
On Efficient Message Authentication Via Block

Cipher Design Techniques

G. Jakimoski and K. P. Subbalakshmi?

Department of Electrical and Computer Engineering
Stevens Institute of Technology, Hoboken, NJ 07030, USA
goce.jakimoski@stevens.edu, ksubbala@stevens.edu

Abstract. In an effort to design a MAC scheme that is built using
block cipher components and runs faster than the modes of operation for
message authentication, Daemen and Rijmen have proposed a generic
MAC construction ALRED and a concrete ALRED instance Pelican.
The Pelican MAC uses four rounds of AES as a building block to com-
pute the authentication tag in a CBC-like manner. It is about 2.5 times
faster than a CBC-MAC with AES, but it is not proven secure. Mine-
matsu and Tsunoo observed that one can build almost universal (AU2)
hash functions using differentially uniform permutations (e.g., four AES
rounds with independent keys), and hence, provably secure MAC schemes
as well. They proposed two MAC schemes MT-MAC and PC-MAC.
MT-MAC hashes the message using a Wegman-Carter binary tree. Its
speedup for long messages approaches 2.5, but it is not very memory
efficient. PC-MAC hashes the message in a CBC-like manner. It is more
memory efficient. However, its speedup over the message authentication
modes is about 1.4.
We notice that using a non-linear permutation as a building block, one
can construct almost XOR universal (AXU 2) hash functions whose se-
curity is close to the maximum differential probability of the underly-
ing non-linear permutation. Hence, using four AES rounds as a building
block will lead to efficient Wegman-Carter MAC schemes that offer much
better security than the modes of operation for message authentication.
If the target security is that of the message authentication modes with
AES, then one can use non-linear permutations defined on 64-bit blocks
and achieve greater speedup and better key agility. For instance, the ide-
ally achievable speedup when using the 64-bit components we suggest is
3.3 to 5.0 as opposed to the 2.5 speedup when using four AES rounds.

Keywords: message authentication, Wegman-Carter construction, universal
hash functions, block ciphers, maximum differential probability

1 Introduction

MESSAGE AUTHENTICATION. Message authentication is one of the basic in-
formation security goals, and it addresses the issues of source corroboration

? This work was funded in part by NSF CT grant number: 0627688 and US Army
ARDEC/Picattiny Arsenal.

and improper or unauthorized modification of data. The message authentication
model usually involves three participants: a sender, a receiver and an adversary.
The sender and the receiver have agreed on a secret key. Prior to sending a mes-
sage, the sender uses a signing algorithm that given the message and the secret
key outputs an authentication tag (or MAC). The sender sends the tag along
with the message to the receiver. On receipt, the receiver uses a verification al-
gorithm that given the secret key, the message and the tag returns 1 if the MAC
is valid, or returns 0 otherwise. The goal of the adversary is to trick the receiver
into accepting a message that was not sent by the sender.

Message authentication has been heavily addressed in the literature. We
briefly overview some of the results. There are three common approaches to
message authentication. One approach involves using cryptographic hash func-
tions. The first such schemes were proposed by Tsudik [49] and Kaliski and
Robshaw [29], and later analyzed by Preneel and Van Oorschot [44, 45]. A popu-
lar hash function based MAC is the HMAC construction of Bellare, Canetti and
Krawczyk [3, 5].

Another approach to message authentication involves secure block ciphers
modeled as pseudorandom permutations. The CBC MAC [20, 25] is probably
the most studied MAC construction based on block ciphers. Bellare, Kilian and
Rogaway proved its security for fixed-length messages [2]. Petrank and Rackoff
[43] (another proof was provided by Vaudenay [50]) showed that EMAC [6],
a CBC MAC variant using additional encryption, is secure when the message
length is a multiple of the block size. Black and Rogaway [13] proposed a solution
for arbitrary message lengths that uses three keys and only one key scheduling
of the underlying block cipher. Jaulmes, Joux and Valette proposed RMAC [27],
which is an extension of EMAC using two keys and a randomness. Iwata and
Kurosawa provided solutions that use only two [37] and one key [27]. There are
also block cipher based MAC constructions that do not follow the CBC paradigm
(e.g., the PMAC construction of Black and Rogaway [14]).

The third approach is the universal hash function approach. Wegman and
Carter were the first to propose the notion of universal hash functions [16] and
their use in message authentication [51]. The construction proposed by Wegman
and Carter provides unconditional security. A computationally secure scheme
can be obtained if the random keys are replaced by pseudorandom keys. This
approach was first studied by Brassard [15]. The topics related to universal hash
functions and unconditional message authentication have been studied a lot in
the past years. Some of the results include the following. Unconditional mes-
sage authentication was first considered by Gilbert, Williams and Sloane [22].
Simmons [47] developed the theory of unconditional authentication and derived
some lower bounds on the deception probability. The use of universal hashing to
construct unconditionally secure authentication codes has also been studied by
Stinson [48] and by Bierbrauer et al.[9]. The notion of almost XOR universal hash
functions is due to Krawczyk [29]. A bucket hashing technique for constructing
an AXU2 families of universal hash functions and their use to construct compu-
tationally secure MACs were proposed by Rogaway [46]. Afanassiev, Gehrmann

and Smeets [1] proposed an efficient procedure for polynomial evaluation that
can be used for fast message authentication. MMH, proposed by Halevi and
Krawczyk [23], and SquareHash, proposed by Etzel, Patel and Ramzan [19], are
examples of fast universal hash functions. An efficient universal hash function
family NH and a message authentication code UMAC based on NH were also
proposed by Black et al.[12]. Another fast message authentication scheme and
stronger bounds for Wegman-Carter-Shoup authenticators were recently pro-
vided by Bernstein [8, 7].

