
Generic Attacks on Unbalanced Feistel Schemes
with Contracting Functions

Jacques Patarin1, Valérie Nachef2, and Côme Berbain3

1 Université de Versailles
45 avenue des Etats-Unis, 78035 Versailles Cedex, France

2 Université de Cergy-Pontoise
2 avenue Adolphe Chauvin, 95011 Cergy-Pontoise Cedex, France

3 France Telecom Research and Development
38-40 rue du Général Leclerc, 92794 Issy-les-Moulineaux, France

jacques.patarin@prism.uvsq.fr

valerie.nachef@u-cergy.fr

come.berbain@orange-ft.com

Abstract. In this paper, we describe generic attacks on unbalanced
Feistel schemes with contracting functions. These schemes are used to
construct pseudo-random permutations from kn bits to kn bits by us-
ing d pseudo-random functions from (k − 1)n bits to n bits. We de-
scribe known plaintext attacks (KPA) and non-adaptive chosen plain-
text attacks (CPA-1) against these schemes with less than 2kn plain-
text/ciphertext pairs and complexity strictly less than O(2kn) for a num-
ber of rounds d ≤ 2k− 1. Consequently at least 2k rounds are necessary
to avoid generic attacks. For k = 3, we found attacks up to 6 rounds, so
7 rounds are required. When d ≥ 2k, we also describe some attacks on
schemes with generators, (i.e. schemes where the d pseudo-random func-
tions are generated) and where more than one permutation is required.

Key words: unbalanced Feistel permutations, pseudo-random permutations, generic
attacks, Luby-Rackoff theory, block ciphers.

1 Introduction

Feistel schemes are widely used in symmetric cryptography in order to construct
pseudo-random permutations. In trying to design such scheme, one of the natural
questions is: what is the the minimum number of rounds required to avoid all
the “generic attacks”. By generic attacks we mean all the attacks effective with
high probability when the round functions are randomly chosen. We are mainly
interested in generic attacks with a complexity that is much smaller than a search
on all possible inputs of the permutation.

Many results are known on classical (balanced) Feistel schemes. In [7], Luby
and Rackoff have shown their famous result: for more than 3 rounds all the
generic chosen plaintext attacks on Feistel schemes require at least O(2

n
2 ) inputs.

Moreover for more than 4 rounds all the generic attacks on adaptive chosen



plaintext/ciphertext require at least O(2
n
2 ) inputs. These bounds are tight [1, 10].

It has also been proved that to avoid all attacks with less than 22n computations
at least 6 rounds of balanced Feistel schemes are needed [2, 11, 12]. This result is
still valid if the round functions are permutations [5, 6]. For more than 6 rounds,
some attacks are still possible but with more than 22n computations [11]. All
these results on classical Feistel schemes are summarized in Table 1:

Table 1. Results (from [12]) on Gd
2. For more than 6 rounds more that one permutation

is needed or more than 22n computations are needed in the best known attacks to
distinguish Gd

2 from a random permutation with an even signature.

KPA CPA-1 CPCA-2

G1
2 1 1 1

G2
2 2

n
2 2 2

G3
2 2

n
2 2

n
2 3

G4
2 2n 2n/2 2

n
2

G5
2 23n/2 2n 2n

G6
2 22n 22n 22n

G7
2 23n 23n 23n

G8
2 24n 24n 24n

Gd
2, d ≥ 8 2(k−4)n 2(k−4)n 2(k−4)n

The aim of this paper is to look for similar results for the case of unbalanced
Feistel schemes with contracting functions: we call such schemes “contracting
Feistel Schemes”. A precise definition of these schemes is given in Sect. 2. The
case of unbalanced Feistel schemes with expanding functions instead of contract-
ing functions is studied in [4, 14, 15]. Some results on contracting Feistel schemes
or on small transformations of these schemes can be found in [8, 9]. In [9], Naor
and Reingold studied the security of contracting Feistel schemes with pairwise
independent permutations. They show lower bounds for the security of such
schemes. Lucks [8] gives some security results on contracting Feistel schemes
built with hash functions.

The paper is organized as follows. In Sect. 2 and 3, we introduce notations
and present precise definitions of the considered schemes and an overview of our
attacks. In Sect. 4, we study attacks for k = 3 and d ≤ 6. Then in Sect. 5, we give
attacks for any k and d ≤ 2k−1. Finally, Sect. 6 is devoted to what can be done
with more than 2kn computations. In particular, we describe attacks against
permutation generators. All the results are summarized in the conclusion: these
tables extend the above Table 1 to the case of unbalanced Feistel schemes with
contracting functions.



2 Notation

Our notation is very similar to that used in [7] and [9]. We also follow the
construction given in [9]. [a, b] denotes the concatenation of strings a and b. An
Unbalanced Feistel Scheme with Contracting Functions Gd

k is a Feistel scheme
with d rounds. At round j, we denote by fj the round function from (k − 1)n
bits to n bits. On some input [I1, I2, . . . , Ik], Gd

k produces an output denoted by
[S1, S2, . . . , Sk] by going through d rounds. At each round, the last (k−1)n bits
of the round entry are used as an input to the round function fj , which produces
n bits. Those bits are xored to the first n bits of the round entry. Finally before
going to round j + 1, the kn bit value is rotated by n bits.

