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Abstract. Numerous methods have been proposed to conduct crypto-
graphically secure elections. Most of these protocols focus on 1-out-of-n
voting schemes. Few protocols have been devised for preferential voting
systems, in which voters provide a list of rankings of the candidates, and
many of those treat ballots as if they were ballots in a 1-out-of-n voting
scheme. We propose a linked-list-based scheme that provides improved
privacy over current schemes, hiding voter preferences that should not
be revealed. For large lists of candidates we achieve improved asymptotic
performance.
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1 Introduction

Electronic voting is by far the most mature area of secure computation, with
a vast literature (c.f. [17]). Most electronic voting protocols may be viewed as
attempts to emulate the following physical metaphor: Voters cast ballots into a
large box, at the conclusion of which the box is shaken and opened.

Much work has gone into efficiently and securely approximating this physical
paradigm. However, this type of balloting represents merely one way of specifying
and aggregating preferences. Numerous ways of aggregating preferences have
been proposed, and indeed, are used in major political elections. We consider
one such system, known as instant runoff voting.

1.1 Instant Runoff Voting

Ballots in a single transferable vote (STV) system are submitted as a list of
ordinal preferences. The voters’ first choices are counted, and any candidate
receiving a certain quota of votes is declared a winner. One such example is the
Hare-Clark quota, used in Australian elections:

number of eligible votes

number of open seats + 1
+ 1.

Votes in excess of the quota are proportionally “returned” to the voters, and
applied to the next viable choice on their list. If not enough candidates reach

⋆ Department of Computer Science, Rutgers University, Piscataway, NJ 08854 USA,
jakeller@eden.rutgers.edu.

⋆⋆ PNYLAB, LLC, joe@pnylab.com. Supported in part by NSF grant CCF-0728937.
Work done in part while at Rutgers University.



their quota in this fashion, the candidate with the fewest number of votes is
eliminated, and the process continues until all of the open seats are filled.

Although Arrow’s theorem guarantees that there will be some cases for which
Hare-Clark voting induces some pathology, it is attractive in practice for its
ability to avoid “wasted” votes. One has comparatively less incentive (though
some still exists) for strategically not supporting ones favorite candidate because
the candidate is either assured to win or very likely to lose. Beyond its aesthetic
appeal, the fact that it is in actual use for an important election motivates our
attention.

We focus on the special case of Hare-Clark in which there is one open seat,
and thus a candidate needs to win a majority of the votes in order to win the
election. This is a special case known as Instant Runoff Voting (IRV), which is
used in certain local jurisdictions in the United States, including elections in San
Francisco [18] and Cambridge, Massachusetts [16]. In this scheme, if a candidate
has a majority of votes, then he is elected. Otherwise, the candidate with the
fewest votes is eliminated; counters look at the next choices of each ballot that
had a vote for the recent loser. We note that for this special case, there is no need
to redistribute excess winning votes; however, it remains necessary to eliminate
candidates and redistribute these votes.

1.2 Difficulties with the Physical Paradigm

In simple voting an ideal physical ballot box with paper ballots is the “gold
standard” against which electronic protocols are judged; indeed, there have been
perhaps over-nostalgic calls for its use in practice. However, with instant runoff
voting, merely severing the identification between voters and their preference list
gives insufficient privacy. Particularly in the case where there is a large number
of candidates, a full preference order may conceivably be used to identify a voter
and thus leak information far beyond that revealed by the final vote counts, with
obvious implications for privacy and coercibility. We note that this problem is
not specific to a protocol implementation, but to the nature of what is to be
revealed.

As a result, in actual physical elections, one has the choice of either revealing
extra information or placing a great deal of trust in the discretion and trustwor-
thiness of the election officials.

The secure multi-party computation paradigm [5, 14] is arguably a superior
gold standard than any physical ballot box. One endeavors to simulate trusted
election officials, who compute the correct results, but then only reveal that
which is supposed to be revealed.

Thus, an intriguing aspect of this type of voting is that a cryptographic
protocol may potentially offer a solution that is qualitatively superior to current
best practices.

1.3 Related Work

Electronic voting has been a model problem of secure multi-party computation
since it was proposed by Chaum [7]. Many protocols have been proposed for



single-vote, first-past-the-post-style elections, leveraging homomorphic encryp-
tion or mix-network technologies; see, for example, [4, 9, 8, 2, 24, 12, 22, 26, 23]).

