlag, 2001. Lecture Notes in Computer Science, vol. 2020.

7. Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching
and set intersection. In Proc. EUROCRYPT 2004, pages 1–19. Springer-Verlag,
2004. Lecture Notes in Computer Science, vol. 3027.

8. Steven D. Galbraith. Elliptic curve paillier schemes. Journal of Cryptology,
15(2):129–138, 2002.

9. Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, 2004.

10. S. Goldwasser and S. Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In Proc. 14th ACM Symp. on Theory
of Computing, pages 365–377, San Francisco, 1982. ACM.

11. Shai Halevi. Efficient commitment schemes with bounded sender and unbounded
receiver. Journal of Cryptology: the journal of the International Association for
Cryptologic Research, 12(2):77–89, 1999.

12. M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining of asso-
ciation rules on horizontally partitioned data. In ACM SIGMOD Workshop on
Research Issues on Data Mining and Knowledge Discovery (DMKD’02), 2002.

13. J. Kilian. Founding cryptography on oblivious transfer. In Proc. 20th ACM Symp.
on Theory of Computing, pages 20–31, Chicago, 1988. ACM.

14. Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In Proc.
CRYPTO 00, pages 20–24. Springer-Verlag, 2000. Lecture Notes in Computer
Science, vol. 1880.

15. Yehuda Lindell and Benny Pinkas. A proof of yao’s protocol for secure two-party
computation. Cryptology ePrint Archive, Report 2004/175, 2004. http://eprint.
iacr.org/.

16. Moni Naor and Kobbi Nissim. Communication preserving protocols for secure
function evaluation. In Proceedings of the thirty-third annual ACM symposium on
Theory of computing, pages 590–599. ACM Press, 2001.

17. Moni Naor, Benny Pinkas, and Reuben Sumner. Privacy preserving auctions and
mechanism design. In 1st ACM Conf. on Electronic Commerce, pages 129–139,
1999.

18. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Proc. EUROCRYPT 99, pages 223–238. Springer-Verlag, 1999. Lecture
Notes in Computer Science, vol. 1592.

19. M. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81,
Harvard Aiken Computation Laboratory, 1981.

20. Phillip Rogaway. The round complexity of secure protocols. PhD thesis, MIT, 1991.
21. Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryptocomputing for

NC1. In Proceedings 40th IEEE Symposium on Foundations of Computer Science,
pages 554–566, New York, 1999. IEEE.

22. A. C. Yao. Protocols for secure computations. In Proc. 23rd IEEE Symp. on
Foundations of Comp. Science, pages 160–164, Chicago, 1982. IEEE.

23. A. C. Yao. How to generate and exchange secrets. In Proc. 27th IEEE Symp. on
Foundations of Comp. Science, pages 162–167, Toronto, 1986. IEEE.