We introduce the internal variable Xj : it is the only n-bit value which is
modified at round j and which becomes the k coordinate of the internal state
after j rounds. For example, we have:

X1 = I1 ⊕ f1([I2, . . . , Ik]),
X2 = I2 ⊕ f2([I3, . . . , Ik, X1]),
X3 = I3 ⊕ f3([I4, . . . , Ik, X1, X2]),

. . .

The first round of Gd
k is represented in Fig. 1 below.

I1 I2 I3 Ik

I2 I3 Ik X1 = I1 ⊕ f1([I2, . . . , Ik])

f1

Fig. 1. First Round of Gd
k

3 Overview of the Attacks

We present several attacks that allow us to distinguish Gd
k from a random permu-

tation. Depending on the number of rounds, it is possible to find some relations



between the input variables and output variables. Those relations hold condi-
tionally to equalities of some internal variables due to the structure of the Feistel
scheme. Our attacks consist in using m plaintexts and ciphertexts tuples and in
counting the number NGd

k
of pairs of these tuples that satisfy the above relations.

We then compare NGd
k

with the equivalent number Nperm if a random permuta-
tion is used instead of Gd

k. Our attack is successful, i.e. it is able to distinguish
Gd

k from a random permutation if the difference |E(NGd
k
)− E(Nperm)| is much

larger than the standard deviation σperm and than the standard deviation σGd
k
,

where E denotes the expectancy function.More general cases of succes are also
given in the extended version of this paper [13].

In order to compute these values, we need to take into account the fact
that the m2 pairs obtained from the m plaintext/ciphertext tuples are not in-
dependent. However their mutual dependence is very small. To compute σperm

and σGd
k
, we will use this well-known formula that we will call the “Covariance

Formula”:

V (
∑

xi) =
∑

i

V (xi) +
∑
i<j

[
E(xi, xj)− E(xi)E(xj)

]
where the xi are random variables.

We can note that for a small number of rounds d < k, a distinguishing
attack is very easy to find. The output of Gd

k is [S1, S2, . . . , Sk] which is equal to
[Id+1, . . . , Ik, X1, . . . , Xd]. This shows that we can easily mount a KPA attack
with one single message. We just have to test if the first coordinate of the output
is equal to the coordinate of rank d + 1 of the input. This leads us to start
investigating attacks for scheme with at least k rounds.

4 Generic Attacks when k = 3 and 3 ≤ d ≤ 6

We first study schemes with k = 3 since this case is slightly different from the
general case k ≥ 4 and since it gives simple examples of what we will do. We
have [S1

i , S2
i , S3

i ] = Gd
3([I

1
i , I2

i , I3
i ]).

4.1 Attacks on 3 Rounds: G3
3

G3
3: 3 rounds, CPA-1 with m = 2 messages. Let us choose I2

2 = I2
1 , I3

2 = I3
1 and

I1
2 6= I1

1 . Then the attack just tests if S1
1 ⊕ S1

2 = I1
1 ⊕ I1

2 . This will occur with
probability 1 if f is a G3

3, and with probability' 1
2n if f is a random permutation.

So with three rounds there is a generic attack with two non-adaptive chosen
queries and O(1) computations.

G3
3: 3 rounds, KPA with m ' 2n messages. It is possible to transform this non-

adaptive chosen plaintext attack into a known plaintext attack as follows. If we
have m ≥ 2n random inputs [I1

i , I2
i , I3

i ], then (since m2 ≥ 22n) with a good
probability we will have a collision I2

i = I2
j and I3

i = I3
j , i 6= j. Then we test if

S1
i ⊕ S2

j = I1
i ⊕ I1

j . Now the attack requires O(2n) random queries and O(2n)
computations.



4.2 Attacks on 4 Rounds: G4
3

When the output [I1, I2, I3] is given, we have introduced the internal variable
X1 = I1 ⊕ f1([I2, I3]) and the following conditions hold:

I2
i = I2

j and I3
i = I3

j ⇒ X1
i ⊕X1

j = I1
i ⊕ I1

j

I3
i = I3

j and X1
i = X1

j ⇒ S1
i ⊕ S1

j = I2
i ⊕ I2

j

X1
i = X1

j and S1
i = S1

j ⇒ S2
i ⊕ S2

j = I3
i ⊕ I3

j

S1
i = S1

j and S2
i = S2

j ⇒ S3
i ⊕ S3

j = X1
i ⊕X1

j

The attack exploits the second condition. It proceeds as follows: we choose
m messages such that ∀i, I3

i = 0 and I2
i 6= I2

j for all i 6= j. We then count NG4
3

the number of pairs (i, j) with i < j such that I2
i ⊕ I2

j = S1
i ⊕ S1

j . For a random
permutation, this condition appears only by chance. Thus we get:

Nperm ' m2

2 · 2n
+ O(

m

2
n
2

).

Here 0( m

2
n
2

) denotes the standard deviation. This can be easily proved using the
Covariance Formula, see Appendix A or full version of this article [13].

For G4
3, the equation I2

i ⊕I2
j = S1

i ⊕S1
j can occur at random with probability

2−n or from the internal collision X1
i = X1

j . Since I3
i is equal to zero for all i, we

have X1
i = I1

i ⊕ f1([I2
i , 0]). Sine f1 is a random function and the I2 are pairwise

distinct, the values f1([I2
i , 0]) and consequently the X1

i are uniformly distributed
random variables. Consequently the internal collision X1

i = X1
j appears with

probability 2−n and we have:

NG4
3
' m2

2n
+ O(

m

2
n
2

)

where O( m

2
n
2

) denotes the standard deviation (proof is given below). We can
distinguish the two permutations when the difference between the mean values
is larger than the standard deviation i.e. when m2

2n ≥ m

2
n
2

, i.e. for m ≥ 2
n
2 . This

generic attack requires O(2
n
2 ) random queries and O(2

n
2 ) computations

As explained previously, we can transform this attack in a known plaintext
attack with m ' 2n.

