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Abstract. A two-argument function is computed privately by two par-
ties if after the computation, no party should know anything about the
other inputs except for what he is able to deduce from his own input
and the function value. In [1] Bar-Yehuda, Chor, Kushilevitz, and Orl-
itsky give a complete characterisation of two-argument functions which
can be computed privately (in the information-theoretical sense) in the
Honest-But-Curious model and study protocols for “non-private” func-
tions revealing as little information about the inputs as possible. The
authors define a measure which determines for any function f the ad-
ditional information E(f) required for computing f and claim that f
is privately-computable if and only if E(f) = 0. In our paper we show
that the characterisation is false: we give a privately-computable func-
tion f with E(f) �= 0 and another function g with E(g) = 0 that is not
privately-computable. Moreover, we show some rather unexpected and
strange properties of the measure for additional information given by
Bar-Yehuda et al. and we introduce an alternative measure. We show
that for this new measure the minimal leakage of information of ran-
domized and deterministic protocols are equal. Finally, we present some
general relations between the information gain of an optimal protocol
and the communication complexity of a function.

1 Introduction

We investigate computations of functions of two n-bit inputs x and y by two
players Alice holding x and Bob having y. For a given function f Alice (A) and
Bob (B), both with unlimited computational power, communicate to determine
f(x, y) keeping as much of its input secret from the other party as possible.
In this setting two models are considered in the literature. In the first one we
assume that the players are honest but curious, that means they never deviate
from the given protocol but try to acquire knowledge about the input bits of the
other player only by observing the communication. In the second setting Alice
or Bob can be malicious, i.e. they can cheat. In this paper we study privacy in
the Honest-But-Curious setting.
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Private computation was introduced by Yao [8]. He considered the problem
under cryptographic assumptions. Private computation in the information-the-
oretical secure setting has been introduced by Ben-Or et al. [3] and Chaum et
al. [5]. Ben-Or et al. have presented a function that is not privately computable.
A complete characterisation of such functions has been given independently by
Kushilevitz [6] and Beaver [2]. This characterisation has been given by using so
called forbidden submatrices. Let M be a matrix. We say that two row indices
i and j are related (i ∼ j) if there is a column k for which Mi,k = Mj,k. For
example, the row indices of matrix T shown below are related while the rows of
matrix T ′ are not related.

T =
[
0 0
0 1

]
, T ′ =

[
1 0
0 1

]
. (1)

We define the equivalence relation ≡ to be the transitive closure of ∼. In a
similar way, we define the relations ∼ and ≡ on the columns of M . A matrix
is forbidden if it is not monochromatic (i.e. not all elements of the matrix are
the same), all its rows are equivalent with respect to ≡ on rows, and all its
columns are equivalent with respect to ≡ on columns. Matrix T defined in (1) is
a small example of a forbidden matrix and T ′ is an example for a not forbidden
matrix. Privately-computable functions can be characterised as follows. Let Mf

denote the communication matrix for the function f , i.e. an 2n×2n matrix such
that rows and columns are indexed by n-bit inputs and for every x, y ∈ {0, 1}n

we have (Mf )x,y = f(x, y). For example T and T ′ in (1) are communication
matrices of the two argument Boolean functions AND and XOR, respectively.

Theorem 1 ([6, 2]). In the Honest-But-Curious model a two-argument func-
tion f can be computed privately if and only if Mf does not contain any forbidden
submatrix.

Using this characterisation one can see that the majority of functions can-
not be computed privately. For such functions it is natural to study the mini-
mum amount of information about the individual inputs that must leak during
their computation. There are several ways to quantify such a leakage. In [1]
Bar-Yehuda et al. introduced three measures: a combinatorial measure Ic, an
information-theoretic measure Ii, and a measure Ic-i that includes both combi-
natorial and information-theoretic aspects. For the measures they proved general
tight bounds on minimum amount of information about the inputs that must be
revealed in a computation. Moreover, they showed that sacrificing some privacy
can reduce the number of messages required during the computation.