Without leaving the realm of simple elections, variations are possible in the
security and privacy guarantees of the voting protocol. For example, receipt-
free and incoercible voting schemes aim to prevent voter intimidation and vote
selling by preventing the voter from being able to prove how they voted; see, for
example, [3, 24, 20]. One may view this property as a closer approximation to
the physical paradigm, in which the voter cannot prove which ballot is theirs. It
should be noted that incoercibility does not follow from the generic multi-party
solutions (though incoercibility can be generalized to this setting [6]).

Hevia and Kiwi [15] consider the problem of revealing the winner of the
election, but keeping secret the vote tally. As with the problem we consider, the
“ideal” physical implementation of voting does not guarantee as strong privacy
conditions.

The techniques of “standard” electronic voting also yield solutions to simple
preference voting, in which a voter may cast either zero or one votes for each
candidate. For example, one can implement a k-candidate preference voting elec-
tion by k simple 2-candidate elections in which the ith election is used to count
votes for the ith candidate.

Protocols for preferential voting schemes, such as IRV, adopt a similar ap-
proach. Aditya et al. consider elections for the Australian Senate and House
of Representatives [1]. They examine the efficiency of balloting using a naive
balloting representation and straight mix-network and homomorphic encryption
schemes. For an election with k candidates, their scheme using homomorphic
encryptions requires posting a ballot of size O(k!) bits. Their basic mix-network
based scheme requires a voter to post a number between 1 and k!, corresponding
to each set of preferences. In their most efficient scheme, they leverage Australia’s
voting machine structure, and adapt it to the vector-ballot approach introduced
by Kiayias and Yung [21] to handle elections with write-in ballots. Each vote is
a 3-vector. The first position contains a homomorphically-encrypted vote, cor-
responding to one of twenty preset choices. The other two positions are used
to represent “write-in” votes (in which voters list their preferences rather than
choosing from a preset list). The write-in votes are submitted in blocks with
some preset preferential votes to a shrink-and-mix network, while blocks with
no write-in votes are tabulated.

1.4 Our contribution

We contribute a new protocol for instant runoff voting that has superior asymp-
totic performance when there are a large number of candidates and superior
privacy guarantees.

The protocols of Aditya et al. may be applied to the case we consider, as it
is a special case of their own. We thus compare our protocol to this solution,
noting that the comparison is somewhat unfair due to their greater generality.

Although the work required of the voter in the protocol of [1] was small in
other respects, the message length scales super-exponentially in the number of



candidates. In our solution, the work per ballot construction is roughly quadratic
in the number of candidates.

An arguably more important improvement is in our privacy guarantees. The
protocol of [1] essentially attempts to mirror the privacy properties of existing
systems. Thus, it is acceptable in their framework to reveal individual preference
lists once the direct linkage with voters has been eliminated. Hence, this protocol
necessarily suffers from the weaknesses of the physical solution with respect to
privacy and coercion.

In our protocol, we first reveal the counts of the first-choice preferences each
candidate obtained. Whenever a candidate is eliminated and their votes recast
(using the next viable preference on the preference list), the new counts are also
revealed. However, only these intermediate results are revealed.

One could, of course, strive for even stronger privacy guarantees, such as
revealing only the winner(s), or only revealing the order of elimination. One
might argue that our protocol necessarily reveals statistics, such as the second-
choice preference statistics of those voters whose first choice candidate is the
first to be eliminated.

However, revealing such intermediate counts seems to be reasonable and in-
deed often necessary from a procedural point of view. For most elections, the
electorate wishes to know the final counts, not merely the winner. It would likely
be considered unreasonable to declare that a candidate is eliminated without
giving the actual vote count that was the basis of their elimination.

Furthermore, one can imagine using our protocols on a precinct by precinct
basis, with intermediate counts reported to a conventional voting authority that
decides who next to eliminate. Such regional counts can be useful in detecting
vote fraud. Thus, it may be essential that the tallies from each round be re-
vealed, and that elimination decisions can be made externally and in principle
independently of a the results within an individual precinct.

1.5 Techniques Used

We make original use of standard electronic voting techniques, particularly the
use of re-encryption mix networks (c.f. [7]) and group cryptography (c.f. [10])
and efficient proofs on committed values (c.f. [8]). On a very high level, vot-
ers generate linked lists of encrypted votes that specify their preferences. The
encryptions are done with respect to a key that is held in aggregate by the elec-
tion committee, who can decrypt elements using group cryptography. The head
of the list corresponds to the highest ranked viable candidate. By using group
decryption to decrypt these heads, the first round vote counts may be computed.

