
Efficient Byzantine Agreement
with Faulty Minority?

Zuzana Beerliová-Trub́ıniová, Martin Hirt, and Micha Riser

ETH Zurich, Department of Computer Science,
{bzuzana,hirt}@inf.ethz.ch, micha@povworld.org

Abstract. Byzantine Agreement (BA) among n players allows the play-
ers to agree on a value, even when up to t of the players are faulty.
In the broadcast variant of BA, one dedicated player holds a message,
and all players shall learn this message. In the consensus variant of BA,
every player holds (presumably the same) message, and the players shall
agree on this message.
BA is the probably most important primitive in distributed protocols,
hence its efficiency is of particular importance.
BA from scratch, i.e., without a trusted setup, is possible only for t <
n/3. In this setting, the known BA protocols are highly efficient (O(n2)
bits of communication) and provide information-theoretic security.
When a trusted setup is available, then BA is possible for t < n/2 (con-
sensus), respectively for t < n (broadcast). In this setting, only com-
putationally secure BA protocols are reasonably efficient (O(n3κ) bits).
When information-theoretic security is required, the most efficient known
BA protocols require O(n17κ) bits of communication per BA, where κ
denotes a security parameter. The main reason for this huge communi-
cation is that in the information-theoretic world, parts of the setup are
consumed with every invocation to BA, and hence the setup must be
refreshed. This refresh operation is highly complex and communication-
intensive.
In this paper we present BA protocols (both broadcast and consensus)
with information-theoretic security for t < n/2, communicating O(n5κ)
bits per BA.

Keywords: Byzantine agreement, broadcast, consensus, information-
theoretic security, multi-party computation, efficiency.

1 Introduction

1.1 Byzantine Agreement, Consensus, and Broadcast

The problem of Byzantine agreement (BA), as originally proposed by Pease,
Shostak, and Lamport [PSL80], is the following: n players P1, . . . , Pn want to
reach agreement on some message m, but up to t of them are faulty and try
? This work was partially supported by the Zurich Information Security Center. It

represents the views of the authors.

to prevent the others from reaching agreement. There are two flavors of the
BA problem: In the broadcast problem, a designated player (the sender) holds
an input message m, and all players should learn m and agree on it. In the
consensus problem, every player Pi holds (supposedly the same) message mi,
and the players want to agree on this message.

More formally, a protocol with PS giving inputm is a broadcast protocol, when
every honest Pi outputs the same message m′

i = m′ for some m′ (consistency),
and when m′ = m, given that PS is honest (validity). Analogously, a protocol
with every player Pi giving input mi is a consensus protocol, when every honest
Pi outputs m′

i = m′ for some m′ (consistency), and when m′ = m, given that
every honest Pi inputs the same message mi = m for some m (validity).

1.2 Models and Bounds

We assume that the players are connected with a complete synchronous network
of secure channels. Complete means that each pair of players shares a channel.
Synchronous means that all players share a common clock and that the message
delay in the network is bounded by a constant.

The feasibility of broadcast and consensus depends on whether or not a
trusted setup (e.g. a PKI setup) is available. When no trusted setup is available
(“from scratch”), then consensus and broadcast are achievable if and only if at
most t < n/3 players are corrupted. When a trusted setup is available, then
consensus is achievable if and only if at most t < n/2 players are corrupted, and
broadcast is achievable if and only if at most t < n players are corrupted. All
bounds can be achieved with information-theoretical security, and the bounds
are tight even with respect to cryptographic security. We stress in particular that
no broadcast protocol (even with cryptographic intractability assumptions) can
exceed the t < n/3 bound unless it can rely on a trusted setup [FLM86,Fit03].
The main difference between protocols with information-theoretic security and
those with cryptographic security is their efficiency.

1.3 Efficiency of Byzantine Agreement

We are interested in the communication complexity of BA protocols. The bit
complexity of a protocol is defined as the number of bits transmitted by all
honest players during the whole protocol, overall.

In the model without trusted setup, Byzantine agreement among n players is
achievable for t < n/3 communicating O(n2) bits [BGP92,CW92]. In the model
with a trusted setup, the communication complexity of BA heavily depends
on whether information-theoretic security is required or cryptographic security
is sufficient. When cryptographic security is sufficient, then O(n3κ) bits are
sufficient for reaching agreement, where κ denotes the security parameter [DS83].
When information-theoretic security is desired, then reaching agreement requires
at least O(n6κ) bits of communication [BPW91,PW96,Fit03].

However, the latter result consumes the setup, i.e., a given setup can be used
only for one single BA operation. Of course, one can start with a m times larger

setup which supports m BA operations, but the number of BA operations is a
priori fixed, and the size of the setup grows linearly with the number of intended
BA operations. This diametrically contrasts the cryptographic scenario, where a
fixed-size setup is sufficient for polynomially many BA operations. In [PW96], a
method for refreshing the setup is shown: They start with a compact setup, use
some part of the setup to perform the effective BA operation, and the remaining
setup to generate a new, full-fledged setup. With this approach, a constant-size
setup is sufficient for polynomially many BA invocations. However, with every
BA invocation, the setup must be refreshed, which requires a communication
of O(n17κ) bits [PW96,Fit03]. Hence, when the initial setup should be compact,
then the costs for a BA operation of [PW96] is as high as O(n17κ) bits.

1.4 Contributions

We present a protocol for information-theoretically secure Byzantine agreement
(both consensus and broadcast) which communicatesO(n4κ) bits when the setup
may be consumed (i.e., the number of BA operations per setup is a priori fixed).
This contrasts to the communication complexity of O(n6κ) bits of previous
information-theoretically secure BA protocols [BPW91,PW96].