Proof of the standard deviation σG4
3

We introduce the following random variables:{
δi,j = 1 if I2

i ⊕ I2
j = S1

i ⊕ S1
j

δi,j = 0 otherwise.

Since we have chosen all the I3
i equal to zero, we can say equivalently that

δi,j is equal to one when f2([0, X1
i ]) = f2([0, X1

j ]). NG4
3

is defined as
∑

i<j δi,j

and it is easy to compute E(δi,j) = 2
2n − 1

22n . We now compute the variance



V (δi,j) = E(δ2
i,j) − E(δi,j)2 = E(δi,j) − E(δi,j)2 = 2

2n − 5
22n + 4

23n − 1
24n . We

recall the Covariance Formula:

V (
∑
i<j

δi,j) =
∑
i<j

V (δi,j) +
∑

i<j,k<l,(i,j) 6=(k,l)

[
E(δi,j δk,l)− E(δi,j) E(δk,l)

]
.

We need to compute Cov(i, j, k, l) = E(δi,j δk,l)−E(δi,j) E(δk,l) Let us first
consider the case, where i, j, k, l are pairwise distinct We need to consider the
influence of the equality f2([0, X1

i ]) = f2([0, X1
j ]) over the equality f2([0, X1

k ]) =
f2([0, X1

l ]). It can only happen if X1
k 6= X1

l and if either X1
k = X1

i and X1
l = X1

j

or X1
k = X1

j and X1
l = X1

i . In that case we have also X1
i 6= X1

j . This event
happens with probability

(
1− 1

2n

)
2

22n and both equalities have a probability 1
2n

instead of 1
22n . This gives a covariance equals to

2
23n

− 4
24n

+
2

25n
.

The second case is if both equations are sharing an index, for example i = k
We need to consider the influence of the equality f2([0, X1

i ]) = f2([0, X1
j ]) over

the equality f2([0, X1
i ]) = f2([0, X1

l ]). It can only happen if X1
i 6= X1

j . This event
happens with probability

(
1− 1

2n

)
1
2n and both equalities have a probability 1

2n

instead of 1
22n . This gives a covariance equals to

1
22n

− 2
23n

+
1

24n
.

Consequently we have

V (NG4
3
) =

m2

2n
+ O

(
m3

22n

)
+ O

(
m4

23n

)
Since m is smaller than 2n, we get:

V (NG4
3
) ' m2

2n
and σG4

3
' m

2
n
2

.

4.3 Attacks on 5 Rounds: G5
3

For 5 rounds, the internal variables are X1 and X2 = I2⊕f2([I3, X1]). We have
the following conditions:

I2
i = I2

j and I3
i = I3

j ⇒ X1
i ⊕X1

j = I1
i ⊕ I1

j

I3
i = I3

j and X1
i = X1

j ⇒ X2
i ⊕X2

j = I2
i ⊕ I2

j

X1
i = X1

j and X2
i = X2

j ⇒ S1
i ⊕ S1

j = I3
i ⊕ I3

j

X2
i = X2

j and S1
i = S1

j ⇒ S2
i ⊕ S2

j = X1
i ⊕X1

j

S1
i = S1

j and S2
i = S2

j ⇒ S3
i ⊕ S3

j = X2
i ⊕X2

j



The attack proceeds as follows: we choose m messages such that ∀i, I2
i = 0,

I3
i = 0 and the I1

i values are pairwise distinct. Notice that this directly implies
X1

i ⊕X1
j = I1

i ⊕ I1
j , so the X1

i values are pairwise distinct. Let N be the number
of pairs (i, j), i < j such that S1

i = S1
j and I1

i ⊕ I1
j = S2

i ⊕ S2
j . With a random

permutation, these two conditions appear by chance and we have:

Nperm ' m2

2 · 22n
+ O(

m

2n
).

Here O( m
2n ) is the standard deviation. For a G5

3, S1
i = S1

j and I1
i ⊕ I1

j = S2
i ⊕S2

j

appear at random or as a consequence of X2
i = X2

j and S1
i = S1

j . This gives:

NG5
3
' m2

22n
.

We can distinguish the two permutations when the difference between the mean
values is larger than the standard deviation i.e. when m2

22n ≥ m
2n , or m ≥ 2n.

Remark: here m ≤ 2n since I2
i = 0 and I3

i = 0; so the attack will succeed when
m ' 2n.

As before this attack leads to a KPA attack with 22n messages. But there is
a better attack as we can see now.

G5
3: 5 rounds, KPA with m = 2

3n
2 messages

For this attack, let N be the number of pairs (i, j), i < j, such that I3
i ⊕ I3

j =
S1

i ⊕ S1
j . For a random permutation, we have:

Nperm ' m2

2 · 2n
+ O(

m√
2n

)

where m√
2n

is the standard deviation, while for G5
3 we obtain

NG5
3
' m2

2 · 2n
+

m2

2 · 22n
.

