
Preimage Attacks on 3, 4, and 5-pass HAVAL

Yu Sasaki and Kazumaro Aoki

NTT, 3-9-11 Midoricho, Musashino-shi, Tokyo, 180-8585 Japan

Abstract. This paper proposes preimage attacks on hash function HAVAL
whose output length is 256 bits. This paper has three main contributions;
a preimage attack on 3-pass HAVAL at the complexity of 2225, a preim-
age attack on 4-pass HAVAL at the complexity of 2241, and a preimage
attack on 5-pass HAVAL reduced to 151 steps at the complexity of 2241.
Moreover, we optimize the computational order for brute-force attack
on full 5-pass HAVAL and its complexity is 2254.89. As far as we know,
the proposed attack on 3-pass HAVAL is the best attack and there is
no preimage attack so far on 4-pass and 5-pass HAVAL. Note that the
complexity of the previous best attack on 3-pass HAVAL is 2230. Tech-
nically, our attacks find pseudo-preimages of HAVAL by combining the
meet-in-the-middle and local-collision approaches, then convert pseudo-
preimages to a preimage by using a generic algorithm.

keywords: HAVAL, splice-and-cut, meet-in-the-middle, local collision,
hash function, one-way, preimage

1 Introduction

Cryptographic hash functions are important primitives to build secure schemes.
A hash function takes arbitrarily long bit string and outputs a hash value with
a fixed length. A hash function is required to satisfy the security properties such
as collision resistance, 2nd preimage resistance, and preimage resistance. When
the length of the hash value is n bits, a collision, a 2nd preimage, and a preimage
should not be computed faster than 2n/2, 2n, and 2n operations, respectively.

HAVAL [18] is one of the dedicated hash functions and has relatively long
history. HAVAL is based on Merkle-Damg̊ard construction, and its compression
function is similar to MD5 [10]. The basic operation of HAVAL is done in 32 bits
that is the same as MD5. Therefore, 32-bit values are called words. However, the
interface of the HAVAL compression function is doubled compared to MD5, that
is, the number of chaining variables and the message length of the compression
function are 8 words and 32 words respectively. The nonlinear function of HAVAL
takes seven words as input and outputs a word. So, one step of HAVAL only
changes one word out of 8 words of the internal state. To satisfy several security
requirements, HAVAL has three variants called x-pass HAVAL (x = 3, 4, 5).
x-pass HAVAL consists of 32x steps.

Due to the simple structure, there are several cryptoanalytic results on HAVAL
as shown in the next paragraph. However, regarding the preimage attack, there
is only one result on 3-pass HAVAL [2]. In this paper, we propose preimage at-
tacks on HAVAL: the best attack on 3-pass HAVAL so far, the first attack on
4-pass HAVAL and 5-pass HAVAL.

Table 1. Comparison of preimage attacks on HAVAL

Attack Number of Attack type Previous Our attack

target steps work [2] strategy 1* strategy 2

3-pass 96 (Full) Pseudo-preimage 2224 2192

Preimage 2230 2253 2225

4-pass 128 (Full) Pseudo-preimage - 2224

Preimage - 2254.43 2241

5-pass 151 Pseudo-preimage - 2224

(Steps 0-150) Preimage - Not evaluated 2241

160 (Full) Pseudo-preimage - 2253.81*

Preimage - 2254.89 —

∗ This attack is a kind of brute force attack, but the computation is optimized.