More importantly, we present a refresh operation for our BA protocol, com-
municating only O(n5κ) bits, contrasting the complexity of O(n17κ) bits of pre-
vious refresh protocols [PW96]. This new results allows for polynomially many
information-theoretically secure BA operations from a fixed-size setup, where
each BA operations costs O(n5κ) bits.

This substantial speed-up is primarily due to a new concept, namely that the
refresh operation does not need to succeed all the time. Whenever the setup is
to be refreshed, the players try to do so, but if they fail, they pick a fresh setup
from an a priori prepared stock. Furthermore, using techniques from the player-
elimination framework [HMP00], the number of failed refresh operations can be
limited to t. Using algebraic information-theoretic pseudo-signatures [SHZI02]

for appropriate parameters, the function to be computed in the refresh protocol
becomes algebraic, more precisely a circuit over a finite field with multiplicative
depth 1. Such a function is very well suited for efficient non-robust computation;
in fact, it can be computed based on a simple one-dimensional Shamir-sharing,
although t < n/2.1 This allows a very simple refresh protocol with low commu-
nication overhead.

Compared to the refresh protocol of [PW96], our refresh protocol has the
disadvantage that it requires t < n/2, whereas the protocol of [PW96] can cope
with t < n. However, almost all applications using BA as sub-protocol (like
voting, biding, multi-party computation, etc.) inherently require t < n/2, hence
the limitation on our BA protocol is usually of theoretical relevance only.

1 Note that general MPC protocols for this model need a three-level shar-
ing, namely a two-dimensional Shamir sharing ameliorated with authentication
tags [RB89,Bea91,BH06].

2 Preliminaries

2.1 Formal Model

We consider a set of n players P = {P1, . . . , Pn}, communicating over pairwise
secure synchronous channels. Many constructions require a finite field F ; we set
this field to F = GF (2κ) where κ is a security parameter (we allow a negligible
error probability of O(2−κ)). To every player Pi ∈ P, a unique non-zero element
αi ∈ F \ {0} is assigned. The faultiness of players is modeled by a central
computationally unlimited adversary adaptively corrupting up to t < n/2 players
and taking full control over them.

We assume that there is a trusted setup, i.e., before the protocol starts, a
fixed probabilistic function Init : 1κ → (state1, . . . , staten) is run by a trusted
party, and every player Pi ∈ P secretly receives statei as his initial state.

2.2 Information-Theoretically Secure Signatures

A classical (cryptographic) signature scheme consists of three algorithms:
KeyGen, Sign, and Verify. KeyGen generates two keys, a signing key for the signer
and a public verification key ; Sign computes a signature for a given message and
a given signing key; and Verify checks whether a signature matches a message
for a given verification key. A secure signature scheme must satisfy that every
signature created by Sign is accepted by Verify (with the corresponding sign-
ing/verification keys, completeness), and without the signing key it is infeasible
to compute a signature which is accepted by Verify (unforgeability). Classical
signature schemes provide cryptographic security only, i.e., an unbounded forger
can always find an accepting signature for any given message, with exhaustive
search, using Verify as test predicate.

As an information-theoretically secure signature scheme must be secure even
with respect to a computationally unbounded adversary, every verifier must have
a different verification key, and these verification keys must be kept private. Thus
it cannot be automatically guaranteed that a signature is either valid for all ver-
ifiers or for no verifier (it might be valid for one verifier, but invalid for another
one). Therefore, an additional property called transferability is required: It is
impossible for a faulty signer to produce a signature which, with non-negligible
probability, is valid for some honest verifier without being valid for some other
honest verifier. We say that a signature scheme is information-theoretically se-
cure if it is complete, unforgeable and transferable.

In [SHZI02], a so called (ψ,ψ′)-secure signature scheme is presented, which
allows the signer to sign a message m ∈ F such that any of the players in P
can verify the validity of the signature. As long as the signer signs at most ψ
messages and each verifier verifies at most ψ′ signatures the success probability
of attacks is less then 1/|F| = 2−κ.

Here, we use a one-time signature scheme (i.e., one setup allows only for one
single signature), where every verifier may verify up to t + 2 signatures (of the
same signer). In context of [SHZI02], this means that we set ψ = 1 and ψ′ = t+2.

By simplifying the notation (and by assuming that 2t + 1 ≤ n), we receive the
following scheme:

KeyGen: Key generation takes as input the string 1κ, and outputs the sign-
ing key sk to the signer PS and the n verification keys vk1, . . . , vkn to
the respective verifiers P1, . . . , Pn. The signing key is a random vector
sk = (p0, . . . , pn+1, q0, . . . , qn+1) ∈ F2(n+2), defining the polynomial

Fsk(V1, . . . , Vn+1,M) =

p0 +
n+1∑
j=1

pjVj

 +M

q0 +
n+1∑
j=1

qjVj


= p0 +Mq0 +

n+1∑
j=1

(pj +Mqj)Vj .

The verification key vki of each player Pi ∈ P is the vector vki =
(vi,1, . . . , vi,n+1, xi, yi), where the values vi,1, . . . , vi,n+1 are chosen uniformly
at random from F , and the xi- and yi-values characterize the polyno-
mial Fsk, when applied to vi,1, . . . , vi,n+1, i.e., xi = p0 +

∑n+1
j=1 pjvi,j and

yi = q0 +
∑n+1

j=1 qjvi,j .
Sign: The signature σ of a message m ∈ F is a vector σ = (σ0, . . . , σn+1),

characterizing the polynomial Fsk when applied to m, i.e., σj = pj +mqj for
j = 0, . . . , n+ 1.