We can distinguish the two permutations when the difference between the
mean values is larger than the standard deviation i.e. when m2

22n ≥ m√
2n

, i.e. for

m ≥ 2
3
2 n.

4.4 Attacks on 6 Rounds: G6
3

For 6 rounds, the internal variables are X1, X2 and X3 = I3⊕f3([X1, X2]). We
have the following conditions:

I2
i = I2

j and I3
i = I3

j ⇒ X1
i ⊕X1

j = I1
i ⊕ I1

j

I3
i = I3

j and X1
i = X1

j ⇒ X2
i ⊕X2

j = I2
i ⊕ I2

j

X1
i = X1

j and X2
i = X2

j ⇒ X3
i ⊕X3

j = I3
i ⊕ I3

j

X2
i = X2

j and X3
i = X3

j ⇒ S1
i ⊕ S1

j = X1
i ⊕X1

j

X3
i = X3

j and S1
i = S1

j ⇒ S2
i ⊕ S2

j = X2
i ⊕X2

j

S1
i = S1

j and S2
i = S2

j ⇒ S3
i ⊕ S3

j = X3
i ⊕X3

j



The attack proceeds as follows: we choose m messages such that ∀i, I3
i = 0.

LetN be the number of pairs (i, j), i < j, such that I2
i = I2

j and I1
i ⊕I1

j = S1
i⊕S1

j .
With a random permutation, we have:

Nperm ' m2

2.22n
+ O(

m

2n
)

where O( m
2n ) is the standard deviation. For a G6

3, since all the I3
i values are

equal, I2
i = I2

j and X2
i = X2

j and X3
i = X3

j imply I1
i ⊕ I1

j = S1
i ⊕ S1

j . We get

NG6
3
' m2

2.22n
+

m2

2 · 23n
.

We can distinguish the two permutations when the difference between the
mean values is larger than the standard deviation i.e. when m2

23n ≥ m
2n , i.e. for

m ≥ 22n.
We can obviously transform this CPA-1 attack into a KPA attack which will

succeed as soon as we have m ≥ 2
5n
2 .

4.5 Experimental Results on G6
3

We have implemented our CPA-1 and KPA attacks against G6
3 for small values

of n (n = 6 and n = 8). Our experimental values confirm the theoretical results.
Our experiments were performed as follows:

– choose randomly an instance of G6
3

– choose randomly a permutation: for this we use classical balanced Feistel
scheme with a large number of rounds (more than 20)

– launch the attack in CPA-1 with m = 22n, in KPA with m = 23n (m = 2
5n
2

also works).
– count the number of plaintext/ciphertext pairs satisfying the relations for

the G6
3 function and for the permutation

– iterate this procedure a large number of times (here 1000 times) to evaluate
the mean values and the standard deviations

– compute the mean value and the standard deviation for both the G6
3 function

and the permutation

Table 2. Experimental results for KPA and CPA attacks on G6
3

Attack n NG6
3

Nperm NG6
3
−Nperm

m2

2·24n σG6
3

σperm
m

√
2·2

3n
2

KPA 6 131006 129011 1995 2048 159 372 362.038

KPA 8 8388308 8355787 32521 32768 2862 2833 2896.309

CPA 6 2058 2009 49 32 45 44 45.254

CPA 8 32781 32601 180 128 178 185 182.019



Conclusion. Our experimental values for NG6
3
− Nperm are very close to the

theoretical expected values ( m2

2·24n in KPA and m2

2·23n in CPA-1). Similarly, our
experimental values for εperm are very close to the theoretical expected values
( m
√

2·2
3n
2

in KPA and m√
2·2n

in CPA-1) . So these simulations confirm that we can

distinguish G6
3 from a random permutation with the complexity that we have

given.

5 Generic Attacks when k ≥ 4 and k ≤ d ≤ 2k − 1

5.1 Attacks for k Rounds

We first describe a CPA-1 attack with two messages. All the blocks of these two
messages are equal to zero except the first one. We test if I1

1 ⊕ I1
2 = S1

1 ⊕ S1
2 .

Since S1 = X1 = I1 ⊕ f1([I2, . . . Ik]), this will occur with probability 1 if f is
a Gk

l , and with probability 2−n if f is a random permutation. This gives the
result.

As usual, we transform this attack into a KPA attack with m = O(2
n(k−1)

2 ).
In that case with a high probability I2

i = I2
j , I3

i = I3
j , ..., Ik

i = Ik
j . We test again

if S1
i ⊕ S1

i = I1
i ⊕ I1

j .

5.2 Attacks for k + t Rounds, with 1 ≤ t < k − 1

In the CPA-1 attack, we choose ∀i, It+2
i = . . . = Ik

i = 0 and pairwise distinct
[I1

i , . . . It
i ]. This choice limits the maximal number of plaintext/ciphertext tuples

to m ≤ 2(t+1)n. We then count the number N of pairs (i, j), i < j, such that
It+1
i ⊕ It+1

j = S1
i ⊕ S1

j . For a random permutation, we have:

Nperm ' m(m− 1)
2 · 2n

+ O(
m

2
n
2

).

Here 0( m

2
n
2

) denotes the standard deviation. This can be easily proved using the
Covariance Formula, see Appendix A or full version of this article [13].