Known previous results except for the preimage attack are as follows: colli-
sion attacks on 3-pass HAVAL are discussed in Ref. [12, 11, 13, 14], and those on
4-pass HAVAL are discussed in Ref. [15, 17]. Note that a real collision has been
generated up to 4-pass HAVAL. Theoretically, a collision of 5-pass HAVAL can
be generated in 2123 compression function evaluations [17] that is faster than
the birthday paradox for 256-bit output. (Hereafter, we omit the unit of com-
plexity whenever it is obvious and it is the number of “compression function
evaluation.”) Non-randomness of 4-pass and 5-pass of HAVAL in the encryption
mode is analyzed by Ref. [6, 16]. The security of the HMAC-HAVAL is analyzed
by Ref. [5]. A 2nd preimage attack on 3-pass HAVAL and its application to
HMAC-3-pass HAVAL are proposed by Ref. [7]. However, this 2nd preimage at-
tack is different from the one usually considered. In Ref. [8] a useful statement
to clarify the difference of these two types of 2nd preimage attacks is shown. The
attack of Ref. [7] can generate a 2nd preimage at the complexity of one com-
pression function with a probability of 2−114 for a given random message, and
it requires the complexity of 2128 with a probability of 1− 2−114. Therefore, the
average complexity is very close to 2128. Consequently, no result that produces
a 2nd preimage of any given message is known. Moreover, no result is known on
preimage attack on HAVAL, except for the recent result on 3-pass HAVAL [2].

1.1 Related work regarding preimage attack

In 2008, a preimage attack on MD4 was proposed by Leurent [8]. The attack
first generates pseudo-preimages based on the Dobbertin’s pioneering work [4],
and converts a pseudo-preimage attack to a preimage attack by using the generic
approach [9, Fact9.99]1. Preimage attacks on step-reduced MD5 and full 3-pass
HAVAL are proposed by Aumasson et al. [2], whose approach is based on the
meet-in-the-middle technique. Preimage attacks on full MD4 and 63-step MD5
are proposed by [1], whose approach is also based on the meet-in-the-middle
technique. Note, both of [2, 1] use the conversion algorithm of [9, Fact9.99].

1 The following works that compute a preimage from partial-pseudo-preimages also use
this kind of conversion. The method of the conversion from partial-pseudo-preimages
to a preimage is improved by using hash-tree [8] and P3graph [3].

In the meet-in-the-middle attack of Aumasson et al. [2], a compression func-
tion is divided into the first half and the last half, and both computation results
are compared in the middle. They also use new techniques that make the attack
efficient by using the absorption properties of Boolean functions. On the other
hand, Aoki and Sasaki propose new techniques to apply the meet-in-the-middle
attack to not only the first half and the last half but also any two consecu-
tive parts of a compression function [1]. This paper combines the techniques of
Ref. [1, 2], and attacks more passes of HAVAL.

1.2 Our contributions

In this paper, we propose preimage attacks on 3-, 4-, and 5-pass HAVAL whose
output length is 256 bits. First, we consider a strategy to find preimages of 3-, 4-,
and 5-pass HAVAL faster than the brute force attack by a few bits (strategy 1).
Second, we consider another strategy that can find a preimages of 3-, 4-, and
5-pass HAVAL much more efficiently by combining techniques of [1] and [2]
(strategy 2). As a result of applying strategy 2 to each pass of HAVAL, we find
the best preimage attack so far on 3-pass HAVAL by using the techniques of [1],
the first preimage attack on 4-pass HAVAL by combining techniques of [1] and
[2], and the first preimage attack on step-reduced 5-pass HAVAL by combining
techniques of [1] and [2] and further improving a technique of [2]. We summarize
the results of the previous work and ours in Table 1.

Organization of this paper is as follows. Section 2 introduces the specifica-
tion of HAVAL and techniques of existing attacks. Section 3 gives two strategies
of the preimage attack that can be applied to HAVAL and other hash func-
tions whose message expansion is similar to HAVAL. Regarding the technique
in Ref. [2] as an application of a local collision, we can compute preimages of
a hash function that has more rounds. Section 4 describes attacks on HAVAL
following the strategy 1. Section 5 describes attacks on HAVAL following the
strategy 2. Finally, we conclude this paper in Section 6.

2 Previous works: specification and techniques for
preimage attacks

2.1 Description of HAVAL

HAVAL is a hash function proposed by Zheng et al. in 1992, which compresses
a message up to (264 − 1) bits into either 128, 160, 192, 224, or 256 bits. Since
this paper only analyzes 256-bit version, we only describe the specification for
256 bits. HAVAL iteratively computes a step function to compute a hash value.
The number of steps is chosen from either 96, 128, or 160, where correspond-
ing HAVAL algorithms are called 3-pass HAVAL, 4-pass HAVAL, and 5-pass
HAVAL, respectively. HAVAL has the Merkle-Damg̊ard structure, which uses
256-bit (8-word) chaining variables and a 1024-bit (32-word) message block to
compute a compression function.