Verify: Given a message m, a signature σ = (σ0, . . . , σn+1), and the verifica-
tion key vki = (vi,1, . . . , vi,n+1, xi, yi) of player Pi, the verification algorithm
checks whether

xi +myi
?= σ0 +

n+1∑
j=1

σjvi,j

(
= Fsk(vi,1, . . . , vi,n+1,m)

)
.

The protocol has the following sizes: Signing key: (2n+ 4)κ bits; verification
key: (n+3)κ bits; signature: (n+2)κ bits. The total information distributed for
one signature scheme (called sig-setup) consists of (n2 + 5n+ 8)κ bits.

Note that a sig-setup for the player set P is trivially also a valid sig-setup
for every player subset P ′ ⊆ P. We will need this observation later.

3 Protocol Overview

Basically, the new broadcast protocol is the protocol of [DS83], ameliorated
with information-theoretically secure signatures [SHZI02]. Similarly to [PW96],
we start with a compact (constant-size) setup, which allows only for few broad-
casts, and use some of these broadcasts for broadcasting the payload, and some
of them to refresh the remaining setup, resulting in a fresh, full-fledged setup.

We borrow ideas from the player-elimination framework [HMP00] to substan-
tially speed-up the refresh protocol: The generation of the new setup is performed
non-robustly, i.e., it may fail when an adversary is present, but then the failure

is detected by (at least) one honest player. At the end of the refresh protocol,
the players jointly decide (using one BA-Operation) whether the refresh has suc-
ceeded or not; if yes, they are happy to have generated a new setup. If it failed,
they run a fault-handling procedure, which yields a set E of two players, (at
least) one of them faulty. As originally the set P contains an honest majority,
also the set P \ E contains an honest majority. So the player set is reduced to
P ′ ← P \ E (with at most t′ ← t− 1 faulty players).

We are still missing the fresh setup; however, as with each fault-handling,
one faulty player is eliminated from the actual player set, faults can occur only
t times. For these t cases, we have a stock of t prepared setups, and with each
fault, we take one out of this stock. This way it is ensured that at any point
in the protocol, we have t′ prepared setups on stock, where t′ is the maximum
number of faulty players in P ′. More precisely, the protocol runs as follows:

Initial Setup: The procedure Init generates 2+5t BA-setups2; one for the first
BA operation, one for the first invocation of the refresh protocol, and t extra
setups for the stock, each consisting of 2 BA-setups for replacing the failed
refresh and 3 BA-setups for localizing the set E ⊆ P in the fault-handling
procedure. The actual player set is set to P ′ = P and the maximum number
of faulty players in P ′ to t′ = t.

Broadcast/Consensus: To perform a BA operation, the protocol Broadcast,
resp. Consensus is invoked with the payload. In parallel, Refresh is invoked
to refresh the reduced setup. If successful, Refresh produces two BA-setups
using only one single BA operation. If Refresh fails, 5 BA-setups are taken
from the stock, an elimination set E ⊆ P ′ is localized (using 3 BA’s) and
eliminated (P ′ ← P ′ \E, t′ ← t′ − 1), and the two remaining BA-setups are
kept as new state – for the next Broadcast/Consensus operation.

In our presentation, we ignore the fact that faulty players can sent no message
(or a message in a wrong format) when they are expected to send a message to an
honest player. As general rule, we assume that when an honest player does not
receive an expected message, he behaves as if he had received the zero-message.

4 Broadcast and Consensus

We present the protocols for the actual broadcast and consensus operation.
Note that the Refresh protocol outputs correct BA setup for P ′ only (rather

than P). However, as P \ P ′ might contain honest players we need to achieve
BA in P. We first present the BA protocols for P ′, then show how to realize BA
in P using these protocols.

As [SHZI02] signatures can cope only with message in the field F , also our
BA protocols are limited to messages m ∈ F . An extension to longer messages
is sketched in Appendix A.

2 Init invokes KeyGen 4 + 10t times in parallel for each signer PS ∈ P. As will become
clear later, 2n sig-setups are equivalent to one BA-setup.

We first present a broadcast protocol that allows a sender PS ∈ P ′ to con-
sistently distribute a message m ∈ F to the players in P ′.3 The protocol is
essentially the protocol of [DS83], with a simplified description of [Fit03]. In ad-
dition, the protocol is modified such that in one protocol run every player verifies
at most ψ′ = t+2 signatures of each signer (as required by our signature scheme).

Every player maintains a set A of accepted messages, a set N of newly
accepted messages, and (one or several) sets Σm of received signatures for a
message m.

Protocol Broadcast’.
0. Sender PS : Send m and the corresponding signature σS to all Pi ∈ P ′.
1. ∀Pi ∈ P ′: If Pi received from the sender a message m together with a

valid signature σS set A = N = {m} and Σm = {σS}.
k. In each Step k = 2, . . . , t′ + 1, execute the following sub-steps for every

player Pi ∈ P ′ \ {PS}:
k.1 For every message m ∈ N , compute the signature σi on m, and send

(m,Σm ∪ {σi}) to all players in P ′. Set N = {}.
k.2 In turn, for every message (m,Σm) received in Sub-step k.1 do:

– If m ∈ A, or if |A| ≥ 2, ignore the message,
– else if Σm contains valid signatures from at least k different

players in P ′, including PS , include m in A and in N ,
– else ignore the received message (m,Σm) and all further mes-

sages from the player who has sent it.
t′+2. ∀Pi: if |A| = 1, then accept m ∈ A as the broadcasted value. Otherwise,

the sender is faulty, and accept m =⊥ (or any fixed pre-agreed value from
F) as the broadcasted value.