DIFFERENTIAL PROBABILITY BOUNDS. Since the publication of the differen-
tial cryptanalysis attacks on DES (Biham and Shamir [10]), differential crypt-
analysis has become one of the most studied general attacks on block ciphers,
and the resistance to differential cryptanalysis has become one of the basic block
cipher design criteria. The round keys used by block ciphers are derived from a
single key using a key scheduling algorithm. However, in order to augment the
belief that certain block cipher structures are secure against differential crypt-
analysis, some researchers have provided security proofs assuming random and
independent round keys. The provable security against differential cryptanaly-
sis of some Feistel structures has been studied by Matsui [38]. Hong et al. [24]
proved an upper bound on the maximum differential probability for 2 rounds of
a substitution permutation network with highly diffusive linear transformation.
Kang et al. [30] provided a bound for any value of the branch number of the lin-
ear transformation. Keliher, Meijer and Tavares [31, 32] proposed a new method
for finding the upper bound on the maximum average linear hull probability
for substitution permutation networks (SPN) and applied their method to AES.
Park et al. proved that the maximum differential probability of four rounds of
AES is upper bounded by 1.06 × 2−96 [41], and later proved a better bound
1.144 × 2−111 in [42]. A slightly better bound (2−113) was provided by Keliher
and Sui [33].

CLOSELY RELATED WORK. Daemen and Rijmen [17] have recently proposed a
new heuristic MAC construction ALRED, and a concrete MAC scheme Pelican
[18]. The Pelican MAC uses four rounds of AES as a building block to compute
the authentication tag in a CBC-like manner, and it is about 2.5 times faster than
a CBC-MAC with AES. However, it is not proven secure. Minematsu and Tsunoo
[40] observe that one can obtain provably secure almost universal hash functions
(AU2) by using differentially uniform permutations such as four rounds of AES
with independent keys in a Wegman-Carter binary tree. They also propose a
message authentication scheme MT-MAC that makes use of the proposed AU2

hash function. However, they note that such construction is not memory efficient,
and suggest a CBC-like AU2 hash PCH (Periodic CBC Hash) and a proven secure
MAC scheme PC-MAC based on PCH. The speedup of PC-MAC over the modes
with AES is 1.4.

OUR CONTRIBUTION. We propose a CBC-like AXU 2 hash UHC (Universal
Hash Chaining) and a variant of a Wegman-Carter binary tree AXU 2 hash (the
MACH hash). Both constructions use a non-linear invertible transformation as

a building block. Their proven security is somewhat smaller than the maxi-
mum differential probability of the underlying non-linear permutation, and it
does not change with the message length as in the polynomial constructions or
PCH. Hence, if one uses four rounds of AES with independent keys as a building
block one can obtain a message authentication scheme that is more time efficient
and offers significantly greater security compared to the message authentication
modes with AES. If the target security is that of the message authentication
modes with AES, then one can use non-linear permutations defined on 64-bit
strings (blocks). This allows for greater speedup and better key agility. For in-
stance, the non-linear transformations that we suggest use 128- and 192-bit keys
as opposed to the 512-bit key required by four rounds of AES. If these compo-
nents are used in a Wegman-Carter single-binary-tree hash, then the achievable
speedup for lengthy messages approaches 4.5 on 8-bit architectures, 3.3 on 32-
bit architectures and 5 on 64-bit architectures with relatively large L1 cache as
opposed to the 2.5 speedup achievable when the non-linear permutation is four
rounds of AES. In order to improve the memory efficiency, MACH, the mes-
sage authentication scheme we propose, uses the modified Wegman-Carter tree
AXU2 hash function (the MACH hash) instead of a single tree. The estimated
speedup of the resulting scheme is somewhat smaller, but still significant (see
Section 4.3 for more details).

2 Basic building blocks

In this section, we propose some basic AXU2 and AU2 hash functions. We use
these functions as building blocks to construct efficient message authentication
schemes.

2.1 AXU2 hash functions based on block cipher design techniques

Given a (keyed) non-linear function F , one can construct an AXU2 hash function
as follows. To hash a message x, two keys K and Kr are chosen randomly. The
hash of x is F (K, x ⊕ Kr). If F is not a keyed transformation, then the hash of
x is F (x⊕Kr). The role of the key Kr is to randomize the input of F since the
maximum differential probability is defined for a randomly selected input and a
constant input difference. The AXU2 definition on the other hand requires both
the input and the input difference to be constant. A more formal analysis is
given below.

Lemma 1. Let F : {0, 1}k × {0, 1}m → {0, 1}n be a mapping that maps a
pair of a k-bit key and a message (block) of length m into an n-bit string. The
family of hash functions H = {hK,Kr

: {0, 1}m → {0, 1}n|K ∈ {0, 1}k, Kr ∈
{0, 1}m, hK,Kr

(x) = F (K, x⊕Kr)} is ε-AXU2, where ε is equal to the maximum
(expected) differential probability of F

DPF = max
∆x 6=0,∆y

#{(K, x) ∈ {0, 1}k × {0, 1}m|F (K, x ⊕ ∆x) ⊕ F (K, x) = ∆y}

2m+k
.

The non-linear function defined by four rounds of AES is a good candidate
for constructing AXU hash functions. To hash a 128-bit block x, one selects
four uniformly random keys and “encrypts” x using the four keys as round keys.
Here, we assume that the key addition is at the beginning of the rounds, not
at the end of the rounds. We also assume that the fourth round is a final AES
round. It was shown in [33] that the maximum differential probability of four
rounds of AES is at most about 2−113 when the round keys are independent.
Hence, the hash function family HAES consisting of the transformations defined
by four rounds of AES for all possible values of the round keys is ε-AXU2, where
ε ≈ 2−113. We propose two additional constructions.