In [1] the authors define for any function f the additional information E(f)
required for computing f as a difference between Ic(f) and log2 | range(f)|, where
| range(f)| denotes the cardinality of the range of function f . They claim that
f is privately-computable if and only if E(f) = 0. In our paper we show that
the characterisation is false. We construct a privately-computable function f
with E(f) �= 0. Moreover we show that for the function fmin(x, y) = min{x, y},
where x and y are interpreted as integers from {0, 1, . . . , 2n − 1}, it holds that
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E(fmin) = 0. On the other hand, fmin cannot be computed privately since the
communication matrix of fmin:

Mfmin =




0 0 0 0 . . . 0
0 1 1 1 . . . 1
0 1 2 2 . . . 2
· · ·
0 1 2 3 . . . 2n − 1




contains a forbidden submatrix. In fact, Mfmin is not monochromatic and for
every x < 2n − 1 we have fmin(x, x) = fmin(x + 1, x) = fmin(x, x + 1) = x and
fmin(x + 1, x + 1) = x + 1 what implies that all its rows (columns, resp.) are in
the same equivalence class.

We show also some rather strange properties of the measures for revealed
information Ic, Ii, and Ic-i. For example, we show that Ic(AND) = Ic(XOR):
the revealed information required for computing AND is the same as for XOR
contradictory to the fact that XOR can be computed privately but AND cannot.
The similar property holds for the remaining measures as well.

Furthermore, we introduce an alternative measure for the minimum revealed
information, which is based on the information source defined in [4]. The revealed
information of a protocol to a player is merely the logarithm of the number of
different probability distributions on the communication strings a player can
observe. For this measure we will show that f is a privately computable function
if and only if the amount of the minimum revealed information is zero. We give
some tight bounds of concrete functions and show a general lower bound for
arbitrary two n-bit inputs functions.

We show that for our measure the minimal leakage of information for ran-
domized and deterministic protocols are equal. Finally, we present some relations
between the information gain of an optimal protocol and the communication
complexity of a function. More precisely, we will give a lower bound for the leak-
age of information that is logarithmic on the communication complexity. We will
show that for some specific functions this general bound is tight.

The paper is organized as follows. In the next section we give some pre-
liminaries for communication complexity. In Section 3 we present the model of
Bar-Yehuda et al. and we give there our analysis of their results. In Section 4 we
discuss our measure for reviling additional information. The relation of the gain
of additional information in randomized protocols and deterministic protocols is
investigated in Section 5. Finally, in Section 6 we give a general relation between
communication complexity and the additional information.

2 Communication Protocols

Let f be a function of two n-bit inputs x and y that are known to two par-
ties A and B, respectively, each having unlimited computing power. The aim
is to determine f(x, y) by alternate transmitting messages over a noiseless bi-
nary channel according to a communication protocol. We consider two kinds
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of protocols: deterministic and randomised. In deterministic case each message
is determined by the input known to the party and by the previously received
messages. We require that in every round of communication, the set of all possi-
ble messages is prefix-free. A protocol computes f if for every (x, y) each party
deduces correctly the value f(x, y). Let P(x, y) denote the concatenation of all
communication messages of a protocol P exchanged between A and B during
the computation on an input (x, y). Let communication complexity of protocol
P , denoted by CP , be the maximum length of P(x, y), and let the communica-
tion size CSP be the number of different strings P(x, y), over all inputs (x, y).
Define the deterministic communication complexity of f , denoted by CD(f), as
the smallest CP over all deterministic protocols P computing f and analogously
let the communication size CSD(f) be the smallest CSD(f) over all P .

For the randomised protocol P on an input (x, y), to determine communica-
tion messages A and B can use additionally random bit strings. In this paper we
consider randomised protocols where each party A and B has access to a private
random strings RA and RB , respectively. In this case the communication string
P(x, y), defined again as the concatenation of all messages transmitted during
an execution of P on (x, y), is a random string.

For a general survey of communication complexity see e.g. Kushilevitz and
Nisan [7].

3 Additional Information - The Model of Bar-Yehuda
et al.

In this section we will discuss the measuring of additional information defined
in [1]. First we give the definitions and the results of [1] and we show next that
some of the results are false, the measures are somehow inconsistent, and they
have rather unexpected and strange properties.

3.1 The Results

Let us first present the definition of privacy cost in the combinatorial setting.
Next the information-theoretic measure and the measure that includes both
combinatorial and information-theoretic aspects will be considered.