When a candidate is eliminated, we must efficiently search out the next
element in the list. However, we must be very careful about leaking extraneous
information. For example, it cannot be revealed what was the original ranking
of the current head of a list. Nor can we reveal for any list the history of which
elements are moved to the head (or we will reveal the list). For this reason, we
keep all but the (current) head elements in a separate table of elements that is
constantly remixed. This separation complicates the problem of finding the next



element of a list. We use a system of random ID tags to allow us to use group
decryption to find the next elements in the set.

An important technical problem we must deal with is that it would reveal too
much to follow a link from an eliminated top-choice vote only to find another
eliminated candidate. We must therefore perform surgery on our linked lists,
deleting eliminated candidates from interiors of lists so we will never arrive at
them.

To perform all of these list manipulations, we use three mix networks in
different ways. Pieces of the ballots are proved consistent before being distributed
among the mix networks. The consistency proofs are done using standard proofs
of equality on committed values. We use standard witness-hiding techniques
and heuristically replace the honest-verifiers with hash function using Gennaro’s
variant [13] of the Fiat-Shamir heuristic [11] (designed to avoid vote duplication
attacks).

Summarizing, we present a scheme that uses a linked-list structure to rep-
resent a ballot, treats all ballots equally using three mix-networks, and also
improves privacy by hiding preferences.

Road Map: In Section 2, we present the basic cryptographic elements of the
protocol: mix-networks, group decryption, and plaintext equality proofs. We
discuss the ballot design and voting procedure in Section 3. We briefly discuss
efficiency and security in Section 4. We discuss other possible research directions
in Section 5.

2 Preliminaries

We use a number of basic cryptographic primitives, which we review for self-
containment of the exposition.

Re-encryption Mix-Networks: Mix-networks (or mixnets), which are used
to create communication channels that are difficult to trace, consist of a series
of servers that take a series of texts M1, . . . , Mn and output a permutation
π(M1), . . . , π(Mn) of these texts. In re-encryption mixnets, each mix server takes
in a series of encrypted messages and applies a re-randomization to each cipher
text. In the case of an El Gamal cipher text this re-encryption corresponds
to a selecting a random group element and applying a small number of group
operations. Neff [22] describes a protocol for the shuffling of sequences of El
Gamal pairs. We use a variant of Neff’s protocol in which blocks of encryptions
are mixed - the block are re-encrypted in random order, but the (plaintext)
values within each block are preserved in their original order.

Secret Sharing and Group Decryption: We proceed with secret sharing
as in [9]. To generate a private El Gamal key to distribute to counters, we use
the (t, n) threshold protocol of Shamir [25]. Namely, for the secret exponent s,
we announce shares s1, . . . sn for the counters, such that for any set Γ of t shares,
we can recover the secret.

Using group cryptography, the authorities can simulate a single entity that
alone has access to the decryption key. Decryptions of encrypted values by the



group is comparatively straightforward and efficient. In our analysis, we will
treat such decryptions as basic operations.

Plaintext Equality Proofs and proofs of knowledge: Given El Gamal
encryptions of M1 and M2, (α1, β1) = (gr, M1h

r) and (α2, β2) = (gs, M2h
s), we

can execute an efficient plaintext equality proof protocol, that proves that M1

and M2 are the same. Also, given an encryption of M and a known value of r, we
must be able to produce (with proof) an encryption of M ′ = M + r. For most
homomorphic encryption systems, one can compute the encryption of M + r

from an encryption of M .

It is also crucial that we can perform σ proofs of knowledge of encrypted
values (i.e., proofs in which the prover sends an honest verifier a message, the
honest verifier sends a random challenge to the prover, and the prover sends a
reply). In practice, we “compress” such proofs using Gennaro’s variant of the
Fiat-Shamir heuristic in which the verifier’s challenge is computed as a hash of
the first message and the prover’s identity (so as to avoid replaying other player’s
proofs). This heuristic results in a single message “certificate” that the player
knows the values being committed to. We heuristically analyze our protocol as
if the actual proofs were invoked.

The use of proofs of knowledge is crucial to both the correctness and privacy
of our protocol. Intuitively, proving knowledge of a committed value prevents
malleability attacks in which one commits to values that one doesn’t know, but
which are somehow related to other committed values.

3 Voting Scheme

3.1 Preliminary Setup

The protocol uses three mix networks. The pool of first place votes is sent to
mix network 1, subsequent choices of each voter are sent to mix network 2,
and elimination links are sent to mix network 3. At the start of each election,
the authorities announce the public key used for all encryptions. Shares of the
corresponding private key are distributed to the counters using the secret-sharing
scheme described in the previous section.