The first AXU2 family of hash functions that we suggest is defined by the
Feistel structure depicted in Fig. 1. The 64-bit input is transformed into a 64-bit
hash using three Feistel rounds. Each round uses a new 64-bit key. The round
function is depicted in Fig. 1(b). It is constructed using AES components. That
is, the S-box and the mixing transformation used in the round function are same
as those used in AES. Each key defines a hash function that maps a 64-bit
string (message) into a 64-bit hash, and we denote by HFES the family of hash
functions defined by the 2192 possible keys.

F

F

F
S

k2,3

y3

S

x1

k1,1

S

x2

k1,2

S

x3

k1,3

S

x4

k1,4

S

k2,1

y1

S

y2

k2,2

S

y4

k2,4

MIX

K1

K2

K3

(a) (b)

Fig. 1. A Feistel AXU construction: (a) the 64-bit message is hashed using three Feistel
rounds with independent keys, (b) The round function is an SPN structure. The S-box
and the mixing transformation are those used in AES.

The security of HFES is provided by the following lemma.

Lemma 2. The HFES family of hash functions is ε-AXU2, where ε = 1.52 ×
2−56.

The second AXU2 family of hash functions that we suggest is defined by the
keyed nonlinear transformation shown in Fig. 2. It is a two-round SPN structure

that transforms a 64-bit input into a 64-bit output. The S-box that is used in the
construction is same as the one used in AES. The mixing transformation is given
by the circulating-like MDS matrix proposed in [28] (p. 167). The multiplication
and addition are over GF(256) modulo the irreducible polynomial x8 +x4 +x3 +
x2 + 1 over GF(2). The coefficients are given by the following polynomials over
GF(2): a = x + 1, b = x3 + 1, c = x3 + x2, d = x, e = x2 and f = x4. Each key
defines a hash function that maps a 64-bit message into a 64-bit hash, and we
denote by HF64 the family of 2128 hash functions whose members are determined
by the possible key values.

SS

SS S

S

1

1

1

1

1

1

1

f 1 1 1 1 1 1 1

1 a b c d e f

f 1 a b c d e

e f 1 a b c d

d e f 1 a b c

c d e f 1 a b

b c d e f 1 a

a b c d e f 1

M8 =
MIX

x2

k1,2

x1

k1,1

y1 y2

k2,2k2,1

y8

x8

k1,8

k2,8

Fig. 2. An SPN AXU construction: (a) The global structure, (b) The 8×8 matrix used
in the linear mixing layer. The multiplication and addition are over GF(256) modulo
x8 +x4 +x3 +x2 +1 over GF(2). The coefficients are a = x+1, b = x3 +1, c = x3 +x2,
d = x, e = x2 and f = x4.

The following lemma establishes the security of HF64.

Lemma 3. The HF64 family of hash functions is ε-AXU2, where ε = 1.25 ×
2−54.

2.2 The AU2 hash functions

Given a keyed non-linear function that can be represented as a composition of
two non-linear transformations whose keys1 are independent (see Fig. 3(a)), one
can construct an AU hash function (see Fig. 3(b)) as follows.

1 We consider a more general case. However, F1 and F2 does not have to be keyed
transformations (i.e., the lengths of the keys K1 and K2 can be zero as well).

Lemma 4 (Twisting Lemma). Let F (K, x) be defined as F (K, x) =
F2(K2, F1(K1, x)⊕Ks), where K = K1|Ks|K2, F1 : {0, 1}k1 ×{0, 1}l → {0, 1}n,
and F2 : {{0, 1}k2 × {0, 1}n → {0, 1}n} is a bijection for any key value K2.
Then, the family of hash functions H = {hK1,Kr1,K2,Kr2

: {0, 1}l × {0, 1}n →
{0, 1}n|hK1,Kr1,K2,Kr2

(x1, x2) = F1(K1, x1 ⊕ Kr1) ⊕ F−1
2 (K2, x2 ⊕ Kr2)} is an

ε-AU2, where K1 ∈ {0, 1}k1; K2 ∈ {0, 1}k2 ; x1, Kr1 ∈ {0, 1}l; x2, Kr2 ∈ {0, 1}n,
and ε = DPF .

The structure of the function F depicted in Fig. 3(a) can be found in almost
any block cipher and allows for a variety of AU 2 hash function constructions
by “twisting” block ciphers. One such example is the construction proposed in
[40], which is depicted in Fig. 3(c). The function F in this case is a composition
of an identity map and the inverse of a differentially uniform permutation. The
twisting lemma is slightly abused since no key is added to the first block. Such
key addition will be canceled when we consider differences and increases the time
complexity since one has to generate a random key Kr1.

x2

Kr

F1

Ks

F2

K1

K2

(a) (b) (c)

y

x1

K2 F−1

2
F1

K1

x

FK

x1 x2

Fig. 3. AU2 construction by “twisting” block ciphers: (a) the original non-linear trans-
formation F , (b) the non-linear transformation F ′ obtained by “twisting” F , (c) AU2

construction proposed in [40].

The general construction of Lemma 4 offers a somewhat greater level of paral-
lelism than the one of Fig. 3(c) (one can evaluate F1 and F2 in parallel). However,
the overall impact on the schemes proposed in this paper is not significant, and
we use a variant of Fig. 3(c) which is derived by extending its domain to include
messages of length 0 and 1 blocks:

gF (x1, x2) =







λ if x1 = x2 = λ
x1 if x1 6= λ, x2 = λ
x1 ⊕ F (K, x2 ⊕ Kr) if x1 6= λ, x2 6= λ

where λ is the empty string, x1, x2 ∈ {0, 1}n
⋃

{λ}, Kr ∈ {0, 1}n and F is a
(keyed) non-linear permutation on {0, 1}n.