An input message M is processed to be a multiple of 1024 bits by the padding
procedure. A single bit ‘1’ is appended followed by ‘0’s until the length be-
comes 944 modulo 1024. At the last, 3-bit field representing a version number

Qj-7 Qj-6 Qj-5 Qj-4 Qj-3 Qj-2 Qj-1 Qj

Qj-6 Qj-5 Qj-4 Qj-3 Qj-2 Qj-1 Qj Qj+1

>>11

>>7
fj �i,j

F

m
�(j)

StepFunction

Kx, j

Fig. 1. Step function of HAVAL

Table 2. HAVAL message expansion

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
5 14 26 18 11 28 7 16 0 23 20 22 1 10 4 8 30 3 21 9 17 24 29 6 19 12 15 13 2 25 31 27

19 9 4 20 28 17 8 22 29 14 25 12 24 30 16 26 31 15 7 3 1 0 18 27 13 6 21 10 23 11 5 2
24 4 0 14 2 7 28 23 26 6 30 20 18 25 19 3 22 11 31 21 8 27 12 9 1 29 5 15 17 10 16 13
27 3 21 26 17 11 20 29 19 0 12 7 13 8 31 10 5 9 14 30 18 6 28 24 2 23 16 22 4 1 25 15

of HAVAL, 3-bit field representing the number of the pass used, 10-bit field rep-
resenting the output length, and 64-bit field representing an unpadded message
length are appended.

Padded message M∗ is separated into 1024-bit message blocks (M0,M1, . . . ,
Mn−1). Let CF : {0, 1}256 × {0, 1}1024 → {0, 1}256 be the compression function
of HAVAL. A hash value is computed as follows.

1. H0 ← IV ,
2. Hi+1 ← CF (Hi,Mi) for i = 0, 1, . . . , n− 1,

where Hi is a 256-bit value and IV is the initial value defined in the specification.
Finally, Hn is output as a hash value of M .

Compression Function. The compression function Hi+1 ← CF (Hi,Mi) is
computed as follows.

1. Mi is divided into 32-bit message words mj (j = 0, 1, . . . , 31).
2. p0 ← Hi.
3. pj+1 ← Rj(pj , mπ(j)) for j = 0, 1, . . . , k, where k = 32x− 1 for x-pass.
4. Output Hi+1(= pk +Hi), where “+” denotes a 32-bit word-wise addition. In

this paper, we similarly use “−” to denote a 32-bit word-wise subtraction.

Rj is the step function for Step j. Let Qj be a 32-bit value that satisfies
pj = (Qj−7‖Qj−6‖Qj−5‖Qj−4‖Qj−3‖Qj−2‖Qj−1‖Qj). Rj for x-pass HAVAL
(x ∈ {3, 4, 5}) is defined as follows:

{
T = fj ◦ φx,j(Qj−6, Qj−5, Qj−4, Qj−3, Qj−2, Qj−1, Qj)

Rj(pj ,mπ(j)) = (Qj−7 ≫ 11) + (T ≫ 7) + mπ(j) + Kx,j

0 ≤ j ≤ 31 : fj(x6, x5, . . . , x0) = x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x0x1 ⊕ x0

32 ≤ j ≤ 63 : fj(x6, x5, . . . , x0) = x1x2x3 ⊕ x2x4x5 ⊕ x1x2 ⊕ x1x4⊕
x2x6 ⊕ x3x5 ⊕ x4x5 ⊕ x0x2 ⊕ x0

64 ≤ j ≤ 95 : fj(x6, x5, . . . , x0) = x1x2x3 ⊕ x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x0x3 ⊕ x0

96 ≤ j ≤ 127 : fj(x6, x5, . . . , x0) = x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6⊕
x1x4 ⊕ x2x6 ⊕ x3x4 ⊕ x3x5⊕
x3x6 ⊕ x4x5 ⊕ x4x6 ⊕ x0x4 ⊕ x0