To define the combinatorial measure Ic(f) for a function f Bar-Yehuda et al.
introduce a weak and a stronger definition of privacy cost. However, since the
notions are equivalent to each other, we will recall the definition of Ic using
the notion of strong privacy only. To measure information leakage during com-
putation of f we use an auxiliary function h, which like f , is a function of two
n-bit strings. The ranges of both functions can be different. Intuitively speaking,
a protocol P for f leaks at most h, or equivalently is h-private, if during the
computation of P on (x, y) the information learned by a party about the input
of the other party can be deduced from its own input and the value h(x, y).

Definition 1 ([1]). A protocol P for f is strongly h-private for A if
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1. for every x, y ∈ {0, 1}n P computes the value f(x, y) correctly with probability
1 and

2. for every x, y1, y2 ∈ {0, 1}n, h(x, y1) = h(x, y2) implies that for all random
choices r of A, P(x, y1) and P(x, y2) have the same distribution, namely,
for every communication string s,

Pr[s = P(x, y1)|r] = Pr[s = P(x, y2)|r],

where the probability is taken over the random choices of B.

Strong h-privacy for B is defined analogously. To give more intuition let us
consider the Boolean function fequ defined on two n-bit strings:

fequ(x, y) =

{
1 if x = y,
0 otherwise.

(2)

Furthermore, let us consider the (deterministic) protocol of [1] for computing
fequ on two n-bit strings x = x1x2 . . . xn and y = y1y2 . . . yn:

Protocol 1. For all i = 1, 2, . . . n do:
1. A sends xi to B;
2. If xi �= yi then B transmits 0 and exit; else if xi = yi then B transmits 1.

The protocol is strongly hequ-private for both A and B, where hequ is defined as
follows: hequ(x, y) = min{i : xi �= yi} if x �= y and hequ(x, y) = n + 1 otherwise.
To see this, note that for the protocol P above and for every input (x, y) and
(x, y′) it holds that P(x, y) = P(x, y′) if and only if hequ(x, y) = hequ(x, y′). An
analogous equivalence holds for every (x, y) and (x′, y). Recall that P(x, y) for
the deterministic protocol P denotes just the concatenation of all communication
messages sent between A and B during the computation of P on (x, y).

Definition 2 ([1]). Let h1 and h2 be functions of two n-bit inputs. A protocol
P is strongly (h1; h2)-private if it is strongly h1-private for A and strongly h2-
private for B. A protocol P is strongly h-private if it is strongly (h, h)-private.
A function f is strongly h-private if it has a strongly h-private protocol.

For example, fequ is strongly hequ-private. The revealed information Ic(f) and
the additional information E(f) required for computing f are defined by

Ic(f) = min{log2 | range(h)| : f is strongly h-private }
E(f) = Ic(f) − log2 | range(f)|.

Hence, for the the function fequ we have:

Ic(fequ) ≤ log2(n + 1) and E(f) ≤ log2(n + 1) − 2. (3)

In [1] Bar-Yehuda et al. observe the following claim which is false as we will see
in the next section.
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Claim 1 ([1], p. 1932). A function f is privately-computable if and only if
Ic(f) = log2 | range(f)|, i.e., if and only if E(f) = 0.

For the min function:

fmin(x, y) =

{
x if x ≤ y,
y otherwise,

(4)

where x and y are interpreted as integers from {0, 1, . . . , 2n − 1}, the authors
claim that

Claim 2 ([1], p. 1933]). 0 < E(fmin) ≤ 1.

This is not true, as we will see in the next section.
Now, we recall the definition of information-theoretic measure Ii and a mea-

sure that includes both combinatorial and information-theoretic aspects Ic-i. In
this paper we will discuss only the deterministic counterpart of these measures
(denoted by Idet

i and Idet
c-i ) that refer to the leakage of information if the proto-

cols are restricted to deterministic ones.
To define Idet

i and Idet
c-i one has implicitly to assume a probability distribution

for the input x and y. Let us consider the input strings as a pair (X, Y ) of random
variables drawn from some specified distribution which is known to both parties.
For a deterministic protocol P define

IP(X, Y ) = max{I(X ;P(X, Y )|Y ), I(Y ;P(X, Y )|X)}

to be the maximum of the information gained by A or B about the input of
the other party that can be deduced from the complete communication strings
P(X, Y ) and its own input. Here I(X ; Y |Z) denotes the conditional mutual
information. The information-theoretic measure Idet

i of additional information
is defined as follows

Idet
f (X, Y ) = min{IP(X, Y ) : P is a deterministic protocol computing f}
Idet

i (f) = sup{Idet
f (X, Y ) : (X, Y ) is distributed over {0, 1}n × {0, 1}n}.