For an unbalanced Feistel scheme, the preceding condition appears at ran-
dom, but we also have the following property:

X1
i = X1

j , . . . , Xt
i = Xt

j ⇒ S1
i ⊕ S1

j = It+1
i ⊕ It+1

j

since S1
i = Xt+1 = It+1 ⊕ ft+1([It+2, . . . Ik, X1, . . . , Xt]). This gives

NGk+t
k

' m(m− 1)
2 · 2n

+
m(m− 1)

2 · 2tn
,so |E(NGk+t

k
)− E(Nperm)| ' m(m− 1)

2 · 2tn
.

Here again for NGd
k
, the standard deviation can be computed by using the Co-

variance Formula, as we have shown for G4
3 (see full version of this article for the

details [13]). Thus we distinguish when m2

2tn ≥ m

2
n
2

i.e. when m ≥ 2(t− 1
2 )n, which

is compatible with the bound given above.
As usual, we are able transform this attack into a KPA attack which succeeds

if m ≥ 2( k+t−2
2 )n.



5.3 Attacks for 2k − 1 Rounds

In that case we can only mount a KPA attack. We consider the following KPA
attack: let N be the number of pairs (i, j), i < j, such that Ik

i ⊕ Ik
j = S1

i ⊕ S1
j .

For a random permutation, we have Nperm ' m(m−1)
2·2n + O( m√

2n
) and for an

unbalanced Feistel scheme, NG2k−1
k

' m(m−1)
2·2n + m(m−1)

2·2(k−1)n , since Ik
i ⊕Ik

j = S1
i ⊕S1

j

is also implied by the following equations: X1
i = X1

j , X2
i = X2

j , · · · , Xk−1
i =

Xk−1
j . This is because S1 = Xk = Ik ⊕ f2k−1([X1, . . . , Xk−1]). Thus we can

distinguish when m2

2·2(k−1)n ≥ m√
2n

. This gives m ≥ 2(k− 3
2 )n.

We can remark that for more than 2k rounds we will have to proceed with
different attacks, since X1

i = X1
j , . . . , Xk

i = Xk
j implies i = j because we have a

permutation.

6 Attacks with more than 2kn Computations

Until now we have studied Unbalanced Feistel schemes with random functions.
In practice, for example in designing block ciphers we need to consider gener-
ators of pseudo-random permutations. In this section, we will describe attacks
against a generator of permutations (and not only against a single permuta-
tion randomly generated by a generator of permutations), i.e. we will be able to
study several permutations generated by the generator. This allows more than
2kn computations.

Let G be a “Gd
k generator”, i.e. from a binary string K, G generates a d

round unbalanced Feistel permutation Gd
k. Let G′ be a truly random permutation

generator, i.e. from a string K, G′ generates a truly random permutation G′
K of

Bkn. Let G′′ be a truly random even permutation generator, i.e. from a string
K, G′′ generates a truly random permutation G′′

K of Akn, with Akn being the
group of all the permutations of {0, 1}kn → {0, 1}kn with even signature. We
are looking for attacks that distinguish G from G′, and also for attacks that will
distinguish G from G′′.

Adversarial model: an attacker can choose some strings K1, . . . Kf , can ask for
some inputs [I1, . . . , Ik], and can ask for some GKα

[I1, . . . , Ik] (with Kα being
one of the Ki). Here the attack is more general than in the previous sections,
since the attacker can have access to many different permutations generated by
the same generator.

Adversarial goal: the aim of the attacker is to distinguish G from G′ (or from
G′′) with a high probability and with a complexity as small as possible.

6.1 Brute Force Attacks

A possible attack is an exhaustive search for the d round functions f1, . . . , fd

from {0, 1}(k−1)n to {0, 1}n that have been used in the unbalanced Feistel con-
struction. This attack always exists, but since we have 2d·n·2(k−1)n

possibilities



for f1, . . . , fd, this attack requires about 2d·n·2(k−1)n

computations and about
d
k · 2

(k−1)n random queries but only for one permutation of the generator. This
attacks means that an adversary with infinite computing power will be able to
distinguish Gd

k from a random permutation (or from a truly random permutation
with even signature) when m ≥ d

k · 2
(k−1)n.

6.2 Attack by the Signature

Theorem 1. Let Ψ be an unbalanced Feistel permutation on {0, 1}α+β → {0, 1}α+β

with round functions of {0, 1}β → {0, 1}α. Then if α ≥ 2 and β ≥ 1, Ψ has an
even signature.

The proof of this theorem is quite similar to the proof in the case of a sym-
metric Feistel scheme [11, 3]. However the fact that α ≥ 2 changes a few things.
Consequently a complete proof is included in the full version [13], available from
the authors.

Let f be a permutation from kn bits to kn bits. Then using O(2kn) compu-
tations on the 2kn input/output values of f , we can compute the signature of f .

To achieve this we just compute all the cycles ci of f , f =
α∏

i=1

ci and use the

formula:

signature(f) =
α∏

i=1

(−1)length(ci)+1.

The consequence is that it is possible to distinguish G a generator of Gd
k from

a generator of truly random permutations from kn bits to kn bits after O(2kn)
computations on O(2kn) input/output values.

Remark: to compute the signature of a permutation g we need however to know
all the input/outputs of g (or all of them minus one, since the last one can be
found from the others if g is a permutation).