We also assume the existence of a public “bulletin board” that is used as a
staging area for the mix networks. As we describe below, the encrypted values
sent through the mix networks are subject to various constraints that must be
verified. The encrypted values and their consistency proofs are posted to the
bulletin board and checked before being routed through the mix networks.

3.2 Counter initialization

The voting authorities collectively set up an El Gamal based public-key group en-
cryption scheme. The public key is made public and is used for the re-encryption
mixer. The private key is held in a distributed fashion by the group.



3.3 Ballot Design: Constructing the Linked List

On a high level, a ballot is composed of a set of preference elements, each of
which consists of preference data and additional keys used to link the preference
element. In the following discussion, i will denote the preference in the list. We
will have multiple elimination rounds, index by j, each requiring separate links.

To establish a link, each preference element has a set of incoming keys
(thought of as a large random number) ini,j , used to establish a connection
with the preceding element in the list, and a set of outgoing keys, outi,j , used
to establish links with following elements. To establish that xi′ follows xi in the
linked list we set outi,j = ini′,j . We similarly set up random tags losei,j that will
aid in the removal of xi if it corresponds to a candidate being eliminated.

For an election with k candidates, a (proper) voter does the following to
construct a ballot (see Figure 1 in the appendix):

1. Determine the order of preferences, x1, . . . , xk, where each xi is a name (or
number) representing each candidate.

2. For i = 1, . . . , k + 1 and j = 1, . . . , k

– Select the keys ini,j for i = 1, . . . , k + 1 and j = 1, . . . , k independently
at random (in fact, we require a further step, to ensure that keys are
distinct; see Section 3.6). .

– If i 6= k +1, let outi,j = ini+1,j . This operation creates the links between
choices.

– Otherwise, select outk+1,j independently at random. This operation ends
the list at the terminal choice.

– Select the keys losei,j independently at random.

3. Post (x̂1, în1,j , ôut1,j , l̂ose1,j), encryptions of (x1, in1,j , out1,j), for j = 1, . . . , k

to mix network 1.
4. For i = 2, . . . , k + 1 and j = 1, . . . , k, post the tuple (x̂i, îni,j , ôuti,j , l̂osei,j)

to mix network 2.
5. For i = 1, . . . , k + 1 and j = 1, . . . , k, post the tuple (x̂i, l̂osei,j) to mix

network 3.

To complete the ballot, the voter posts plaintext equality proofs [19] made non-
interactive by Gennaro’s modification to the Fiat-Shamir heuristic [13] to verify
that the linked list is composed properly, namely that ini+1,j = outi,j . To verify
that the removal links point to the proper candidate to be removed, the voter
must also prove that xi and losei,j are equal across mix networks. Similarly,
the voter posts proofs of knowledge of the encrypted values. All such proofs are
posted to the public bulletin board, and may be verified by all interested parties.
Remark: For our analysis, it is useful to enforce other constraints on the ballot.
For example, there is no real point in having a duplicated a name on ones list,
and we may optionally wish to restrict the names to a specific list of candidates.
The former may be accomplished using proofs of inequality. The latter may be
accomplished used standard mix-net proofs - one writes down a list of encrypted
names and proves that it is a permutation of the allowed list.



Figure 1 shows an example of each component: a portion of a vote and a
removal tag, for an election with 3 candidates. A concrete example and diagram
showing a full voter’s posting are included in the next subsection.

Fig. 1. A visualization of the components of a voter’s ballot. A choice posted to mix
networks 1 or 2 is on the left. A removal tag posted to mix network 3 is on the right.
See figure 2, in the appendix, for an example of a complete ballot posted by a voter.

3.4 An Example

Consider an election with three candidates: A. Smith, B. Jones, and C. Johnson,
in which a voter wants to post a vote of (Johnson, Smith, Jones) in that order.
His ballot will be constructed as follows (we give a graphical example of a three
candidate ballot in Figure 2):

x1, C. Johnson

– Encrypt x1.
– For j = 1, 2, 3

• Select in1,j independently (indeed, select all keys in·,j at random).
• Set out1,j = in2,j after in2,j has been selected.
• Select lose1,j independently.

– Encrypt in1,j , out1,j , and lose1,j .

– Create copies of x̂1 and l̂ose1,j by re-randomizing the encryption. As a
tuple, these copies are the removal tag that gets posted to mix network
3.

– Post the tuple (x̂1, în1,j , ôut1,j, l̂ose1,j) to mix network 1.
x2, A. Smith and x3, B. Jones

– Proceed as with x1. Compute the tuples (x̂2, în2,j , ôut2,j , l̂ose2,j) and

(x̂3, în3,j , ôut3,j , l̂ose3,j) as above.
– Post those tuples to mix network 2.