Let GF be the family of the hash functions defined as above. We have the
following lemma.

Lemma 5. The family of hash functions GF is ε-AU2, where ε = DPF .

The AU2 families that we use are obtained when the AXU 2 hash function
F (K, Kr ⊕ x) is realized using the transformations discussed in Section 2.1. We
denote by GAES , GFES and GF64 the families of hash functions when F (K, Kr⊕x)
is realized using four AES rounds, the Feistel structure of Fig. 1 and the SPN
structure of Fig. 2 respectively. According to the previous discussion, GAES ,
GFES and GF64 are ε-AU2 with ε being 2−113, 1.52 × 2−56 and 1.25 × 2−54

correspondingly.

3 AXU2 hash functions defined for arbitrary-length

messages

The universal hash functions introduced in the previous section operate on mes-
sage blocks. In this section, we consider some techniques for extending the do-
mains to include arbitrary-length messages. The proposed constructions use a
large number of keys. However, these keys are derived from a single 128-bit key
in the message authentication scheme we propose in Section 4.

3.1 A CBC-like construction

CBC is a popular approach to MAC design. The Pelican MAC of [18] and the
PCH (Periodic CBC Hash) of [40] resemble CBC as well. Here, we present an-
other CBC-like family of hash functions HUHC (Universal Hash Chaining). The
advantage of UHC over the Pelican construction is that it is proven secure. Its
advantage over PCH is that the security does not decrease with the message
length. Assuming small differential probabilities, the provided upper bound on
the collision probability of PCH is roughly l2/2n, where l is the message length
and n is the block length. If the message length is about 240, this results in about
2−50 proven security when using four rounds of AES as a building block. The
proven security of UHC in this case will be about 2−112.

HUHC is depicted in Fig. 4. We assume that F is a permutation on the set
of n-bit strings for a given key. To hash a message consisting of l segments of m
blocks, we select randomly m−2 randomization keys Kr

3 , . . . , Kr
m and m−1 keys

K2, K3, . . . , Km for the non-linear map F . These keys are used for all segments of
the message. In addition, two fresh randomization keys Kr

i,1, K
r
i,2 and a fresh key

Ki,1 for the non-linear map are selected anew for each segment of the message.
The message is “digested” in a CBC-like manner using these keys as depicted in
Fig. 4. The resulting family of hash functions is AXU 2.

Lemma 6. HUHC is ε-AXU2, where ε = 2DPF .

x1,m

Kr
m

x1,2

Kr
1,2

x1,1

Kr
1,1

h

Kr
3

x1,3

Kr
3

xl,m

Kr
mKr

l,1

xl,1 xl,2

Kr
l,2

xl,3

K1,1
K3 Km

Kl,1 K3 Km

F F F F

FFFF

K2

K2

Fig. 4. A CBC-like AXU construction. Fresh keys are used only for the first two blocks
of each segment.

3.2 A modified Wegman-Carter binary tree construction

MACH, the MAC scheme that we propose, uses the following variant of the
Wegman-Carter binary tree hash.

To hash a message M consisting of l blocks2, we first “append” λ-“blocks” 3

so that the number of blocks in the message is a multiple of 2N . The resulting
λ-padded message is partitioned into segments consisting of 2N blocks. Each
segment is hashed using the same secret member of GF in a binary hash tree
of height N . Recall that that the members of GF were defined as gF (x1, x2) =
x1⊕F (K, Kr ⊕x2) if x2 is not λ, gF (x1, λ) = x1, and gF (λ, λ) = λ, where F is a
(keyed) non-linear permutation on n-bit strings. The output of each binary tree
is hashed using F as in Lemma 1, and the resulting n-bit blocks are xor-ed to give
the final hash value. The keys used in the last step are generated independently
for different segments of the message. We use HF

MACH(N) to denote the family
of hash functions described above. An example when N = 2 is given in Fig.5.

The time complexity of the MACH hash is determined by the time to generate
the required keys, and the time to hash the message. Assuming that the keys are
already generated, the time to hash the message is one F evaluation per n-bit
block of the message, and it is same as that of UHC. The same levels of the
binary trees in the MACH hash use the same key. So, one has to generate and
memorize N keys that will be used by the binary trees. In addition, one has to
generate one potentially large key per segment for the last step of the hashing
procedure. Since the length of the segments is 2N blocks, the MACH hash is
advantageous over the UHC hash where one has to generate fresh keys every N
blocks.

2 We assume that the message length is a multiple of the block length.
3 The sole purpose of the λ padding is to simplify our description and analysis. In

practice, the λ padding will be omitted.

K
p
r1 K

p
r2

m2

K1 K1 K1

K2 K2

m3 m4 m5 λλm6

F

K ′
1

m1

gF

h

K
p
1

K
p
2F F

gFgF

gF gF gF

K1 = K ′
1|K

′′
1

K ′′
1

Fig. 5. An AXU2 construction using a modification of the Wegman-Carter binary tree
(N = 2).

Using a single binary tree will lead to greater speedup for long messages.
However, one will have to memorize a large number of keys to allow hashing
of lengthy messages. In the MACH hash, the fresh keys can be “thrown away”
after their use. So, by carefully selecting the value of N , one can achieve close
to a single-binary-tree speed while significantly improving the key agility and
memory efficiency compared to the single-binary-tree construction.