One can easily verify that the protocol Broadcast’ is as secure as the used sig-
nature scheme [DS83,Fit03] and that every player verifies at most t+2 signatures
from the same signer. Furthermore, every signer Pi issues up to two signatures;
however, the second one is for the sole goal of proving to other players that the
sender PS is faulty, and the secrecy of Pi’s signing key is not required anymore.
Hence, it is sufficient to use a one-time signature scheme, whose unforgeability
property is broken once the signer issues two signatures.

To construct a consensus protocol in P ′, we use a trick of [Fit04]: Every
player needs two sig-setups, a primary scheme for the same purpose as in the
above protocol, and an alternative scheme for identifying the message (if there
is any) originally held by the majority of the players. During the protocol execu-
tion, every player Pi additionally maintains (one or several) sets Σ′

m, containing
alternative signatures σ′j (issued by Pj) for m, where Σ′

m with |Σ′
m| ≥ n′ − t′

now “replaces” the sender’s signature in the above broadcast protocol. Now we
present the consensus protocol for P ′, each Pi holding a message mi ∈ F :

3 Note that Broadcast’ will not be used in the paper, it is presented only for the sake
of clarity of the protocol Consensus’.

Protocol Consensus’.
0. ∀Pi ∈ P ′: Send mi and the corresponding (alternative) signature σ′i to

all players in P ′.
1. ∀Pi ∈ P ′: If there exists a message m received (together with a valid

signature) from at least n′ − t′ different players, let Σ′
m denote the set

of all these signatures, and set A = N = {m} and Σm = {}. If no such
message exists, set A = N = {}.

k. In each Step k = 2, . . . , t′ + 2, execute the following sub-steps for every
player Pi ∈ P ′:
k.1 For every message m ∈ N , compute the signature σi on m, and send

(m,Σ′
m, Σm ∪ {σi}) to all players in P ′. Set N = {}.

k.2 In turn, for every message (m,Σ′
m, Σm) received in Sub-step k.1 do:

– If m ∈ A, or if |A| ≥ 2, ignore the message,
– else if Σm contains valid signatures in the primary scheme from

at least k − 1 different players in P ′, and Σ′
m contains valid

signatures in the alternative scheme from at least n′−t′ different
players in P ′, then include m in A and in N ,

– else ignore the received message (m,Σ′
m, Σm) and all further

messages from the player who has sent it.
t′+3. ∀Pi: if |A| = 1, accept m ∈ A as the agreed value, otherwise (there was

no pre-agreement) accept m =⊥.

The security of the protocol Consensus’ follows immediately from the security
of the protocol Broadcast’, and the fact that every player issues at most one
signature in the alternative scheme, and each such signature is verified at most
t + 1 times. The communication complexity of BA in P ′ is at most 4n3|σ| +
3n2κ+ n2|σ| = (8n4 + 26n3 + 9n2)κ.

Broadcast and consensus in P can be constructed from consensus in P ′:

Protocol Broadcast.
1. The sender PS ∈ P sends the message m to every player Pj ∈ P ′.
2. Invoke Consensus’ to reach agreement on m among P ′.
3. Every player Pi ∈ P ′ sends the agreed message m to every player Pj ∈ P.
4. Every player Pj ∈ P accepts the message m which was received most often.

Protocol Consensus.
1. Invoke Consensus’ to reach agreement on m among P ′.
2. Every player Pi ∈ P ′ sends the agreed message m to every player Pj ∈ P.
3. Every player Pj ∈ P accepts the message m which was received most often.

The security of these protocols follows from the security of Consensus’ and
from t′ < n′/2 and t < n/2. The communication complexity of BA in P is at
most (8n4 + 26n3 + 11n2)κ.

5 Refreshing the Setup

5.1 Overview

To “refresh” the setup means to compute a new setup which allows for two BA
operations, while this computation consumes only one BA-setup. The protocol
Refresh generates the new setup with a special-purpose MPC among the players
in P ′. This computation is performed non-robustly : Every sub-protocol either
achieves its intended goal, or it fails. When it fails, then at least one honest
player detects the failure. We do not require agreement on the fact whether
or not a sub-protocol has failed. Only at the very end of Refresh, the players
agree on whether or not a player has detected a failure during the computation
(using consensus, thereby consuming one BA-setup). The computation takes
only random values as input, so in case of failure, privacy is of no interest.

The computation of the verification keys will not only be non-robust, but
even non-detectable, i.e., it might output wrong values without any (honest)
player detecting the failure. However, once the verification keys are generated,
their correctness is verified, and honest players can detect whether or not there
was a failure.

We provide a fault-handling sub-protocol, to be invoked when Refresh fails,
which localizes a set E ⊆ P ′ of two players, where (at least) one of them is
faulty. This allows to reduce the actual player set, thereby reducing the maxi-
mum number of faulty players, thereby limiting the number of times Refresh can
fail. In this fault-handling sub-protocol, every players sends to some designated
player all messages he has received during the course of the protocol, as well as
all random elements he sampled (which define the sent messages). Given this
information, the designated player can help to compute the set E to eliminate.

In the sequel, we present the used sub-protocols (all of them non-robust), and
finally the protocols Refresh and FaultHandling. The protocol Refresh invokes once
the protocol Consensus’, hence it consumes one valid BA-setup. The protocol
FaultHandling invokes 3 times the protocol Broadcast; it requires enough BA-
setups for that. However, the protocol FaultHandling is invoked only t times in
total, so the required BA-setups can be prepared at beforehand.