6.3 Attacks of Gd
k Generators when d = 2k

Let µ be the number of permutations that we will use. After 2k rounds, the
output is given by [S1, S2, . . . , Sk] = [Xk+1, Xk+2, . . . , X2k] where we have
Xk+1 = X1 ⊕ fk+1([X2, . . . , Xk]). Remember that X1 = I1 ⊕ f1([I2, . . . , Ik]).
Let us describe the KPA attack which concentrates on S1 = Xk+1. Let N be
the number of pairs (i, j), i < j, such that

I2
i = I2

j , . . . , Ik
i = Ik

j , Xk+1
i ⊕Xk+1

j = I1
i ⊕ I1

j . (1)

There we have necessary I1
i 6= I1

j and X1
i 6= X1

j . When we are testing random
permutations, Nperm ' µ · m2

2·2kn + O(
√

µ · m

2
kn
2

). For Gk
k, since I2

i = I2
j , . . . , Ik

i =

Ik
j , X2

i = X2
j , . . . , Xk

i = Xk
j imply (1) we have:

NGd
k

= µ · m2

2 · 2kn
+ µ · m2

2 · 2(2k−2)n
.



Thus we can distinguish the two generators when: µ · m2

2(2k−2)n
≥ √

µ · m

2
kn
2

, or

when µ ·m ≥ 2(3k−4)n. When m = 2kn, we find µ = 2(k−4)n and µ ·m = 2(2k−4)n.

6.4 Attacks Gd
k Generators for d Rounds with d ≥ 2k

It is possible to generalize the attack given above for any d ≥ 2k. We give here
only the main ideas. We concentrate the attack on Xd−k+1. In the constraints,
there are d conditions and d − k internal variables Xi. We choose conditions
number k, 2k, ... , until we get ξ =

⌊
d
k

⌋
conditions. This gives ξ (internal or

external) ·(k − 1)-multiple equations. When they are satisfied, we have:

1. One equation between the input and output variables.
2. ϕ equations between the output variables where

ϕ = (k − 1)−
(

d−
⌊

d

k

⌋
k

)
= (k − 1)− (d mod k)

We have µ permutations and the attack proceeds as follows: let N be the number
of pairs (i, j), i < j, such that these ϕ + 1 equations are satisfied. When we are
testing a permutation generator, we have

Nperm = µ · m(m− 1)
2 · 2(ϕ+1)n

+ O(
√

µ · m

2( ϕ+1
2 )n

).

With a Gd
k, the ξ(k−1)-multiples equations imply the ϕ+1 equations described

above. This shows that

NGd
k

= µ · m(m− 1)
2 · 2(ϕ+1)n

+ µ · m(m− 1)
2 · 2(k−1)n

.

We get the condition:

µ · m2

2(k−1)n
≥ √

µ · m

2( ϕ+1
2 )n

,

µ ·m2 ≥ 2(2(k−1)ξ−ϕ−1)n.

For the maximal value m = 2kn, we find µ = 2(2(k−1)ξ−ϕ−2k−1)n and the com-
plexity is λ = µ ·m = 2(2(k−1)ξ−ϕk−1)n. Thus we can write

λ = 2(2(k−1)b d
kc+(d mod k)−2k)n = 2

(
d+(k−2)b d

kc−2k
)
n.

7 Conclusion

Until now, attacks and proofs of security on contracting unbalanced Feistel
Schemes have not received much attention. There are much more papers on clas-
sical Feistel schemes and even attacks on expanding unbalanced Feistel schemes
have been more studied than attacks on contracting unbalanced Feistel schemes.



This may be not justified since contracting Feistel schemes seem to have very
good security properties. For example, to avoid all known generic attacks with
the number of messages less than 2kn (where kn is the number of bits of the
input and the output) with these schemes, we need only 2k rounds (if k ≥ 4)
or 7 rounds (if k = 3). So each bit will be changed only 2 times (if k ≥ 4) un-
like with balanced Feistel schemes where 3 changes (i.e. 6 rounds) are necessary
and unlike expanding unbalanced Feistel schemes where much more changes are
needed [4, 11, 14].

Table 3. Results on Gd
3. For more than 7 rounds more that one permutation is needed

or more than 23n computations are needed in the best known attacks to distinguish
from a random permutation with an even signature.

KPA CPA-1 a

G1
3 1 1

G2
3 1 1

G3
3 2n 2

G4
3 2n 2n/2

G5
3 23n/2 2n

G6
3 25n/2 22n

G7
3 23n 23n

G8
3 24n 24n

G9
3 26n 26n

G10
3 27n 27n

G11
3 28n 28n

G12
3 210n 210n

Gd
3, d ≥ 12 2(d+b d

3 c−6) 2(d+b d
3 c−6)

a Here we do not show CPA-2, CPCA-1 and CPCA-2 since for Gd
3, no better attacks

are found compared with CPA-1.

Storing a random function of (k − 1)n bits to n bits requires a large mem-
ory and this may be a practical disadvantage of Gd

k compared with balanced
Feistel schemes or Feistel schemes with expanding functions. However if a func-
tion generator is used to generate pseudo-random functions, this may not be a
problem.

There are still many open problems on contracting unbalanced Feistel schemes.
Naor and Reingold have shown a very nice security result [9]: we have security
until the birthday bound when we use pairwise independent functions for the
first and the last rounds. However, if we do not use such first and last rounds,
the exact security is still an open problem and even the birthday security bound
is not proved yet.

In conclusion, contracting unbalanced Feistel schemes seem to be one of the
best designs for permutation generators. In this paper, we have presented attacks
on these schemes with fewer than 2k rounds.