128 ≤ j ≤ 159 : fj(x6, x5, . . . , x0) = x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x0x1x2x3 ⊕ x0x5 ⊕ x0

xaxb represents bitwise AND operation.
Fig. 2. Boolean Functions of HAVAL

Table 3. Wordwise rotation of HAVAL
x6 x5 x4 x3 x2 x1 x0 x6 x5 x4 x3 x2 x1 x0 x6 x5 x4 x3 x2 x1 x0

↓ ↓
φ3,1 x1 x0 x3 x5 x6 x2 x4 φ4,1 x2 x6 x1 x4 x5 x3 x0 φ5,1 x3 x4 x1 x0 x5 x2 x6

φ3,2 x4 x2 x1 x0 x5 x3 x6 φ4,2 x3 x5 x2 x0 x1 x6 x4 φ5,2 x6 x2 x1 x0 x3 x4 x5

φ3,3 x6 x1 x2 x3 x4 x5 x0 φ4,3 x1 x4 x3 x6 x0 x2 x5 φ5,3 x2 x6 x0 x4 x3 x1 x5

- - φ4,4 x6 x4 x0 x5 x2 x1 x3 φ5,4 x1 x5 x3 x2 x0 x4 x6

- - - - φ5,5 x2 x5 x0 x6 x4 x3 x1

where fj is a bitwise Boolean function defined in Fig. 2, φi,j is a wordwise permu-
tation defined in Table 3, πj is a message expansion function defined in Table 2,
≫ n is n-bit right rotation, and Kx,j is a constant defined in the specification.
We show a graph of the step function in Fig. 1. Note that R−1

j (·, mπ(j)) can be
computed in almost the same complexity as that of Rj .

2.2 Converting pseudo-preimages to a preimage

For a given hash value y, a pseudo-preimage is a pair of (x,M) such that
CF (x,M) = y, where x may not equal to IV and CF is a compression function
of a Merkle-Damg̊ard hash function. There is a generic algorithm that converts
a pseudo-preimage attack to a preimage attack [9, Fact9.99]. Let the complexity
of a pseudo-preimage attack be 2k. The procedure of this attack when the hash
value is n-bit long is as follows.

1. Generate 2(n−k)/2 pseudo-preimages at the complexity of 2k · 2(n−k)/2.
2. Generate 2(n+k)/2 messages that start from the IV , and compute their hash

values.

One of these hash values is expected to be matched. The complexity of this
attack is 2k · 2(n−k)/2 + 2(n+k)/2 = 21+(n+k)/2.

This algorithm has been used in previous preimage attacks [8, 2, 1].

2.3 Preimage attacks on 3-pass HAVAL

Aumasson et al. proposed two attacks that find a preimage of 3-pass HAVAL at
the complexity of 2230, and the attacks require 16 × 264 words of memory [2].

Both attacks take an approach of the meet-in-the-middle attack. In this paper,
we are particularly interested in the Attack A of their paper [2, Algorithm 4].

In the Attack A of [2, Algorithm 4], the authors focused attention on the
location of the message words m5 and m6, where m5 appears at Step 5, 32, and
94 and m6 appears at Step 6, 55, and 89 as shown in Table 22. First, chaining
variables p0 to p6, where p0 is IV and pi+1 is the 256-bit output of the i-th step,
are fixed so that the change of m6 in Step 6 is guaranteed to be absorbed by
changing Q−1, which is the seventh word of the IV . Similarly, chaining variables
p95 and p96 are fixed so that the change of m5 in Step 94 is guaranteed to be
absorbed by changing Q95, which is the seventh word of p96. Due to this effort,
computation for Step 0 to 47 becomes independent of m6, and computation for
Step 95 to 48 becomes independent of m5. The authors of [2] and we call these
independent words neutral words.

Finally, the authors apply the meet-in-the-middle attack to find a pseudo-
preimage of a given hash value Hn = (Ha‖Hb‖Hc‖Hd‖He‖Hf‖Hg‖Hh). The
rough sketch of the procedure is as follows. Refer to [2] for details.