– Post the (re-encrypted) removal tags (x̂2, l̂ose2,j) and (x̂3, l̂ose3,j) to mix
network 3.

x4, the terminal choice



– Encrypt x4.
– For j = 1, 2, 3

• Select in4,j randomly and encrypt.
• Select out4,j randomly and encrypt.
• Select lose4,j randomly and encrypt.

– Post (x̂4, în4,j , ôut4,j , l̂ose4,j) to mix network 2.

In order to prove that a vote is valid, the voter must prove the following using
plaintext equality proofs:

– Given în2,j and ôut1,j , show that in2,j = out1,j (i.e., that în2,j and ôut1,j

encrypt the same value)

– Given în3,j and ôut2,j, show that in3,j = out2,j .

– Given în4,j and ôut3,j, show that in4,j = out3,j .

Similarly, show that

– x1 in network 1 = x1 in network 3.
– xi in network 2 = xi in network 3 (for i > 1).
– lose1,j in network 1 = lose1,j in network 3.
– losei,j in network 2 = losei,j in network 3 (for i > 1).

3.5 Counting and Elimination

Counting: After polls close, counters begin tallying votes:

1. The counters verify the posted proofs of plaintext equality, and accept those
votes whose proofs pass.

2. The mix networks shuffle the pools of votes. The removal tags are mixed in
round 1 only.

3. The counters leave the output of mix network 2, the voters’ subsequent
choices, encrypted.

4. The counters decrypt the first slots, representing the choice of candidate, of
the first-place votes (from mix network 1) and of the removal tags.

5. Counters discard terminal choices or votes for eliminated candidates that
show up in the primary vote pool.

6. Actual counting is trivial. The counters read the decrypted names of the
first-place votes. A candidate is declared the winner if he has enough votes.
Otherwise, a candidate is eliminated.

Elimination: When a candidate L is eliminated, the counters act accordingly:

1. They announce the candidate L to be eliminated in round r, and locate the
removal tags corresponding to L in mix network 3. Recall that this network
contains pairs consisting of encrypted names and encrypted lose values. The
counters can collectively decrypt all of the names, and then for all entries
corresponding to L, decrypt the corresponding lose values. These values may
then be efficiently matched to their corresponding entries in mix net 2, as
discussed below.



2. For each choice c in the pools of votes, the counters decrypt l̂osec,r and înc,r.

3. For each removal tag, the counters decrypt l̂oseL,r, and search for loseL,r in
the pools of votes.

4. When a matching lose key is found, the counters check that the choice slot
encrypts L, to ensure that they are eliminating the proper vote.

5. Link forwarding is now performed; see Figure 3. The counters decrypt ôutL,r

and search for an incoming key inc,r. The counters use a plaintext equality
test to ensure that the correct link is being followed.

6. The counters set înc,j = înL,j, for j = r, . . . , k. This redirects the links from
the eliminated choice to a choice that is still competing in the election.

7. If a vote for L was in the primary choice pool, the counters promote the
choice found by following the link.

8. At the end of round r, the counters discard inc,r, outc,r, and losec,r are
discarded for each candidate c. All keys corresponding to round r are now
discarded, and counters will use keys corresponding to round r + 1 for the
next elimination.

9. Counters remix the votes using mix networks 1 and 2.

Remark. Eliminating a candidate and forwarding links illustrates the need for
a terminal choice. If a voter’s last choice is eliminated, the previous choice will
now link to the terminal choice, instead of having hanging links. The terminal
choice serves as an “anchor” that will always be among the pool of candidates.

Fig. 2. A sample ballot for an election with three candidates.



Fig. 3. An example of link forwarding. Encrypted items are in gray, decrypted items
are in white, and discarded items are in black.

3.6 Ensuring distinctness and unrelatedness of keys

Recall that a link is created by generating a random tag that appears in multiple
places in the mix net. The correctness of the protocol requires that the tags
be distinct and the privacy of the protocol depends on the the inability of an
adversarial coalition to create nontrivial relations between their tags and those
of good voters.

The latter problem is implicitly dealt with in the full privacy analysis, and
follows from the fact that all of the tags come with proofs of knowledge (here
we assume the idealized version of the protocol, where the proofs of knowledge
are carried out). The values of the tags chosen by the adversarial players must
be decided upon, and known to the adversarial players (via the extractor for
the proof), given only the encryptions of these tags and zero-knowledge proofs



based on these encryptions. If any nontrivial polynomial-time relation R held
(with probability greater than chance) between the values chosen by the good
voters and the values known to the adversaries, this could be used to obtain a
distinguisher that breaks the underlying probabilistic encryption scheme.