HF
MACH(N) is basically a composition of an AU2 hash function (the binary

trees in parallel) and an AXU2 hash function (the xor of the AXU2 hash func-
tions). As it was case with the HUHC , the security of HF

MACH(N) does not
decrease with the message length.

Lemma 7. HF
MACH (N) is an ε-AXU2 family of hash functions, where ε =

(N + 1) × DPF .

The message authentication schemes that we propose in this paper use the
HAES

MACH(5), HFES
MACH(7) and HF64

MACH(7) hash function families. Here, HAES
MACH(5)

is the MACH hash functions where the binary trees are of height 5, the AU hash
function family used in the binary trees is GAES of Section 2.2, and the AXU
hash function family used in the last step is the HAES hash function family de-
scribed in Section 2.1. Similarly, HFES

MACH(7) (resp., HF64
MACH(7)) is the MACH

hash function family that uses binary trees of height 7, and whose non-linear
function F is implemented using the Feistel (resp., SPN) structure of Fig. 1
(resp., Fig. 2).

4 MACH: An efficient Wegman-Carter MAC scheme

based on block cipher design techniques

In this section, we present MACH. MACH, where H stands for the use of hash
functions, is a Wegman-Carter MAC scheme that is obtained by applying the
technique presented in [46] to HF

MACH .

4.1 The signing (tagging) and verifying algorithms of MACH

Signing A pseudo-code of the MACH signing algorithm is given in Algorithm 1.
It takes as input a secret key K, a 64-bit counter value Cntr < MAX CNTR

associated with that key and a message M of bit length |M | < MAX LEN. The
secret key K and the counter value Cntr are used as an input to a pseudorandom
generator that outputs two keys Kh and KT . The key Kh specifies which member
HF

MACH will be used to hash the messages, and the key KT is used to encrypt
the hash of the message. Given the key Kh, a hash h = hKh

(M |10i) of the
10i padded message is computed using the HF

MACH family of hash functions.
The authentication tag τ is the pair consisting of the counter value Cntr and
hτ = h ⊕ KT .

Algorithm 1 MACH.Sign(K,Cntr,M)

Input: A (128-bit) secret key K, a 64-bit counter value Cntr and a message M .
Output: An authentication tag τ .

Cntr + +
len← |M | // len is the bit length of the message M .
Kh, KT ← Gen(Cntr, K)

i← (n− ((len + 1) mod n)) mod n

h← hKh
(M |10i)

hτ ← h ⊕KT

return τ ≡ (Cntr, hτ)

The keys Kh and KT can be generated using a pseudorandom generator
(i.e., a stream cipher). The key generation in this case will be faster than
using a block cipher, and the resulting scheme will be more competitive for
small message lengths. However, there are some practical advantages of gen-
erating the keys using a block cipher in a counter-like mode. So, we suggest
the keys to be generated using AES as follows. The key KT is computed as
KT = trun(AESK(1|063|Cntr)), where Cntr is a 64-bit counter value, and trun(·)
selects the first |h| bits of AESK(1|063|Cntr). The words of the key Kh are com-
puted as Kh[i] = AESK(064|〈i〉), where 〈i〉 is a 64-bit representation of i. If the
length of Kh is not a multiple of 128, then the last “word” Kh[K BLCKS] of Kh

is derived by selecting the first |Kh[K BLCKS]| bits of AESK(064|〈K BLCKS〉).

Here, K BLCKS is the number of blocks in Kh, and it is determined by the
length of the key material we need to hash a message of length MAX LEN.
Remark. To simplify our description and security analysis, we have assumed that
the key Kh is generated at the beginning, and that it is long enough to hash
messages of maximum length. Clearly, such implementation is not practical at
all. In practice, to avoid expensive key setup and increase the memory efficiency
of the scheme, the keys will be generated on the fly, and only a small portion
of the keys (e.g., the keys used by the binary trees) will be memorized when
computing the hash of the message.

Verifying Given a message M , an authentication tag τ = (Cntr, hτ) associated
with the message and the secret key K, the verifier computes the keys Kh, KT ,
and recomputes the authentication tag using these keys. If the recomputed tag
(Cntr, KT ⊕ hKh

(M |10i)) is equal to the one that was sent, then the verifier
accepts the message M as authentic. Otherwise, the verifier rejects the message
M .

4.2 Security of MACH

The security of MACH is established by the following theorem.

Theorem 1. The advantage of any forger of MACH that runs in at most t time
and makes at most qv forgery attempts is upper bounded by

Advwuf−cma
MACH (t, qv) ≤ Advprp

AES
(c1t + c2, Qe) + qv(1−

Qe − 1

2128
)−Qe/2(N + 1)DPF ,

where c1 and c2 are small implementation dependent constant, Qe = K BLCKS+
MAX CNTR, N is the height of the binary trees used by the hash function, DPF

is the maximum differential probability of the nonlinear permutation F used by
the hash function, and Advprp

AES
(c1t + c2, Qe) is the advantage of distinguishing

AES from a random permutation when running in at most c1t + c2 time and
querying an encryption oracle at Qe distinct message blocks.

4.3 MACH variants, security and performance comparison

We suggest three MACH variants MACH-AES, MACH-FES and MACH-F64.
As their names suggest, the proposed MACH variants are obtained when the
messages are hashed using HAES

MACH(5), HFES
MACH (7) and HF64

MACH(7) respectively
(see Section 3.2 for a description of these hash functions). In the following, we
briefly discuss the security and performance of these schemes.