Finally define the combinatorial-information-theoretic measure Idet
c-i by

IP = sup{IP(X, Y ) : (X, Y ) is distributed over {0, 1}n × {0, 1}n}
Idet

c-i (f) = min{IP : P is a deterministic protocol computing f}.

3.2 Mistakes and Inconsistencies

In the following we show that some claims of [1] are false. We start our analysis
showing the following useful lemma:

Lemma 1. For every function f of two n-bit inputs the revealed information
required for computing f is bounded by n, i.e. Ic(f) ≤ n.
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Note that the lemma does not follows from the simple relation between Ic and
deterministic communication complexity that Ic(f) ≤ CD(f), since CD(f) can
be equal to n + | range(f)|. On the other hand the bound stated in the lemma
seems to be quite natural: One party cannot gain more than n bit of information
about the input of the other party in the sense of Shannon.

Proof. Let f be a two-argument function f over {0, 1}n × {0, 1}n and let P
be an arbitrary protocol which computes f correctly with probability 1. De-
fine the function g(x, y) = (x + y) mod 2n considering x and y as integer in
{0, . . . , 2n −1}. It is easy to verify that P is strongly g-private. In fact, for every
x1, x2, y1, y2 ∈ {0, 1}n with x1 �= x2 and y1 �= y2 we have g(x1, y1) �= g(x1, y2)
and g(x1, y1) �= g(x2, y1). Hence, Condition (2) of Definition 1 is fulfilled. Be-
cause | range(g)| = 2n, we get

Ic(f) = min{log2 | range(h)| : f is strongly h-private } ≤ log2 | range(g)| = n.

��
As a counterexample of the characterisation given in Claim 1 consider the func-
tion ϕ : {0, 1}n × {0, 1}n → {0} ∪ {0, 1}n defined for any n ≥ 2:

ϕ(x, y) =

{
y if x = 0n,
0 otherwise.

(5)

Proposition 1. Function ϕ can be computed privately but E(ϕ) �= 0.

Proof. Note that 0 �= 0n, hence the communication matrix Mϕ does not contain
a forbidden submatrix: Mϕ is not monochromatic and the first row of Mϕ is not
equivalent with any other row of the matrix. Hence by the characterisation by
Kushilevitz and Beaver (Theorem 1) we know that ϕ can be computed privately.
On the other hand according to the definition of the additional information
required for computing ϕ and by Lemma 1 we can conclude that

E(ϕ) = Ic(ϕ) − log2 | range(ϕ)| ≤ n − log2(2
n + 1) < 0.

��

Therefore Claim 1 is false: For privately-computable function ϕ we have both
Ic(ϕ) < log2 | range(ϕ)| and E(ϕ) �= 0. This example shows a strange property
of the definition of E(ϕ): The additional information required for computing a
function can be negative.

Using again Lemma 1 one can show that Claim 2 is false:

Proposition 2. For the function fmin defined in (4) it holds that

Ic(fmin) = n and E(fmin) = 0.
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Proof. By Lemma 1 we get

E(fmin) = Ic(fmin) − log2 | range(fmin)| ≤ n − log2(2
n) = 0.

It is not difficult to show that E(fmin) ≥ 0. In fact, if Ic(fmin) < n then there
exists a function h such that fmin is strongly h-private and log2 | range(h)| < n.
Consider x = 2n−1, then for any pair y1, y2 ∈ {0, 1, . . . , 2n−1} with y1 �= y2 we
have fmin(x, y1) �= fmin(x, y2). This implies the inequality h(x, y1) �= h(x, y2),
contradicting the assumption that log2 | range(h)| < n. ��

Note that the communication matrix Mfmin of fmin contains a forbidden
submatrix (see a discussion in Section 1). Hence by Theorem 1, fmin is not
privately-computable. By Propositions 1 and 2 one can conclude

Theorem 2. There exists a privately-computable function ϕ, with E(ϕ) �= 0 and
another function f , with E(f) = 0 that is not privately-computable.