However, nothing stops colluding voters (or even a single voter) from making
two tags equal when they should not be. We solve this problem by using a
standard coin-flipping in the well protocol. The interactive form of this protocol
is as follows:

1. The tag creator generates a random tag T , and encrypts it, generating C.
2. A randomizer generates a random r.
3. The tag creator generates an encryption C′ of T ′ = T + r. Note that for

most homomorphic encryption systems, C′ can be generated from C and r.

In this ideal interactive scenario, the value of T ′ is random. Following Gennaro,
we heuristically choose r as a hash of C, the identity of the tag creator, and a
representation of the “place” of this tag in the protocol as a whole (we simply
ask that this representation never appear twice in the same election).

Of course, if a tag is prescribed to be equal to an earlier generated value, we
simply create the commitment with this earlier value (and prove equality).

It can be shown that if T and C are chosen correctly (a random value and
a random encryption), then the distribution of T ′ is indistinguishable from ran-
dom. This is not true if T is chosen adversarially. However, by a standard ar-
gument, T ′ cannot be chosen to collide with any other tag value, except with
negligible probability, if one replaces the hash function with a random oracle.
We heuristically assume the same holds true for a suitable cryptographic hash
function.

We note that the tags are homomorphically encrypted for use in the mix-
net; one can achieve greater efficiency (at some loss of clarity) by putting a
randomization step in at this point. Even further efficiency can be obtained by
limiting the range of r, say to 192 bits even if the range of the tags is much
larger.

4 Analysis
4.1 The framework and limits of our analysis

Aside from the analysis of efficiency, we cannot formally analyze our protocol in
its recommended usage, which makes use of variants of the Fiat-Shamir heuristic.
We instead, following a long tradition, analyze the “idealized” protocol, in which
the parties engage in true proofs of knowledge and coin-flipping protocols with
a trusted external party.

We also assume that while some of the counters may be corrupt, sufficiently
many are honest so that the mix-net and group decryption protocols are secure
and serially composable.

We also assume that the (essentially external) decisions as to which candidate
is eliminated in any phase are independent of the “internals” of the protocol (i.e.,
based on the encrypted , though they may of course depend on the tallies of who



has how many votes. We note that any sensible decision procedure will not look
any deeper than the precincts vote sub-totals. This limitation may be relaxed,
particularly if k is small - essentially giving the adversary full choice over the
elimination sequence requires a k! increase in the computational hardness of
breaking the probabilistic encryptions and subverting the mix-net, coin-flipping
and group decryption protocols.1

Thus, we view and analyze our protocol, and the attacks on it, as follows.

1. The voters, both good and malicious, prepare their encrypted lists, and per-
form the requisite proofs and coin-flipping protocols with an honest party.
The malicious voters may see the encryptions generated by the good voters,
and the transcripts of these protocols, but must engage in the proofs and
coin flipping protocols anew (this is why we use Gennaro’s trick to prevent
the reuse of the Fiat-Shamir proofs). It is in the creation of these encrypted
ballots that we allow the adversary the most freedom of operation.

2. For each phase of the counting process, the counters engage in various secure
computations (mix net operations and group decryptions) on the encrypted
values. As we assume that the adversary is unable to corrupt these protocols
(sufficiently), we assume that
– The operations proceed correctly.
– The adversary is able to see the inputs and output of these operations,

but not the actual operation of the protocol.
These two assumptions are justified based on the correctness and simulata-
bility of the underlying sub-protocols. Given the inputs and outputs, anyone
can simulate the set of messages comprising the execution of the secure com-
putation.

After some of these secure computations, tallies of votes for each surviving can-
didate are generated. We call these tallies ideal snapshots. We call the output of
the secure computations protocol snapshots.

Thus, we can view the attack on the protocol as comprising the (mis)generation
of ballots followed by the observation of a series of protocol snapshots. We com-
pare such an attack with an ideal attack, which works as follows:

1. The voters, adversarial or not, create ordered lists of candidates.
2. Initially, or after a candidate has been eliminated, the tallies of current first

choice votes for candidate are revealed, corresponding to the ideal snapshot
defined above.