Security A comparison of the proposed variants in terms of their security and
the speedup over the modes for message authentication that use AES as a build-
ing block is given in Table 1. The security expressions are derived using Theo-
rem 1. We assume that both K BLCKS and MAX CNTR are 264. The number of

encryption queries in this case will be Qe = 265, and δ is the advantage of distin-
guishing AES from a random permutation given Qe pairs of plaintext/ciphertext
blocks.

Table 1. Security and performance comparison of the MACH variants

Speedup over message authentication modes
Scheme 8-bit c.a. 32-bit c.a. 64-bit c.a. Security

1 KB ∞ 1 KB ∞ 1 KB ∞

MACH-AES 1.25 2.10 1.19 1.90 1.19 1.90 δ + qv × 1.28 × 2−110

MACH-FES 2.37 3.76 1.99 2.88 1.99 2.88 δ + qv × 1.30 × 2−52

MACH-F64 1.85 2.10 1.51 1.86 2.10 – 2.94 2.81 – 4.64 δ + qv × 1.07 × 2−50

The tag length and the security of MACH-FES and MACH-F64 are com-
parable to those of the modes of operation for message authentication using
AES as a building block. Note that the security of MACH-FES and MACH-
F64 is determined by the number of forgery attempts. If the application allows
the verifier to limit the number of forgery attempts, then one can achieve good
security for a large number of very long messages. For example, assume that
the verifier keeps a track of the number of invalid message/tag pairs. If this
number exceeds 220, then the verifier assumes it is under attack and rejects any
subsequent message. Under these circumstances, we can use MACH-FES and
MACH-F64 to authenticate 264 messages of length & 264 blocks with ≈ 2−30

forgery probability. However, using 264 signing queries and a single forgery at-
tempt, one can easily break most of the existing modes of operation for message
authentication. If the maximum allowed message length is relatively large, then
the security of MACH-FES and MACH-F64 is comparable or better than that of
the polynomial-based constructions too. For example, if one allows messages of
length > 252 blocks, then the proven security of Poly1305-AES becomes smaller
than that of MACH-FES and MACH-F64.

Assuming that the advantage of distinguishing AES from a random per-
mutation given 265 plaintext/ciphertext pairs is small, MACH-AES provides
significantly better security than MACH-FES and MACH-F64. The tag length
(including the counter) of MACH-AES is 192 bits, and it is larger than that of
the modes of operations for message authentication.

Performance Performance evaluation of a given message authentication scheme
is not an easy task since it depends on the specific platform, the implementation
of the algorithms and the message length distribution. The speedup estimates
given in Table 1 are computed by making the following assumption: the algo-
rithms are implemented using basic arithmetic and memory reference instruc-
tions available on RISC computer architectures. The speedup is computed by
dividing the time needed to compute the tag using AES in a message authentica-
tion mode and the time needed to compute the tag using the proposed schemes.

The execution time on the other hand is estimated based on the number of
arithmetic and memory reference instructions required to compute the tag.

We have considered two cases. In the first case, which is denoted 1 KB, the
message length is 1024 bytes as in [7]. The speedup in this case approximates
the speedup when the message length distribution follows the IP packet size dis-
tribution on the Internet. The time to compute the tag in this case includes the
time needed to generate all the keys that are required to hash the message. In
the second case, which is denoted ∞, we assume that the keys used by the binary
trees of the hash function are already generated and memorized. The time to
compute the tag includes the time needed to generate the fresh keys used for the
different segments of the message, but it does not include the time to generate
the keys used by the binary trees in the MACH hash. The speedup in the second
case approximates the speedup when authenticating a single long message or
authenticating a relatively long sequence of short messages (e.g., stream authen-
tication, authenticating the packets exchanged between two routers in a VPN,
authenticating the packets exchanged during a single communication session,
etc.).

MACH-AES and MACH-FES use AES components as building blocks. Hence,
the estimation of their speedups is easier. The key generation cost is one AES
encryption per 128 bits of the key material. Given the keys, the cost of hashing
per 128-bit block is about 4 AES rounds for MACH-AES and 3 AES rounds for
MACH-FES on 32-bit and 64-bit architectures. The AES matrix multiplication
is relatively costly on 8-bit architectures (about 40 arithmetic operations). The
mixing transformation is omitted in the fourth round of the non-linear func-
tion used by MACH-AES. Thus, on 8-bit architectures, the cost of hashing is
about 3.5 AES rounds per 128-bit block when using MACH-AES. For similar
reasons, the cost of hashing is about 2.2 AES rounds per 128-bit block on 8-bit
architectures when using MACH-FES.

MACH-F64 uses an 8× 8 multiplication matrix which is not a component of
AES. Hence, the computation of the speedup is more complicated. A detailed dis-
cussion on implementing this matrix multiplication on various platforms can be
found in [28]. We will only note that the largest speedup values on 64-bit architec-
tures are computed assuming that the non-linear transformation of MACH-F64
is implemented using 8 look-up tables each one containing 256 64-bit entries.
The memory required to store these tables is 16 KB, which is a relatively small
portion of the L1 cache of many processors. For example, AMD Athlon, Ultra-
Sparc III and Alpha 21264 have 64 KB L1 cache, PowerPC G4 and G5 have 32
KB L1 cache, etc.

Summary MACH-AES is less time and memory efficient than MACH-FES
and MACH-F64. However, it provides much better security, and the achievable
speedup over the message authentication modes is significant in some settings.
MACH-F64 and MACH-FES provide security and tag lengths that are compara-
ble to those of the message authentication modes. The target computer architec-
ture of the MACH-F64 design was a 64-bit architecture with large L1 cache, and

it is extremely efficient on these architectures. MACH-FES on the other hand
is very efficient on 8-bit architectures, and achieves a significant speedup on 32-
and 64-bit architectures as well. Both MACH-AES and MACH-FES are built
using AES components. So, they have the advantage of reusing AES software
and hardware.