Table 4. Results on Gd
k for any k ≥ 4. For more than 2k rounds more that one

permutation is needed or more than 2(2k−4)n computations are needed in the best
known attacks to distinguish from a random permutation with an even signature.

KPA CPA-1a

Gd
k, 1 ≤ d ≤ k − 1 1 1

Gk
k 2

n(k−1)
2 2

Gk+1
k 2

n(k−1)
2 2

n
2

Gk+2
k 2

k
2 n 2

3
2 n

Gk+3
k 2( k+1

2 )n 2
5
2 n

Gk+i
k , 1 ≤ i < k 2( k+i−2

2 )n 2( 2i−1
2 )n

G2k
k 2(2k−4)n 2(2k−4)n

Gd
k, d ≥ 2k 2(d+(k−2)b d

k
c−2k)n 2(d+(k−2)b d

k
c−2k)n

a Here we do not show CPA-2, CPCA-1 and CPCA-2 since for Gd
k, no better attacks

are found compared with CPA-1.

References

1. William Aiello and Ramarathnam Venkatesan. Foiling Birthday Attacks in Length-
Doubling Transformations - Benes: A Non-Reversible Alternative to Feistel. In
Ueli M. Maurer, editor, Advances in Cryptology – EUROCRYPT ’96, volume 1070
of Lecture Notes in Computer Science, pages 307–320. Springer-Verlag, 1996.

2. Don Coppersmith. Luby-Rackoff: Four rounds is not enough. Technical Report
RC20674, IBM Research Report, december 1996.

3. Shimon Even and Oded Goldreich. Des-like functions can generate the alternating
group. IEEE Transactions on Information Theory, 29(6):863–865, 1983.

4. Charanjit S. Jutla. Generalized Birthday Arracks on Unbalanced Feistel Networks.
In Hugo Krawczyk, editor, Advances in Cryptology – CRYPTO ’98, volume 1462
of Lecture Notes in Computer Science, pages 186–199. Springer-Verlag, 1998.

5. Lars R. Knudsen. DEAL - A 128-bit Block Cipher. Technical Report 151, Univer-
sity of Bergen, Department of Informatics, Norway, february 1998.

6. Lars R. Knudsen and Vincent Rijmen. On the Decorrelated Fast Cipher (DFC)
and Its Theory. In Lars R. Knudsen, editor, Fast Software Encrytion – FSE ’99,
volume 1636 of Lecture Notes in Computer Science, pages 81–94. Springer-Verlag,
1999.

7. Michael Luby and Charles Rackoff. How to Construct Pseudorandom Permutations
from Pseudorandom Functions. SIAM J. Comput., 17(2):373–386, 1988.

8. Stefan Lucks. Faster Luby-Rackoff Ciphers. In Dieter Gollman, editor, Fast Soft-
ware Encryption – FSE ’96, volume 1039 of Lecture Notes in Computer Science,
pages 189–203. Springer-Verlag, 1996.

9. Moni Naor and Omer Reingold. On the Construction of Pseudorandom Permuta-
tions: Luby-Rackoff Revisited. J. Cryptology, 12(1):29–66, 1999.

10. Jacques Patarin. New Results on Pseudorandom Permutation Generators Based
on the DES Scheme. In Joan Feigenbaum, editor, Advances in Cryptology –
CRYPTO ’91, volume 576 of Lecture Notes in Computer Science, pages 301–312.
Springer-Verlag, 1991.



11. Jacques Patarin. Generic Attacks on Feistel Schemes. In Colin Boyd, editor,
Advances in Cryptology – ASIACRYPT 2001, volume 2248 of Lecture Notes in
Computer Science, pages 222–238. Springer-Verlag, 2001.

12. Jacques Patarin. Security of Random Feistel Schemes with 5 or More Rounds. In
Matthew K. Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume
3152 of Lecture Notes in Computer Science, pages 106–122. Springer-Verlag, 2004.

13. Jacques Patarin, Valérie Nachef, and Côme Berbain. Generic Attacks on Unbal-
anced Feistel Schemes with Contracting Functions, Extended Version. available
from the authors, 2006.

14. Jacques Patarin, Valérie Nachef, and Côme Berbain. Generic Attacks on Unbal-
anced Feistel Schemes with Expanding Functions. available from the authors, 2006.

15. Bruce Schneier and John Kelsey. Unbalanced Feistel Networks and Block Cipher
Design. In Dieter Gollmann, editor, Fast Software Encrytion – FSE ’96, volume
1039 of Lecture Notes in Computer Science, pages 121–144. Springer-Verlag, 1996.

A Computation of the Variance for Random
Permutations

In this section, we compute the value of the variance when we are testing a
random permutation and we want to distinguish it from a Gk+t

k , 1 ≤ t ≤ k − 1.
The input is [I1, . . . , Ik] and the output is [S1, . . . , IK ]. We want to compute
Nperm which is the number of (i, j), i < j satisfying the relation It+1

i ⊕ S1
i =

It+1
j ⊕ S1

j . We have the condition ∀i, It+2
i = It+3

i = . . . = Ik
i = 0. This implies

that m ≤ 2(t+1)n. We introduce the following random variables:{
δi,j = 1 if It+1

i ⊕ S1
i = It+1

j ⊕ S1
j

δi,j = 0 otherwise

Then Nperm =
∑

i<j δi,j and E(δi,j) = Prf∈RBkn
[It+1

i ⊕ S1
i = It+1

j ⊕ S1
j ]

Notice that if m � 2n, we may assume that the It+1 values are pairwise
distinct (or are all equal) and if m ≥ 2n, we may assume that each element
of {0, 1}n is reached by about m

2n values of It+1
i (in CPA-1, we can choose m

to be a multiple of 2n and each element of {0, 1}n is reached by exactly m
2n

values of It+1
i . It is also possible to choose that It+1

i are random values). If
It+1
i = It+1

j , E(δi,j) = Prf∈RBkn
[S1

i = S1
j ] = 2(k−1)n−1

2kn−1
' 1

2n . and if It+1
i 6= It+1

j ,

E(δi,j) = 2(k−1)n

2kn−1
' 1

2n . This gives us the average value:

E(Nperm) ' m(m− 1)
2 · 2n

+ o(
m

2(k+ 1
2 )n

).