Now we will discuss some inconsistencies of the definitions for additional
information. We will show that in fact none of these definitions suits well for
measuring additional information properly. In Section 4 we will give a new defi-
nition for additional information.

For the function ϕ, defined in (5), let us consider two (deterministic) protocols
P1 and P2 that computes ϕ. The protocol P1 works on x, y as follows: A sends 0
if x = 0n and 1 otherwise. If B receives 0 then he sends y to A and otherwise B
stops the computation. In protocol P2, A sends 0 if x = 0n and 1 otherwise and
then B sends y to A. Obviously in both cases each party can determine correctly
the value of the function at the end of the communication. Note that P1 is
private protocol in a common sense (more precisely 1-private, see e.g. [6] for the
definition) while P2 is not private. We can say even more: Using P2 A gains full
information about the input of B. On the other hand, both P1 and P2 are optimal
with respect to Ic. To see this, consider the function g(x, y) = (x + y) mod 2n

used in the proof of Lemma 1. We get that both P1 and P2 are strongly g-private
and the optimality follows from the obvious fact that

Ic(ϕ) = n = | range(g)|.
Idet

i and Idet
c-i measure the additional information wrong, as well. According

to the definition of IP we have for both protocols P1,P2

IPi = sup(X,Y )IPi(X, Y )
= sup(X,Y ) max{ H(X |Y ) − H(X |Pi(X, Y ), Y ),

H(Y |X) − H(Y |P1(X, Y ), X)}
= H(Y )

and therefore IP1 = IP2 . Hence neither Idet
i nor Idet

c-i measures the additional
information which can be gain by a party during the computation.

Finally, let us consider the two argument functions AND and XOR. We have:

Idet
c-i (AND) = Idet

c-i (XOR) = 1.
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But XOR can be computed privately and therefore no additional information
can be gained during a computation of XOR. On the other hand, AND cannot be
computed privately.

4 Additional Information - New Measure

In the following we will present an alternative measure for additional informa-
tion, that is based on the information source defined in [4].

Definition 3. Let P be a protocol for a function f which for every x, y ∈ {0, 1}n

computes the value f(x, y) correctly with probability 1. Let x ∈ {0, 1}n, z ∈
range(f) and let r be a random string provided to A. Define the information
source of A on x, z, and r as the set of different probability distributions on the
communication strings A, holding x and r, can observe during all computations
of P that give the result z:

SP,A(x, z, r) = {(µx,y(s1), µx,y(s2), . . .) : y ∈ {0, 1}n, f(x, y) = z}

where µx,y(sk) = Pr[P(x, y) = sk|r]. Define the size of the information source
as

sP,A(x, z) = max
r

|SP,A(x, z, r)|.

Analogously we define SP,B(y, z, r) - the information source of B on y, z, and
r and the size sP,B(y, z).

If P is a deterministic protocol then we will omit r in SP,A(x, z, r) and write
just SP,A(x, z). Now we are ready to define a new combinatorial measure for the
additional information, analogy of Ic, that we will denote by Jc.

Definition 4. The additional information of P revealed to A is defined as

JP,A = max{log2 sP,A(x, z) : x ∈ {0, 1}n, z ∈ range(f) } .

Analogously we define JP,B. The additional information that can be deduced
running a protocol P is JP = max{JP,A, JP,B}. The additional information
required for computing f is

Jc(f) = min{JP : P is a protocol computing f}.

We have the following characterisation of privately computable functions:

Theorem 3. A function f is privately computable if and only if Jc(f) = 0.

The proof of the theorem is straightforward and we skip it here.
We can redefine the measure Jc in term of h-privacy used by Bar-Yehuda

et al. (see Definition 2).
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Definition 5. Let h be a function of two n-bit inputs and let protocol P for a
function f be strongly h-private. Analogously to Definition 3 and 4 let

sh
P,A(x, z) = |{h(x, y) : y ∈ {0, 1}n, f(x, y) = z}|

and
Jh
P,A = max{log2 sh

P,A(x, z) : x ∈ {0, 1}n, z ∈ range(f) } .

Analogously define sh
P,B and Jh

P,B for B. Then Jh
P = max{Jh

P,A, Jh
P,B}.