References

1. V. Afanassiev, C. Gehrmann and B. Smeets, “Fast message authentication using
efficient polynomial evaluation,” In Proceedings of FSE 1997, pp. 190–204.

2. M. Bellare, J. Kilian and P. Rogaway,“The security of the cipher block chaining
message authentication code,” JCSS, vol. 61, no. 3, 2000. Earlier version in Ad-
vances in Cryptology - CRYPTO ’94, LNCS 839, pp. 341–358, Springer-Verlag,
1994.

3. M. Bellare, R. Canetti and H. Krawczyk,“Keying hash functions for message
authentication,” In Advances in Cryptology - CRYPTO ’96, LNCS 1109, p. 1,
Springer-Verlag, 1996.

4. M. Bellare and C. Namprempre,“Authenticated encryption: relations among no-
tions and analysis of the generic composition paradigm,” In Advances in Cryptol-
ogy - ASIACRYPT 2000, LNCS 1976, Springer-Verlag, 2000.

5. M. Bellare,“New Proofs for NMAC and HMAC: Security without Collision-
Resistance,” In Advances in Cryptology - CRYPTO 2006, LNCS 4117, Springer-
Verlag, 2006.

6. A. Berendschot, B. den Boer, J. P. Boly, A. Bosselaers, J. Brandt, D. Chaum, I.
Damgard, M. Dichtl, W. Fumy, M. van der Ham, C. J. A. Jansen, P. Landrock,
B. Preneel, G. Roelofsen, P. de Rooij and J. Vandewalle, “Final Report of RACE
Integrity Primitives,” LNCS 1007, Springer-Verlag, 1995.

7. D. Bernstein, “Stronger security bounds for Wegman-Carter-Shoup authentica-
tors,” In Advances in Cryptology - EUROCRYPT 2005, LNCS, pp. 164–180,
Springer-Verlag, 2005.

8. D. Bernstein,“The Poly1305-AES message authentication code,” In the Proceed-
ings of FSE 2005, LNCS 3557, pp. 32–49, Springer-Verlag, 2005.

9. J. Bierbrauer, T. Johansson, G. Kabatianskii and B. Smeets, “On families of hash
functions via geometric codes and concatenation,” In the Proceedings of CRYPTO
’93, LNCS, pp. 331–342, Springer-Verlag, 1993.

10. E.Biham and A.Shamir, ”Differential cryptanalysis of DES-like cryptosystems,”
Journal of Cryptology, 4(1):3–72, 1991.

11. E. Biham, O. Dunkelman and N. Keller,“Related-key impossible differential attacks
on 8-round AES-192,” CT-RSA 2006, LNCS 3860, pp. 21–33, Springer-Verlag,
2006.

12. J. Black, S. Halevi, H. Krawczyk, T. Krovetz and P. Rogaway, “UMAC: Fast and
secure message authentication,” In Advances in Cryptology - CRYPTO ’99, LNCS,
pp. 216–233, Springer-Verlag, 1999.

13. J. Black and P. Rogaway,“CBC MACs for arbitrary-length messages: The three
key constructions,” In Advances in Cryptology - CRYPTO 2000, LNCS 1880, pp.
197–215, Springer-Verlag, 2000.

14. J. Black and P. Rogaway,“A block-cipher mode of operation for parallelizable mes-
sage authentication,” In Advances in Cryptology - EUROCRYPT 2002, LNCS
2332, pp. 384–397, Springer-Verlag, 2002.

15. G. Brassard,“On computationally secure authentication tags requiring short se-
cret shared keys,” In Advances in Cryptology - CRYPTO’82, LNCS, pp. 79–86,
Springer-Verlag, 1982.

16. L. Carter and M. Wegman,“Universal classes of hash functions,” JCSS, 22:265–279,
1981.

17. J. Daemen and V. Rijmen, “A New MAC Construction ALRED and a Specific
Instance ALPHA-MAC,” In the Proceedings of FSE 2005, LNCS 3557, pp. 1–17,
2005.

18. J. Daemen and V. Rijmen, “The Pelican MAC Function,” IACR ePrint Archive,
2005/088.

19. M. Etzel, S. Patel and Z. Ramzan,“Square Hash: Fast message authentication via
optimized universal hash functions,” In Advances in Cryptology - CRYPTO ’99,
LNCS 1666, Springer Verlag, 1999.

20. FIPS 113. Computer data authentication. Federal Information Processing Stan-
dards Publication 113, U. S. Department of Commerce / National Bureau of Stan-
dards, National Technical Information Service, Springfield, Virginia, 1994.

21. Advanced Encryption Standard (AES), FIPS Publication 197, November 26, 2001,
available at http://csrc.nist.gov/encryption/aes.

22. E. Gilbert, F.M. Williams and N. Sloane,“Codes which detect deception,” Bell
System Technical Journal, 53(3):405–424, 1974.

23. S. Halevi and H. Krawczyk,“MMH: Message authentication in software in the
gbit/second rates,” In the Proceedings of the 4th FSE Workshop, LNCS, Springer-
Verlag, 1997.

24. S. Hong, S. Lee, J. Lim, J. Sung, D. Cheon and I. Cho, “Provable security against
differential and linear cryptanalysis for the SPN structure,” In Proceeding of the
7th FSE Workshop, LNCS 1978, pp. 273-283, Springer, 2000.