For the sake of a simpler presentation, we give to every player Pi a flag faili,
which is initialized to false, and is set to true once Pi has detected a failure. We
say that a protocol succeeds when no player has detected a failure; otherwise,
the protocol fails.

5.2 Secret Sharing

We use standard Shamir sharing [Sha79]. We say that a value a is t′-shared
among the players P ′ if there exists a degree-t′ polynomial f(·) with f(0) = a,
and every (honest) player Pi ∈ P ′ holds a share 〈a〉i = f(αi), where αi is
the unique evaluation point assigned to Pi. We denote the collection of shares
as 〈a〉. Observe that we can easily add up shared values, namely 〈a + b〉 =
(〈a〉1 + 〈b〉1, . . . , 〈a〉n′ + 〈b〉n′). We write 〈a〉+ 〈b〉 as a short hand.

In order to let a dealer PD ∈ P ′ verifiably share a value a according to
Shamir sharing, we employ the following (non-robust) protocol (based on the
VSS protocol of [BGW88])

Protocol Share.
1. (Distribution.) PD selects the coefficients c0,1, c1,0, . . . , ct′,t′ at random, and

sets f(x, y) = a + c1,0x + c0,1y + c1,1xy + . . . + ct′,t′x
t′yt′ . Then, to every

Pi ∈ P ′, PD computes and sends the polynomials fi,?(y) = f(αi, y) and
f?,i(x) = f(x, αi).

2. (Checking.) For every pair Pi, Pj ∈ P ′, Pi sends fi,?(αj) to Pj , who compares
the received value with f?,j(αi). Pj sets failj = true if some difference is
non-zero.

3. (Output) Every Pj outputs 〈a〉i = fi,?(0).

Lemma 1. The protocol Share has the following properties: (Completeness) If
all players in P ′ correctly follow the protocol, then the protocol succeeds. (Correct-
ness) If the protocol succeeds, then the outputs (〈a〉1, . . . , 〈a〉n′) define a degree-t′

polynomial f(·). (Validity & Privacy) If the protocol succeeds and the dealer is
honest with input a, then f(0) = a and no subset of t′ players obtains any in-
formation on a. (Complexity) The protocol communicates at most (2n2 − 2n)κ
bits and requires at most (1/4n2 + 1/2n− 3/4)κ random bits.

The following protocol lets the players in P ′ reconstruct a correctly Shamir
shared value a towards a designated player PR ∈ P ′:

Protocol Recons.
1. Every player Pi ∈ P ′ sends his share 〈a〉i to the recipient PR.
2. PR verifies whether 〈a〉1, . . . , 〈a〉n′ lie on a degree-t′ polynomial f(·) and out-

puts a = f(0) if yes. Otherwise, PR sets failR = true and outputs a = 0.

Lemma 2. The protocol Recons has the following properties: (Completeness) If
all players in P ′ correctly follow the protocol, then the protocol succeeds. (Correct-
ness) If the protocol succeeds, then PR outputs the correct secret a. (Complexity)
The protocol communicates at most (n− 1)κ bits and requires no randomness.

5.3 Generating Random Values

We present a (trivial) protocol that allows the players to generate a random
value c ∈R F , known to all players in P ′.

Protocol GenerateRandom.
1. ∀Pi ∈ {P1, . . . , Pt′+1}: select a random value ci ∈R F and invoke Share to

share ci among P ′.
2. The players compute 〈c〉 =

∑t′+1
i=1 〈ci〉.

3. ∀Pk ∈ P ′: invoke Recons to reconstruct 〈c〉 towards player Pk.

Lemma 3. The protocol GenerateRandom has the following properties: (Com-
pleteness) If all players in P ′ correctly follow the protocol, then the proto-
col succeeds. (Correctness) If the protocol succeeds, then it generates a uni-
formly random value c ∈R F , known to all players Pj ∈ P ′. (Complexity)
The protocol communicates at most (n3 + n2 − 2n)κ bits and requires at most
(1/8n3 + 3/8n

2 + 3/8n− 5/8)κ random bits.

Proof (sketch). Completeness and complexity follow from inspecting the proto-
col. We now focus on the case when the protocol succeeds. There is at least
one honest player Ph in {P1, . . . , Pt′+1}, who chooses his value ch uniformly at
random. As in Step 1, the adversary does not obtain any information about ch
(privacy of Share), and as the values ci of every player Pi ∈ P ′ are fixed after
Step 1 (Correctness of Share), ch is statistically independent of all other values
cj (j 6= i). Hence, the sum c1 + . . .+ ct′+1 is uniformly distributed. ut

5.4 Generating one Sig-setup

Recall that a sig-setup for a designated signer PS consists of the signing key
(p0, . . . , pn′+1, q0, . . . , qn′+1), which should be random and known only to the
signer PS , and one verification key (vi,1, . . . , vi,n′+1, xi, yi) for each player Pi ∈
P ′, where the values vi,1, . . . , vi,n′+1 should be random and known only to Pi,4

and the values xi and yi are computed as xi = p0 +
∑n′+1

j=1 pjvi,j and yi =

q0 +
∑n′+1

j=1 qjvi,j , respectively. Table 1 summarizes the steps needed to compute
these values.