We now compute the variance V (δi,j) = E(δ2
i,j)− E(δi,j)2 = E(δi,j)− E(δi,j)2.

If It+1
i = It+1

j , V (δi,j) = 1
2n · 1

1− 1
2kn

− 1
2kn−1

−
(

1
2n · 1

1− 1
2kn

− 1
2kn−1

)2. And if

It+1
i 6= It+1

j , V (δi,j) = 1
2n · 1

1− 1
2kn

−
(

1
2n · 1

1− 1
2kn

)2. Finally V (δi,j) ' 1
2n (1− 1

2n )

and ∑
i<j

V (δi,j) '
m(m− 1)

2
· 1
2n

(1− 1
2n

).



We recall the formula:

V (Nperm) = V (
∑
i<j

δi,j) =
∑
i<j

V (δi,j)+
∑

i<j,p<l,(i,j) 6=(p,l)

[
E(δi,j δp,l)−E(δi,j) E(δp,l)

]
The second term is the covariance term. We will see that

V (Nperm) =
m(m− 1)

2 · 2n
+ O

(
m2

22n

)
+ O

(
m4

22n · 2(2k−1)n

)
+ O

(
m3

22n · 2(k−1)n

)
where the two first terms correspond to the sum of the variance of δi,j , the third
term corresponds to the covariance of four distinct indexes (i, j, k, l), and the last
term corresponds to the covariance of 4-tuples of indexes with one in common,
like for example (i, j, i, l). Therefore, for m larger than 2n but smaller than 2kn,
we have as claimed

V (Nperm) =
m(m− 1)

2 · 2n
+ o

(
m2

2n

)
' m2

2 · 2n
.

In order to exactly compute the covariance term, we can separate the com-
putation into several cases. Here we only study the main case, i.e. we sup-
pose that i, j, p, l are pairwise distinct and that It+1

i 6= It+1
j , It+1

p 6= It+1
l and

It+1
i ⊕ It+1

j ⊕ It+1
p ⊕ It+1

l 6= 0. For all other cases, computation is similar and is
included in the full version of this paper [13].

To compute this probability we need to count the total number A of possi-
bilities for the outputs [S1

i , . . . , Sk
i ], [S1

j , . . . , Sk
j ], [S1

p , . . . , Sk
p ] and [S1

l , . . . , Sk
l ].

Since we are using a permutation, we have A = 2kn ·(2kn−1)·(2kn−2)·(2kn−3).
We also have to compute B the number of outputs [S1

i , . . . , Sk
i ], [S1

j , . . . , Sk
j ],

[S1
p , . . . , Sk

p ] and [S1
l , . . . , Sk

l ] satisfying the above relations in the case we con-
sider. For [S1

i , . . . , Sk
i ], there are 2kn possibilities. When this output is fixed,

S1
j = S1

i ⊕ It+1
i ⊕ It+1

j . Thus there are 2(k−1)n possibilities for [S1
j , . . . , Sk

j ]. Now
we have to fix [S1

i , . . . , Sk
i ] and [S1

j , . . . , Sk
j ]. There are 5 cases that we are going

to study now. If S1
p = S1

i ⊕ It+1
p ⊕ It+1

l , then S1
p 6= S1

i , S1
p 6= S1

l and S1
l = S1

i .
Thus we have 2(k−1)n ·(2(k−1)n−1) possibilities for [S1

p , . . . , Sk
p ] and [S1

l , . . . , Sk
l ].

Then we consider the case where S1
p = S1

j ⊕ It+1
p ⊕ It+1

l . This case is different
from the previous one since S1

i 6= S1
j . We get again 2(k−1)n · (2(k−1)n − 1) pos-

sibilities for [S1
p , . . . , Sk

p ] and [S1
l , . . . , Sk

l ]. If S1
p = S1

i or if S1
p = S1

j , there are
(2(k−1)n−1) ·2(k−1)n possibilities for [S1

p , . . . , Sk
p ] and [S1

l , . . . , Sk
l ]. The last case

is when we have eliminated the previous cases. This gives (2n−4)·2(k−1)n ·2(k−1)n

possibilities for [S1
p , . . . , Sk

p ] and [S1
l , . . . , Sk

l ]. Finally B = 2(4k−2)n · (1 − 4
2kn ).

Consequently, since E(δi,j δp,l) = B
A we get:

E(δi,j δp,l)− E(δi,j)E(δp,l) =
1

22n
(− 2

22kn
+ O(

1
23kn

)).

Finally these terms of covariance are equal to −2m4

4·22n·22kn ≤ O
(

m4

22n·2(2k−1)n

)
as

claimed.