Algorithm
1. Fix mx, x /∈ {5, 6} and py, y ∈ {0, . . . , 6, 95, 96} so that changes of m6 in

Step 6 and of m5 in Step 94 are absorbed and p0 + p96 = Hn is satisfied
except for Q−1 + Q95 = Hg.

2. For all 64 bits of (m5, Q−1), compute pj+1 ← Rj(pj ,mπ(j)) for j = 0, 1, . . . , 47,
and store them in a table.

3. For all 64 bits of (m6, Q95), compute pj ← R−1
j (pj+1,mπ(j)) for j = 95,

94, . . . , 48. Then, check if resulting p48 are matched with p48s in the table.
4. For all matched pairs, check if Q−1 + Q95 = Hg is satisfied.

In the above procedure, the meet-in-the-middle attack saves the complexity of
64 bits but step 4 of the procedure succeeds with a probability of 2−32. Thus,
this attack is faster than the brute force attack by the factor of 232.

2.4 Preimage attacks on MD4 and MD5

Preimage attacks on MD4 and MD5 are proposed by Aoki and Sasaki [1]. They
proposed a new technique called the splice-and-cut technique.
Splice-and-Cut: Splice the last and the first step and divide the attack target into
two chunks of steps so that each chunk includes at least one message word that
is independent of the other chunk. Then, pseudo-preimages are computed by the
meet-in-the-middle approach.

Different from Aumasson et al. [2], Aoki and Sasaki focused attention on the
property that chaining variables in the first and last steps can be considered to
be consecutive by the equation p0 = Hn − plast. This idea enables them to start
the meet-in-the-middle attack from any step.

Aoki and Sasaki also proposes another technique named partial matching.
This technique enables attackers to skip several steps when they search for good
chunks in the attack target. Assume that one of divided chunks provides the value
2 We number the first step as 0.

of pi, where pi = (Qi−7‖Qi−6‖Qi−5‖Qi−4‖Qi−3‖Qi−2‖Qi−1‖Qi) and the other
chunk provides the value of pi−4, where pi−4 = (Qi−11‖Qi−10‖Qi−9‖Qi−8‖Qi−7‖
Qi−6‖Qi−5‖Qi−4). pi and pi−4 cannot be directly compared, however, a part of
these values, that is, Qi−7, Qi−6, Qi−5, and Qi−4 can be compared immediately.
In such a case, we can ignore the value of mπ(i−1),mπ(i−2),mπ(i−3), and mπ(i−4)

when we perform the meet-in-the-middle attack.

3 General strategies of our preimage attack

3.1 Strategy 1: speed up the brute-force attack

This is a technique that enables us to quickly search for a message which con-
nects a given initial value IV and a given hash value Hn. The idea is to reuse
an intermediate value of computation of a message when we compute different
messages. Assume ma and mb form a local collision in the first round, that is,
any change of ma can be offset by changing mb, and these messages appear at
Steps s1, s2, (s1 < s2) in the second round. In this case, the computation result
until Step s1 can be reused with all ma and corresponding mb.

Moreover, since IV and Hn are fixed, the values of chaining variables in
the last round can also be reused. Let steps at which ma and mb are used be
s3, s4, (s3 < s4). In this case, the computation result from Step s4 to the last
can be reused.

Notice, this technique can also be achieved by inserting local collision in the
last round.

3.2 Strategy 2: finding pseudo-preimages by the meet-in-the-middle
attack

Combining the splice-and-cut and local-collision. The technique proposed
by Aumasson et al. [2] is for finding a pseudo-preimage by applying the meet-in-
the-middle attack that starts from the first step and the last step. On the other
hand, the splice-and-cut and partial-matching techniques proposed by Aoki and
Sasaki [1] are for finding a pseudo-preimage by applying the meet-in-the-middle
attack that starts from an intermediate step. We found that these two techniques
can be combined together, and more steps might be attacked.