Player Inputs (rand.) Intermediate (shared) Outputs

PS
p0 · · · pn′+1

q0 · · · qn′+1

P1 v1,1 · · · v1,n′+1

p1v1,1 · · · · · · pn′+1v1,n′+1 x1 = p0 +
∑

k pkv1,k

q1v1,1 · · · · · · qn′+1v1,n′+1 y1 = q0 +
∑

k qkv1,k

· ·

Pn′ vn′,1 · · · vn′,n′+1

p1vn′,1 · · · · · · pn′+1vn′,n′+1 xn′ = p0 +
∑

k pkvn′,k

q1vn′,1 · · · · · · qn′+1vn′,n′+1 yn′ = q0 +
∑

k qkvn′,k

Table 1. Preparing one sig-setup

4 The randomness of vi,1, . . . , vi,n′+1 is needed for the sole reason of protecting the
verifier Pi, hence it must be guaranteed for honest verifiers only.

In our protocol, first every player Pi chooses and secret-shares his verification
key (vi,1, . . . , vi,n′+1). Then, the players jointly generate three random vectors
(p0, . . . , pn′+1), (q0, . . . , qn′+1), and (r0, . . . , rn′+1). The first two of these vectors
will serve as signing key, and the third will serve as blinding in the verification
of the computation. Then, for each of these three vectors, the values x1, . . . , xn′ ,
respectively y1, . . . , yn′ or z1, . . . , zn′ , are computed. This computation is not
detectable: It might be that one of the xi, yi or zi values is wrong, and still
no honest player has detected a failure (however, when all players correctly
follow the protocol, then all values will be correct). The correctness of these
values is verified in an additional verification step: Two random challenges ρ
and ϕ are generated, and the linearly combined (and blinded) signing vector
(ρp0 + ϕq0 + r0, . . . , ρpn′+1 + ϕqn′+1 + rn′+1) is computed, and (distributively)
compared with the linearly combined verification keys. If all checks are successful,
then (with overwhelming probability) all keys are correctly computed.

Protocol GenerateSignatureSetup.
1. (Generate vi,k-values.) Every Pi ∈ P ′ selects random vi,1, . . . , vi,n′+1 and

invokes Share to share them.
2. (Generate pk-values.) Invoke GenerateRandom n′ + 1 times to obtain shared
p0, . . . , pn′+1.

3. (Compute xi-values.) For every xi, execute the following steps:

3.1 Every Pj ∈ P ′ (locally) computes ci,j =
∑n′+1

k=1 〈pk〉j〈vi,k〉j and invokes
Share to share it.

3.2 The players compute 〈xi〉 = 〈p0〉 +
∑n′

j=1 λj〈ci,j〉, where λj denotes the
j-th Lagrange coefficient5.

4. (Generate qk/yi-values.) Generate (q0, . . . , qn′+1) and (y1, . . . , yn′) along the
lines of Steps 2–3.

5. (Generate rk/zi-values.) Generate (r0, . . . , rn′+1) and (z1, . . . , zn′) along the
lines of Steps 2–3.

6. (Check correctness of the computed xi/yi-values)
6.1 Invoke GenerateRandom twice to generate random challenges ρ and ϕ.
6.2 For k = 1, . . . , n′ + 1, compute and reconstruct towards every player
〈sk〉 = ρ〈pk〉+ ϕ〈qk〉+ 〈rk〉.

6.3 For i = 1, . . . , n′, compute 〈wi〉 = s0 +
∑n′+1

k=1 sk〈vi,k〉.
6.4 For i = 1, . . . , n′, compute 〈w̃i〉 = ρ〈xi〉+ ϕ〈yi〉+ 〈zi〉.
6.5 For i = 1, . . . , n′, reconstruct to every player 〈di〉 = 〈wi〉 − 〈w̃i〉.

6.6 Every Pj checks whether di
?= 0 for i = 1, . . . , n′, and sets failj = true in

case of any non-zero value.
7. (Announce xi/yi-values.) For every Pi ∈ P ′, invoke Recons to reconstruct
〈xi〉 and 〈yi〉 towards Pi.

5 The j-th Lagrange coefficient can be computed as λj =
∏n′

i=1,i6=j
−αi

αj−αi
.

Lemma 4. The protocol GenerateSignatureSetup has the following properties:
(Completeness) If all players in P ′ correctly follow the protocol, then the protocol
succeeds. (Correctness) If the protocol succeeds, then (with overwhelming proba-
bility) it generates a correct signature setup. (Privacy) If the protocol succeeds,
then no subset of t′ players obtains any information they are not allowed to ob-
tain. (Complexity) The protocol communicates at most (11n4+4n3−3n2−13n)κ
bits and requires at most (2n4 + 4n3 + 2n2 + 3)κ random bits.

Proof (sketch). (Completeness) We consider the case that all players follow the
protocol, hence no sub-protocol fails. Observe that for every i = 1, . . . , n′,
the points (α1, ci,1), . . . , (αn′ , ci,n′) lie on a degree-2t′ polynomial fi(·) with
fi(0) =

∑n′+1
k=1 pkvi,k. This polynomial is well defined because n′ > 2t′, hence

we can interpolate fi(0) with Lagrange’s formula.6 This interpolation is done
distributively, i.e., every player Pj shares his ci,j , then these sharings are com-
bined using Lagrange’s formula, and p0 is distributively added, resulting in
a sharing of xi = p0 +

∑n′+1
k=1 pkvi,k. Similarly, yi = q0 +

∑n′+1
k=1 qkvi,k and

zi = r0 +
∑n′+1

k=1 rkvi,k. Clearly, for any ρ and ϕ, (ρp0 +ϕq0 + r0)+
∑n′+1

k=1 (ρpk +
ϕqk + rk)vi,k = ρxi + ϕyi + zi, hence di = 0, and no player detects a failure in
Step 6.6.