25. ISO/IEC 9797-1. Information technology - security techniques - data integrity
mechanism using a cryptographic check function employing a block cipher algo-
rithm. International Organization for Standards, Geneva, Switzerland, 1999. Sec-
ond edition.

26. T. Iwata and K. Kurosawa,“OMAC: One-Key CBC MAC,” In Proceedings of FSE
2003, LNCS 2887, pp. 129–153. Springer-Verlag, 2003.

27. É. Jaulmes, A. Joux and F. Valette,“On the security of randomized CBC-MAC
beyond the birthday paradox limit: A new construction,” In the Proceedings of
FSE 2002, LNCS 2365, pp. 237–251, Springer-Verlag, 2002.

28. P. Junod, “Statistical Cryptanalysis of Block Ciphers,” PhD Thesis, EPF, Switzer-
land.

29. B. Kaliski and M. Robshaw,“Message authentication with MD5,” Technical
newsletter of RSA Laboratories, 1995.

30. J.-S. Kang, S. Hong, S. Lee, O. Yi, C. Park and J. Lim,“Practical and provable
security against differential and linear cryptanalysis for substitution-permutation
networks,” ETRI Journal, 23(4):158-167, 2001.

31. L. Keliher, H. Meijer and S.Tavares, “New method for upper bounding the maxi-
mum average linear hull probability for SPNs,” In Advances in Cryptology - EU-
ROCRYPT 2001, LNCS 2045, pp. 420-436, Springer-Verlag, Berlin, 2001.

32. L. Keliher, H. Meijer and S. Tavares, “Improving the upper bound on the maximum
average linear hull probability for Rijndael,” In the Proceedings of Selected Areas
in Cryptography, 8th Annual International Workshop, LNCS 2259, pp. 112-128,
Springer, 2001.

33. L. Keliher and J. Sui, Exact Maximum Expected Differential and Linear Proba-
bility for 2-Round Advanced Encryption Standard (AES), IACR ePrint Archive,
2005/321.

34. J. Kelsey, B. Schneier and D. Wagner,“Related-key cryptanalysis of 3-WAY,
Biham-DES, CAST, DES-X, NewDES, RC2 and TEA,” In the Proceedings of
ICICS ’97, LNCS 1334, pp. 233–246, Springer-Verlag, 1997.

35. H. Krawczyk,“LFSR-Based Hashing and Authentication,” In Advances in Cryp-
tology - CRYPTO ’94, LNCS 839, pp. 129–139, Springer-Verlag, 1994.

36. T. Krovetz and P. Rogaway,“Fast universal hashing with small keys and no prepro-
cessing: The PolyR construction,” In the Proceedings of ICICS 2000, pp. 73–89,
Springer-Verlag, 2000.

37. K. Kurosawa and T. Iwata,“TMAC: Two-Key CBC MAC,” Cryptology ePrint
Archive, Report 2002/092, http://eprint.iacr.org/.

38. M. Matsui, “New Structure of Block Ciphers with Provable Security against Dif-
ferential and Linear Cryptanalysis,” In the Proceedings of FSE 1996, LNCS 1039,
Springer Verlag, 1996.

39. M. Matsui, “New block encryption algorithm MISTY,” In the Proceedings of FSE
1997, LNCS 1267, pp. 53-67, Springer-Verlag, 1997.

40. K. Minematsu and Y. Tsunoo, “Provably Secure MACs from Differentially-
Uniform Permutations and AES-Based Implementations,” In the Proceedings of
FSE 2006, LNCS 4047, pp. 226–241, 2006.

41. S. Park, S. H. Sung, S. Chee, E.-J. Yoon and J. Lim, “On the security of Rijndael-
like structures against differential and linear cryptanalysis,” In Advances in Cryp-
tology - ASIACRYPT 2002, LNCS 2501, pp. 176-191, Springer, 2002.

42. S. Park, S.H. Sung, S. Lee and J. Lim, “Improving the upper bound on the maxi-
mum differential and the maximum linear hull probability for SPN structures and
AES,” In the Proceedings of FSE 2003, LNCS 2887, pp. 247–260, Springer, 2003.

43. E. Petrank and C. Rackoff,“CBC MAC for real-time data sources,” J.Cryptology,
vol. 13, no. 3, pp. 315–338, Springer-Verlag, 2000.

44. B. Preneel and P. van Oorschot,“MDx-MAC and building fast MACs from hash
functions,” In Advances in Cryptology - CRYPTO ’95, LNCS 963, pp. 1–14,
Springer-Verlag, 1995.

45. B. Preneel and P. van Oorschot,“On the security of two MAC algorithms,” In
Advances in Cryptology - EUROCRYPT ’96, LNCS 1070, pp. 19–32, Springer-
Verlag, 1996.

46. P. Rogaway,“Bucket hashing and its application to fast message authentication,”
In Advances in Cryptology - CRYPTO ’95, LNCS 963, pp. 29–42, Springer-Verlag,
1995.

47. G.J. Simmons,“Authentication theory / Coding theory,” In Advances of Cryptol-
ogy - CRYPTO ’84, LNCS, pp. 411–432, Springer-Verlag, 1984.

48. D. Stinson,“Universal hashing and authentication codes,” Designs, Codes and
Cryptography 1994; 4:369–380.

49. G. Tsudik,“Message authentication with one-way hash functions,” In the Proceed-
ings of Infocom ’92, IEEE Press, 1992.

50. S. Vaudenay,“Decorrelation over infinite domains: The encrypted CBC-MAC case,”
Communications in Information and Systems (CIS), vol. 1, pp. 75–85.

51. M. Wegman and L. Carter, “New hash functions and their use in authentication
and set equality,” JCSS, 22:265–279, 1981.