Aumasson et al. use the fact that m6 is used near the first step, m5 is used
near the last step, and corresponding chaining variables appear in the same
equation for the computing hash value. We found that their technique can be
used at not only the first and last several steps but also intermediate steps.
Observation: The key idea of the attack is searching for message words that can
form a local collision. In fact, their selection of message words can be considered
as a local collision that starts with Step 94 and ends with Step 6.

The graphical explanation is shown in Fig. 3. Cells denote 32-bit chain-
ing variables and highlighted cells denote chaining variables whose values are
changed according to the selection of values of neutral words (m5,m6). The
left diagram explains the attack procedure of Aumasson et al., and the right
diagram describes it in a different step order to show (m5,m6) forms a local

m5

m6

p95

(p0=Hn-p96)

p1

p2

p3

p4

p5

p6

p0

p6

p96

p95

p96
p0

m6

m5

p5

p4

p3

p2

p1

Hn

CollisionUse
match?

local-collision?

Fig. 3. A local collision formed by the neu-
tral words used by Aumasson et al. [2]

LongCollision

ma

mx

mx

mb

neutral word

neutral word

8 step

8 step

8 step

uninvolved
message

uninvolved
message

1 step

Fig. 4. A long collision pass
used in the splice-and-cut
technique

collision. Note, in the splice-and-cut technique, the first and last steps are con-
sidered to be consecutive by the equation p0 = Hn − p96, which can be ignored
when we analyze the dependency of message words.

As you can see in Fig. 3, the technique of Aumasson et al. [2] can be inserted in
any part of an attack target. Therefore, this can be combined with the splice-and-
cut technique. For convenience, we call this technique local-collision technique,
and we summarize the property of the local-collision technique.
New technique 1. Local-Collision: When we search for chunks in an attack target,
neutral words forming a local collision can be ignored. This occurs when neutral
words appear (L + 1) steps away and other chaining variables can be guaranteed
not to be affected by the local collision, where L represents the number of chaining
variables (e.g. L = 4 for MD5, L = 8 for HAVAL).

Extension to use long collision paths. The local-collision technique de-
scribed above can be extended to use a long collision path as shown in Fig. 4.

In HAVAL, the influence of changing mπ(i) can be offset by changing mπ(i+8n),
n ≥ 1. In this case, mπ(i+8k), 1 ≤ k < n can be any message word. We call
mπ(i+8k) uninvolved messages. As long as the meet-in-the-middle attack with a
local collision such as the attack approach of Aumasson et al. is taken, neutral
words can also be used as uninvolved messages. On the other hand, in our ap-
proach explained in Section 5.3, we use “meet-in-the-middle attack” which uses
two tables but does not get the gain of the time-to-memory conversion. Thus,
neutral words require to increase the complexity of about n/(number of all steps),
since we need to fix all variables within local collision steps before we perform the
“meet-in-the-middle attack”. We also note that the changes of a 32-bit chaining
variable corresponding to neutral words must be absorbed in the Boolean func-
tions so that other chaining variables are not changed. Achieving this tends to

Step 0 1 . (n− 1)
Round 1 a ‖ b

Attack strategy on a one-round hash function
Step 0 1 . (n− 1)

Round 1 a ‖ b
Round 2 b ‖ a

Attack strategy on a two-round hash function
Step 0 1 . (n− 1)

Round 1 a ‖ (b
Round 2 a) ‖ b
Round 3 b ‖ a

Attack strategy on a three-round hash function
Step 0 1 . (n− 1)

Round 1 a ‖ (b
Round 2 a) ‖ b
Round 3 b ‖ (a
Round 4 b) ‖ a

Attack strategy on a four-round hash function
Fig. 5. Attack strategies on a hash function with up to 4 rounds

be difficult if several message words appear twice or messages used as padding
string appear in a local collision path.

Number of rounds that can be attacked. The meet-in-the-middle attack
works very efficiently if the message expansion consists of a permutation of mes-
sage word order in each round like MD5 or HAVAL. In this section, we formalize
how many rounds can be attacked. Attack strategies are also drawn in Fig. 5.