To analyze correctness, we observe that our protocol (at least in its idealized
form) ensures that the ballots correspond to well-defined lists of candidates, and
that the resulting “ideal snapshots” are what they should be given given this list.
To analyze privacy, we go on to show that given the information that may be
extracted from the adversarial voters and the ideal snapshots, one may generate
simulated protocol snapshots that are computationally indistinguishable from
the actual protocol snapshots.
1 We suspect that with some care, the k! factor may be reduced to k

O(1). However, a
slightly more intricate analysis is required.



4.2 Efficiency

In a correct vote, each choice consists of a name slot and O(k) keys. The com-
plete construction of the linked list requires O(k2) key values. Because El Gamal
encryption and the plaintext equality proof take a constant number of exponen-
tiations, a quadratic number of exponentiations is needed to cast a vote. Each
ballot will also require O(k2) encryptions. The centers must perform shuffles
on O(nk2) encrypted values per elimination round. Group decryptions must be
performed on O(nk) encrypted values per elimination round.

4.3 Correctness

To show that this protocol is correct, we show that accepted ballots correspond
to independent, well-formed lists of names, and that the protocol performs the
correct operations on these lists.

Lemma 1 summarizes the result of the zero-knowledge proofs of knowledge
and coin-flipping protocols.

Lemma 1. Suppose we have a collection of submitted ballots that have passed
the zero-knowledge proofs of knowledge given in the Section 3.3. Then, assum-
ing that all the ballot creators run in probabilistic polynomial time and that the
probabilistic encryptions are secure, the following will hold almost always:

1. All accepted ballots can be mapped to a well-formed list of names and well
formed tag values; all such values may be extracted from the entity submitting
the ballot (and hence performing the proofs of knowledge).

2. All tag values that are specified by the protocol to be equal will be equal; any
two tag values that are not specified to be equal will not be equal.

One important consequence of the proofs of knowledge is that vote duplica-
tion or other forms of mauling are impossible. Suppose that the good voters have
vote lists {L} and generate the (essentially) random tags {t} used for the linked
lists. We consider two types of adversary. The ideal model adversary, A′, chooses
vote lists {L} and tags {t′}, without seeing {L} and {t}. The real model adver-
sary, A∗ sees a transcript consisting of the actual ballots generated by the good
voters, and is allowed to generate ballots for itself. However, it must perform the
specified proofs of equality and knowledge on these ballots; let {L∗} and {t∗} be
the lists and tags obtained by the extractor for these proofs (by Lemma 1, these
lists are well defined with all but negligible probability). Lemma 2 asserts that
A∗ cannot use its extra information to any better effect than A′.

Lemma 2. For any probabilistic polynomial time adversary, A∗, there is a prob-
abilistic polynomial time adversary A′ such that ({L}, {t}, {L′}, {t′}) is compu-
tationally indistinguishable from ({L}, {t}, {L∗}, {t∗}).

Proof. (Sketch) We use a standard hybrid argument. Given A∗, we create a hy-
brid adversary, A1, that runs A∗ given the encryptions, but with simulated proofs
instead of actual proofs. The output of this adversary must be computationally



indistinguishable from that of A∗, or we have a violation of the zero-knowledge
property. We define A′ as the adversary that generates random encrypted val-
ues and runs A1. The output of A′ must be computationally indistinguishable
from that of A1, or there would be a violation of the semantic security of the
encryption.

We pause to reflect on the meaning of Lemma 1 and Lemma 2 for the types of
attacks that can be staged during the ballot reconstruction phase. The adversary
must create ballots that correspond to well formed lists and tags, such that the
set of tags have no spurious duplications. The lists and tag values had might as
well be chosen independently of the honest voters. In short, the adversary acts
no differently than an adversary that chooses its lists and tags and engages in
the protocol.

It remains to consider the remainder of the protocol. Recall, we assume that
the adversary is assumed not to be able to corrupt enough counters to interfere
with the mix-net and group decryption operations.

We observe that the details of the ballots (other than the fact that they
are valid) are essentially irrelevant to the rest of the protocol. The proofs are
essentially dropped once they are verified, leaving only the choice of encryptions.
Recall that a re-encrypting mix-net replaces the encryption of some value x with
a random encryption of x. Thus, the precise encryptions chosen by the adversary
almost immediately become irrelevant, as summarized in Lemma 3.

Lemma 3. The result of the first re-encrypting mix-net operation depends only
on the values of the lists and tags encrypted in the ballots, not on the ballots
themselves.

Thus, the only effective difference between a general adversary that chooses
its ballots and a comparatively ideal adversary that chooses its list of candidates
and then participates in the protocol is that the general adversary can specify its
tags arbitrarily (but not to collide spuriously). By a straightforward but tedious
argument, one can show the following:

Lemma 4. Given a set of well-formed ballots, corresponding to a set of lists of
candidates, with no spurious tag collisions, and sequence of candidate elimina-
tions, the vote counts produced at each round will be the same as that produced
by the ideal vote-counting algorithm on these lists of candidates.