Theorem 4. For every function f it holds

Jc(f) = min{Jh
P : P is strongly h-private protocol for f}.

Our measure modifies the definition of Bar Yehuda et al. [1] by considering the
result of the function. The proof Theorem 4 uses some facts that we get from the
derandomisation of an optimal protocol. We will present such a derandomisation
in the next section.

Proof (of Theorem 4). Let f be a function. We show first that

Jc(f) ≤ min{Jh
P : P is strongly h-private protocol for f}. (6)

Assume h is function and P is a strongly h-private protocol for computing f
such that Jh

P is minimum among all such functions h and protocols P . By the
definition of h-privacy we have that for every x, y1, y2 ∈ {0, 1}n, h(x, y1) =
h(x, y2) implies that for all random choices r of A, P(x, y1) and P(x, y2) have
the same distribution. Hence, for every x ∈ {0, 1}n and z ∈ range(f) we have

sP,A(x, z) ≤ |{h(x, y) : y ∈ {0, 1}n, f(x, y) = z}| = sh
P,A(x, z).

Similarly we have: sP,B(y, z) ≤ sh
P,B(y, z). Hence both JP,A ≤ Jh

P,A and JP,B ≤
Jh
P,B are true and therefore we get JP ≤ Jh

P . This implies that Inequality (6) is
true.

To see that the inverse inequality to (6) is also true, we apply Theorem 6. Let
P be a protocol for f such that JP is minimal among all protocols computing
f . By Theorem 6 there exists a deterministic protocol P ′ for f such that

JP′ ≤ JP = Jc(f).

Since P ′ is deterministic, we can define a function h for every x, y ∈ {0, 1}n as
follows: h(x, y) = P ′(x, y). Obviously, P ′ is strongly h-private and it is true that
Jh
P′ = JP′ . Hence, by the inequality above one can conclude:

min{Jh
P : P is strongly h-private protocol for f} ≤ Jh

P′ = JP′ ≤ Jc(f).

This completes the proof. ��
Using Theorem 4 we get that Jc(f) ≤ Ic(f) for every function f . However

the difference can be very big: e.g. for fmin we have by Proposition 2 that
Ic(fmin) = n. On the other hand using the protocol given in [1]:
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Protocol 2. For all i = 0, 1, . . . 2n − 1 or until the first 1 is transmitted do:
1. A transmits bit 1 if x = i and 0 otherwise;
2. B transmits bit 1 if y = i and 0 otherwise.

we get that Jc(fmin) ≤ 1. Since fmin cannot be computed privately, we obtain
the equality Jc(fmin) = 1.

For the equality function fequ (see (2)), we get Ic(fequ) ≤ log2(n + 1) (com-
pare the inequalities (3)). By the fact shown in [1] that for any deterministic
protocol P which computes fequ there is v ∈ {0, 1}n such that the size of the set

{P(x, v) : x ∈ {0, 1}n} ∪ {P(v, y) : y ∈ {0, 1}n}
has at lest n+2 elements, we obtain for z = 0: sP,A(v, z)+sP,B(v, z) ≥ n+2 and
finally that Jc(fequ) ≥ log2(n + 2)/2 > log2 n − 1. Hence we get the following
bounds: log2 n − 1 < Jc(fequ) ≤ Ic(fequ) ≤ log2(n + 1).

We close the section by giving a general lower bound for Jc. Recall that a rect-
angle in {0, 1}n×{0, 1}n is a Cartesian product R = V ×H with V, H ⊆ {0, 1}n.
The rectangle R is f -constant if f is constant over R. Obviously, every protocol
for P partitions the communication matrix Mf into f -constant rectangles. Let
rf be the largest width of an f -constant rectangle.

Theorem 5. For every Boolean function f of two n-bit inputs

Jc(f) ≥ n − log2 rf − 2.

The proof of Theorem 3 of [1] works for our Theorem.
Using the general bound given in the Theorem above one can find lower

bounds for Boolean functions f communication matrix of which is of the Hadamard
type (see [1]). From this characterisation we get e.g. that for the n-variable inner
product mod 2 function defined as

fin(x, y) =
n∑

i=1

xi · yi mod 2 (7)

it holds that Jc(fin) ≥ n/2 − 2.