(Correctness) We have to show that when the protocol succeeds, then for
i = 1, . . . , n′ holds xi = p0 +

∑n′+1
k=1 pkvi,k and yi = p0 +

∑n′+1
k=1 qkvi,k. Observe

that after Step 5, the values vi,k, pk, qk, rk, xi, yi, zi are fixed (they all are t′-
shared). When xi and yi do no satisfy the required equation above, then only
with negligible probability, for random ρ and ϕ they satisfy the equation (ρp0 +
ϕq0 + r0) +

∑n′+1
k=1 (ρpk + ϕqk + rk)vi,k = ρxi + ϕyi + zi.

(Privacy) We have to show that when the protocol succeeds, every player
learns only his respective key (plus some random data he could have generated
himself with the same probability). First observe that in Steps 1–5, the only
communication which takes place is by invocation of Share, which leaks no in-
formation to the adversary. In Step 6, the values s1, . . . , sn′+1 and d1, . . . , dn′

are reconstructed. Every value sk is blinded with a random rk (unknown to the
adversary), so is uniformly random from the viewpoint of the adversary. The
values di are either 0 (and hence the adversary can easily simulate them), or the
protocol fails (and all computed values are discarded).

(Complexity) The complexity can be verified by inspecting the protocol. ut

5.5 The Refresh-Protocol

In order to refresh a BA-setup, we need to generate two BA-setups, consuming
only one BA-setup. Remember that one BA-setup consists of 2n′ sig-setups (2
for every potential signer); hence, Refresh needs to generate 4n′ sig-setups.

6 Note that fi(0) is arbitrary when a single player is incorrect — something we do not
care for when arguing about completeness.

Protocol Refresh.
0. ∀Pi ∈ P ′: set faili = false.
1. Invoke GenerateSignatureSetup 4n′ times in parallel to generate 4 sig-setups

for each signer PS ∈ P ′.
2. ∀Pi ∈ P ′: Send faili to every Pj ∈ P ′.
3. ∀Pj ∈ P ′: Set failj = true if any received bits faili = true.
4. Invoke Consensus’ with Pj ’s input being failj . Denote the output as fail.
5. ∀Pi ∈ P ′: send fail to every Pj ∈ (P \ P ′).
6. ∀Pj ∈ (P \ P ′): Set fail as the majority of the received bits.

It is easy to see that Refresh fails when any GenerateSignatureSetup failed for
an honest player. On the other hand, when all players follow the protocol, then
Refresh succeeds. Refresh communicates O(n5)κ bits.

5.6 Fault Handling

The following fault-handling procedure is invoked only when Refresh has failed
(i.e., the players agree on fail = true). The goal of FaultHandling is to localize a
set E ∈ P ′ of two players, such that (at least) one of them is faulty.

FaultHandling exploits the fact that there is no need to maintain the secrecy
of the failed Refresh protocol. Basically, in FaultHandling the whole transcript
of Refresh is revealed and there will be a message from some player Pi to some
player Pj , where Pi claims to have sent some other message than Pj claims to
have received — hence either Pi or Pj is lying, and we can set E = {Pi, Pj}.
Unfortunately, it would be too expensive to publicly reveal the whole transcript;
instead, the transcript is revealed towards a selected player (e.g. Pk ∈ P ′ with
the smallest index k), who searches for the fault and announces it.

We stress that the considered transcript not only contains the messages of all
invocations of the protocol GenerateSignatureSetup, but also the messages of the
protocol Refresh. This is important because it might be that no fault occurred
in GenerateSignatureSetup, but still some (corrupted) player Pi claimed to have
faili = true.

Protocol FaultHandling.
1. Every Pi ∈ P ′ sends to Pk all random values chosen during the course of the

protocol Refresh (including all sub-protocols), as well as all values received
during the course of Refresh.

2. Pk computes for every Pi the messages Pi should have sent (when being
correct) during the course of Refresh; this can be done based on the random
values and the received messages of Pi.

3. Pk searches for a message from some player Pi ∈ P ′ to some other player
Pj ∈ P ′, where Pi should have sent a message xi (according to his claimed
randomness), but Pj claims to have received xj , where xi 6= xj . Denote the
index of this message by `.

4. Pk invokes Broadcast to announce (i, j, `, xi, xj).

5. Pi invokes Broadcast to announce whether he indeed sent xi in the `-th mes-
sage.

6. Pj invokes Broadcast to announce whether he indeed received xj in the `-th
message.

7. If Both Pi and Pj confirm to have sent xi, respectively to have received xj ,
then E = {Pi, Pj}. If Pi does not confirm to have sent xi, then E = {Pk, Pi}.
If Pj does not confirm to have received xj , then E = {Pk, Pj}.

FaultHandling requires 3 BA invocations and communicates O(n5κ) bits.

6 Conclusions

We have presented a BA protocol for n players that achieves information-
theoretic security against t < n/2 faulty players, communicating O(n5κ) bits
(for some security parameter κ). The protocol requires a compact constant-size
setup, as all BA protocols that tolerate t ≥ n/3 do (also those with cryptographic
security only), and allows for polynomially many BA operations.

This result improves on the existential result of [PW96], which communicates
O(n17κ) bits per BA.

References

[Bea91] D. Beaver. Secure multiparty protocols and zero-knowledge proof systems
tolerating a faulty minority. Journal of Cryptology, pp. 75–122, 1991.

[BGP92] P. Berman, J. A. Garay, and K. J. Perry. Bit optimal distributed consensus.
Computer Science Research, pp. 313–322, 1992.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In Proc. 20th
STOC, pp. 1–10, 1988.

[BH06] Z. Beerliova-Trubiniova and M. Hirt. Efficient multi-party computation with
dispute control. In TCC 2006, LNCS 3876 , pp. 305–328, 2006.