Hence, the (partial) freedom to choose the tag values is irrelevant to the
intermediate counts of the protocol.

The above Lemmas imply the correctness of our (idealized) protocol.

Privacy The methodology of the previous section can be extended to simulta-
neously establish privacy as well. Consider the view of the adversary attempting
to corrupt the election. At the time it selects its ballots, it has only seen proba-
bilistic encryptions of the good voters’ lists and tags, and zero-knowledge proofs
on these values. As with the proof of Lemma 2, we can simulate this view with



simulated proofs on random committed values. It remains to simulate the views
of the later parts of the protocols. As before, we use the extraction property of
the proofs to extract the lists {L′} and tags {t′} specified by the adversary. By
the previous section (particularly Lemma 3), once the ballots have been con-
structed and tested, these values are the only aspects that are relevant to future
steps of the protocol.

We consider the view of the adversary in the ideal and actual settings. In
the ideal setting, the adversary sees {L′} and {t′} and then sees the sequence
of intermediate vote counts (one initial, and one for each elimination phase).
In reality, the adversary sees a sequence of “snapshots” consisting of encrypted
values output by the mix net, of which some subset are revealed at each stage,
as specified by the protocol and which candidates are eliminated. Additionally,
there is the adversaries view of the actual secure computations we are invoking,
but these are assumed to be simulatable. Lemma 5 states that one can simulate
the snapshots given the information available in the ideal model.

Lemma 5. Given the vote lists {L′} and tags {t′} given by the adversary, and
the sequence of vote totals generated in each elimination phase, and the identities
of each eliminated candidate, one can in probabilistic polynomial time generate
simulations of the output of each secure computation operation that are compu-
tationally indistinguishable from the outputs of the protocol.

The proof is a tedious but straightforward hybrid argument.

5 Discussion

Receipt Freeness: One of the more obvious deficiencies of this protocol is
its lack of receipt-freeness. It seems likely that, at the cost of modestly greater
complexity, one can make a receipt-free version of this protocol using standard
techniques (though we do not claim such a result). The natural approach would
be for voters to interact with a voting entity to securely compute a ballot; the
voter inputs its preferences, but has no more knowledge of the proofs and encryp-
tions than if another voter had cast a ballot with the same preference list. While
general secure computation is impractical, the operations required for construct-
ing a ballot, namely creating randomized encryptions for the candidate names,
random tags and proofs of equality of these tags, are quite amenable to this
approach.

Practicalities: It should be pointed out that we have ignored an entire space
of trust and security issues, assuming for example that voters have completely
trustworthy implementations of their part of the protocol. We view this work as
an early step towards efficient preference-based voting.

Extension to multiple winners: This protocol only covers the case of an
election with a single victor. If the election is for multiple seats, winners get
“eliminated.” They keep a quota’s worth of first-choice votes, with the surplus
getting redistributed with a fractional weight. From this protocol, a STV proto-
col, which modifies this protocol by preserving preference hiding and using the



same ideas for link forwarding, but taking the fractional redistribution of votes
into account, may arise.

Handling multiple losers and Write-in votes: It may be foreseeable
that a number of candidates with relatively small tallies of votes will not be
able to garner enough votes to win the election. In this protocol, the votes
have to be reshuffled after each elimination, or authorities may reveal significant
link information. We would like to modify this protocol so that multiple losing
candidates can be removed efficiently. This would also allow for the inclusion
of write-in candidates. Write-in candidates with a significant number of votes
will stay in the vote pool, while the occasional sporadic write-in vote will be
eliminated promptly.

Incomplete Voting: A voter may not need to fill out a complete ballot, in-
stead opting for ranking t-out-of-k candidates. In San Francisco elections, for
example, voters select only three out of k candidates when voting. This scheme
is adaptable to such an incomplete vote, so long as voters post one key per can-
didate. Each vote listing t candidates will take O(tk) bits. Schemes that encode
a full list of choices in one ballot will now require at least log(k!) + 1 bits. If
t is sufficiently small, then this system also improves on the space efficiency of
previous schemes. On the other hand, the privacy of some ballots will be com-
promised, as terminal choices will appear in the primary pool of votes; counters
may be able to reconstruct ballots consisting of only eliminated candidates. One
potential solution to this is to have a voter post dummy choices to fill out the
ballot.
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