5 Derandomisation

In this section we will show that every randomized protocol P that computes
the function f correctly with probability 1 can be simulated by a deterministic
protocol P ′ such that the additional information that can be deduced running
protocol P ′ is bounded by the additional information that can be deduced run-
ning protocol P , i.e. JP′ ≤ JP . We will start by the derandomisation of the part
of A.

Let us assume that A performing P starts the communication and let � be
an upper bound for the number of random bits used by A. In the algorithm
below A simulates the t-th round of the computation of P , with t = 1, 2, 3, . . .

11



as follows: On a given input x A computes iteratively string ct and a subset
Rt ⊆ {0, 1}≤� of all binary strings of lengths less or equal to �, such that ct is a
complete communication string of a computation during the first t rounds and
Rt is a subset of all possible random strings that can be used by A. A string r
is in Rt if there exists a computation of P such that the first t rounds of the
computation are consistent with ct when A on x and r. Define R0 = {0, 1}≤�

and let c0 be the empty string.

1. If t is odd then for every r ∈ Rt−1 A simulates (deterministically) the t-th
round of the computation of P on input x with the random string r that is
consistent with the communication string ct−1 and computes a communica-
tion string for the tth round. Let wt be lexicographically smallest among all
such strings. Then A computes Rt := {r ∈ Rt−1 | A sends wt on x, r, ct−1 }
and ct := ct−1 ◦wt and sends wt to B. For two strings v and v′, by v ◦ v′ we
denote concatenation of v and v′.

2. If t is even and ut is a message received by A from B in tth round, then
ct := ct−1 ◦ ut.

Assume that the protocol stops in round T , then it is easy to see that for every
input y, every possible result z, and every random string of B, A chooses for
every pair of inputs x, x′ the communication string s such that it is the lexico-
graphically smallest string with Pr[P(x, y) = s|r], Pr[P(x′, y) = s|r] > 0. Hence,
inputs x, x′ that gives the same distribution on y, z, r when running P gives also
the same distribution when running the deterministic protocol P ′.

Note that we can derandomize the part of B’s protocol analogously. Hence,
we can conclude:

Lemma 2. For every protocol P there exists a deterministic protocol P ′ com-
puting the same function, such that for every choice of x, y, z sP′,A(x, z) ≤
sP,A(x, z) and sP′,B(y, z) ≤ sP,B(y, z).

Theorem 6. For every protocol P there exists an deterministic protocol P ′ com-
puting the same function, such that JP′ ≤ JP .

This result generalises the result of Kushilevitz [6] that a protocol can be
computed privately in the two party scenario iff it can be computed privately by
a deterministic protocol.

Using our simulation result, we can directly deduce some bounds for the size
of a minimal information source. Let sf be the minimum size of the information
source of a protocol computing f , i.e. let

sf = min
P

max
x,y,z

{sP,A(x, z), sP,B(y, z)}

(note that Jc(f) = log2 sf ).

Corollary 1. sf ≤ CSD(f).

12



Proof. Assume that sf > CSD(f) and let P be a deterministic protocol that
achieve sf and P ′ be a deterministic protocol that achieve CSD(f). Assume
that sf = sP,A(x, z) for appropriate chosen values x, z. Then the number of
communication strings seen by A on input x and result z when running P is
even higher then the number of communication strings seen by both parties
when running P ′ on arbitrary inputs. Hence, the size of the information source
when running P ′ is smaller than the size of the information source when running
P – contradicting the assumption that P achieves the minimum size of the
information source. ��

Corollary 2. CSD(f) = mindeterministic P computes f |⋃x,z SP,A(x, z)|.

Proof. Let P be a deterministic protocol for f such that∣∣∣⋃x,zSP,A(x, z)
∣∣∣ = min

deterministic P′ computes f

∣∣∣⋃x,zSP′,A(x, z)
∣∣∣ .