[BPW91] B. Baum-Waidner, B. Pfitzmann, and M. Waidner. Unconditional Byzantine
agreement with good majority. In STACS ’91, LNCS 480, pp. 285–295, 1991.

[CDD+99] R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient
multiparty computations secure against an adaptive adversary. In EURO-
CRYPT ’99, LNCS 1592, pp. 311–326, 1999.

[CW79] L. Carter and M. N. Wegman. Universal classes of hash functions. JCSS,
18(4):143–154, 1979. Preliminary version in Proc. 9st STOC, 1977.

[CW92] B. A. Coan and J. L. Welch. Modular construction of a Byzantine agreement
protocol with optimal message bit complexity. Information and Computation,
97(1):61–85, 1992.

[DS83] D. Dolev and H. R. Strong. Authenticated algorithms for Byzantine agree-
ment. SIAM Journal on Computing, 12(4):656–666, Nov. 1983. Preliminary
version in Proc. 14th STOC, 1982.

[Fit03] M. Fitzi. Generalized Communication and Security Models in Byzantine
Agreement. PhD thesis, ETH Zurich, 2003.

[Fit04] M. Fitzi. Personal communication, 2004.

[FLM86] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for
distributed consensus problems. Distributed Computing, 1:26–39, 1986.

[HMP00] M. Hirt, U. Maurer, and B. Przydatek. Efficient secure multi-party compu-
tation. In ASIACRYPT 2000, LNCS 1976, pp. 143–161, 2000.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence
of faults. Journal of the ACM, 27(2):228–234, Apr. 1980.

[PW96] B. Pfitzmann and M. Waidner. Information-theoretic pseudosignatures and
Byzantine agreement for t >= n/3. Technical report, IBM Research, 1996.

[RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority. In Proc. 21st STOC, pp. 73–85, 1989.

[Sha79] A. Shamir. How to share a secret. Communications of the ACM, 22:612–613,
1979.

[SHZI02] J. Shikata, G. Hanaoka, Y. Zheng, and H. Imai. Security notions for uncon-
ditionally secure signature schemes. In EUROCRYPT 2002, LNCS 2332, pp.
434–449, 2002.

A Long Messages

The proposed BA protocols only capture messages m ∈ F , i.e., κ-bit messages.
In order to reach BA on longer messages, one could invoke the according BA
protocol several times (once for every κ bit block). However, this would blow up
the communication complexity unnecessarily high: BA of a `κ bit message would
require a communication complexity of O(`n5κ) bits (as opposed to O(`κn2 +
n17κ) in [PW96]). In this section, we sketch a construction that allows BA of a
`κ bit message at costs of O(`κn2 + n5κ) bits.

In order to achieve the stated complexity, we need to replace the protocol
Consensus’ by Consensuslong’. The basic idea of Consensuslong’ is straight forward:
Every player Pi ∈ P ′ sends his message mi to every other player. Then, the
players use Consensus’ to reach agreement on a universal hash value. If agreement
is achieved, all players output the message with the agreed hash value, otherwise
they output ⊥. The key for the universal hash function is assumed to be pre-
shared among the players as part of the BA-setup, and only reconstructed when
needed. We also explain how this sharing is prepared in the Refresh protocol.

A.1 Protocol Consensuslong’

In the following, we present the protocol Consensuslong among the players in P ′,
reaching agreement on a `κ bit message m. The protocol makes use of universal
hashing [CW79]. As universal hash with key k ∈ F , we use the function Uk :
F` → F , (m(1), . . . ,m(`)) 7→ m(1) +m(2)k+ . . .+m(`)k`−1. The probability that
two different messages map to the same hash value for a uniformly chosen key
is at most `/|F|, which is negligible in our setting with F = GF (2κ).

Protocol Consensuslong’.
1. Every Pi ∈ P ′ sends his message mi to every player Pj ∈ P ′.
2. The players reconstruct the random hash key k ∈ F , which is part of the BA

setup.

3. Every Pi ∈ P ′ computes (for his original message mi) the universal hash
Uk(mi).7

4. The players in P ′ invoke Consensus’ to reach agreement on the hash value h.
5. If the above consensus fails (i.e., h =⊥), then every Pi ∈ P ′ outputs ⊥. If

it succeeds, then every Pi ∈ P ′ outputs that mj received in Step 1 with
Uk(mj) = h.

One can easily see that the above protocol reaches consensus on m, and that
it communicates O(`κn2) plus one invocations of Consensus’, i.e., communicates
O(`κn2 + n4κ) overall.

A.2 Generating the Hash Key

The protocol Consensuslong’ needs a random hash key to be known to all players
in P ′. We cannot afford to generate this hash key on-line (this would require sev-
eral invocations of broadcast). Instead, we assume a robust sharing of a random
field element to be part of every BA-setup. This sharing is then reconstructed
when needed.

As robust sharing, we use the scheme of [CDD+99]. Essentially, this is a two-
dimensional Shamir sharing, ameliorated with so called authentication tags. The
sharing is constructed non-robustly; in the Share protocol, the players pairwisely
check the consistency of the received shares, and fail in presence of faults. The
sharing of the hash key is generated as sum of a sharing of each player in P ′.
Such a sharing can be computed with communicating O(n4κ) bits (and without
involving broadcast). When the hash key is needed, then the sharing of the
actual BA setup is reconstructed towards every player in P ′. This is achieved
by having every player sending his shares (including the authentication tags) to
every other player; this involves a communication of O(n3κ) bits.

7 In order to do so, the message mi is split into blocks m
(1)
i , . . . , m

(`)
i .