Since P is deterministic every distribution in the set
⋃

x,z SP,A(x, z) rates ex-
actly one communication string with a strictly positive probability. Furthermore,
the set determines all communication strings used when running P . The claim
follows from the observation, that P is chosen such that the number of used
communication strings is minimal. ��

6 Lower Bounds on Size of the Information Source

Corollary 1 gives a general upper bound on the minimum size of the information
source sf . This bound is not tight. In fact, it is well known (see e.g [7]) that for the
equality function fequ it holds that CSD(fequ) ≥ 2n and CD(fequ) = n. On the
other hand from the Protocol 1 it follows that for any optimal protocol P we get
sP,A(x, z), sP,B(y, z) ≤ n for every x, y, z. Hence sfequ ≤ n < 2n ≤ CSD(fequ).
In this section we will prove a linear lower bound for the size of the information
source with respect to the communication complexity, i.e. we show that for any f
sf ∈ Ω(CD(f)/| range(f)|). In particular for fequ we get CD(fequ)/4−1 ≤ sfequ .

For a node v of the communication tree let Xv and Yv denote the sets of input
strings of A and B, respectively, such that on the input pairs (x, y) ∈ Xv × Yv

the protocol reaches v. Let sP,A,v(x, z) denote the size of the information source
of the subprotocol of P starting in v and restricting the inputs to Xv × Yv. Let
sP,B,v(y, z) be defined analogously. Finally, define

range(v) = { f(x, y) | (x, y) ∈ Xv × Yv } .

Without loss of generality let us restrict ourselves only to the protocols P
sending no unnecessary bits for computing the function. Formally assume that
all internal nodes of a communication tree of P have degree at least 2. We start
with the following observation:

13



Lemma 3. Let P be a deterministic protocol computing a function f and let
v1, . . . , vt be a leaf-to-root path in the communication tree of P. Then for all
i ∈ {1, . . . , t} there exists x ∈ Xvi , y

′ ∈ Yvi , and z, z′ ∈ range(f) such that

max{sP,A,vi(x, z), sP,B,vi(y
′, z′)} ≥

⌈
i

2 · |range(vi)|
⌉

− 1 .

Proof. The proof follows for i = 1 since for every leaf v1 of the communication
tree we have sP,A,v1(x, z) = sP,B,v1(y, z) = 0.

Consider now an internal node vi, with i > 1. Let u1, . . . , ud be all successors
of vi in the communication tree. Obviously, vi−1 is one of the nodes uj . Let us
assume, that A has to send some message in vi, then for all x ∈ Xvi−1 ⊂ Xvi ,
y ∈ Yvi−1 = Yvi , and z = f(x, y):

sP,A,vi(x, z) = max{1, sP,A,vi−1(x, z)}.
On the other hand one can prove that for the information source of B we have

sP,B,vi(y, z) =
∑

j∈{1,...,d} with z∈range(uj)

max{1, sP,B,uj (y, z)}.

Therefore we can bound the quantity as follows

sP,B,vi(y, z) ≥
{

1 + max{1, sP,B,vi−1(y, z)} if z ∈ range(uj) for some uj �= vi−1

max{1, sP,B,vi−1(y, z)} else.

Assume that there are k nodes on the sub-path v1, . . . , vi where A sends a
message to B. Then there exists z′ ∈ range(vi) such that for at least⌈

k

|range(vi)|
⌉
− 1

of these nodes vj it holds that z′ ∈ range(vj−1) ∩ range(u) for some direct
successor u �= vj−1 of vj . Note that we can show simular bounds for sP,A,vi(x, z)
and sP,B,vi(y, z) if Bob sends a message. The claim follows immediately since
either A or B has to send some message in at least �i/2� of the nodes v1, . . . , vi.

��
As a corollary we obtain:

Corollary 3. For every function f of two n-bit inputs it is true

CD(f)
2 · |range(f)| − 1 ≤ sf .

Combining the corollary above with Theorem 6 we can conclude the following
lower bound on the additional information:

Theorem 7. For every function f of two n-bit inputs we have

Jc(f) ≥ log2 CD(f) − log2 | range(f)| − O(1).
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7 Conclusions

In this paper measures for revealed information required for computing f have
been considered. We have analysed the measures given by Bar-Yehuda et al.
and have showed that some results presented in [1] are wrong. Moreover we
have observed some unnatural properties of the measures. We have introduced
a new definition for the additional information for two party protocols and have
given some bounds for concrete functions for the additional information. We
get e.g. that for the n-variable inner product mod 2 function it is true that
Jc(fin) ≥ n/2 − 2. An interesting open problem is to show lower and upper
bounds on Jc for another specific functions. A further task to do is to investigate
a tradeoff between the additional information and the number of rounds for
communication protocols.
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