We explain how to attack a hash function that has only one-round. Let us
divide the attack target into the first half and the last half steps. In a round,
each message appears only once. Therefore, any pair of message words used in
the first and second chunks are independent each other, hence they can be used
as the neutral words. Finally, we perform the meet-in-the-middle attack between
the first chunk including ma and the second chunk including mb.

To attack a two-round hash function, we use the property that chaining
variables in the first and last steps can be considered to be consecutive. Let a
pair of message words (ma,mb) appear in the first round in this order. In the
second round, if mb is used in an earlier step than ma, the attack target can be
divided into two chunks so that one chunk includes a neutral word ma and the
other chunk includes mb. Therefore, a pseudo-preimage attack can be achieved
by the splice-and-cut technique.

A three-round hash function can be attacked by combining the splice-and-cut
technique and one of the partial-matching or local collision techniques. Assume
(ma, mb) is a pair of message words that can be skipped by using the partial-
matching or local-collision technique. In Fig. 5, skipped steps are indicated by
parentheses. If the same strategy for the two-round attack can be applied in the
rest of steps, a pseudo-preimage attack can be achieved.

To attack a four-round hash function, we need to use all techniques. At the
beginning of two chunks, we skip several steps by the local-collision technique,

Table 4. Message word distribution for fast brute-force attack on 3-pass HAVAL

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 · · · 29 30 31
index 0 1 2 3 4 5 6 7 8 9© 10 11 12 13 14 15 16 17© 18 19 20 21 · · · 29 30 31

reused local collision reused

Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 · · · 61 62 63
index 5 14 26 18 11 28 7 16 0 23 20 22 1 10 4 8 30 3 21 9© 17© 24 · · · 25 31 27

reused

Step 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 · · · 93 94 95
index 19 9© 4 20 28 17© 8 22 29 14 25 12 24 30 16 26 31 15 7 3 1 0 · · · 11 5 2

reused

and at the end of two chunks, we skip several steps by the partial-matching
technique. Both skipped steps need to include both neutral words.

4 Preimage attacks on HAVAL following the strategy 1

We apply the general strategy 1 explained in Section 3 to all passes of HAVAL.
The memory requirement of the attack is negligible.

First, we consider a preimage attack on 3-pass HAVAL. According to the
message expansion of HAVAL shown in Table 2, if we make a local collision from
Steps 9 to 17, computation results for 77 steps out of 96 steps can be reused
among different messages. The message word distribution for this attack is shown
in Table 4.

The attack procedure is as follows:

Attack procedure
1. Fix m29,m30, and m31 to satisfy the padding for a 1-block message.
2. Temporarily determine m9 and m17, and determine chaining variables and

messages mi, i /∈ {9, 17, 29, 30, 31} so that Steps 9-17 form a local collision3.
3. Randomly determine other message words that are not specified yet.
4. Compute Rj(pj ,mπ(j)) for j = 0, 1, . . . , 50 and compute R−1

j (pj+1, mπ(j))
for j = 95, 94, . . . , 70, where p96 = Hn − IV . Store the values of p51 and p70

in a table, where p70 = (Q63‖Q64‖Q65‖Q66‖Q67‖Q68‖Q69‖Q70).
5. For all 32 bits of m9, compute m17 so that the value of Q18 does not change.

Then, compute Rj(pj ,mπ(j)) for j = 51, 52, . . . , 62 and check whether com-
puted Q63 is in the table or not. If it is in the table, compute Q63, . . ., Q70

and check all values are matched. Otherwise, choose other m9 and repeat
this process.

The complexity of the above procedure is 229(= 232 · 12
96) and success probability

of step 5 is 2−224(= 2−256 ·232). Therefore, by repeating the procedure 2224 times
by changing the values of mi, 18 ≤ i ≤ 28, a message that connects a given IV
and Hn will be found at the complexity of 2253(= 229 · 2224).

On 4-pass HAVAL, the attack procedure is similar to 3-pass HAVAL. Ap-
plying local collision in the last round between Steps 102-110, the complexity
3 How to determine the chaining variables and messages to obtain a local collision

is explained in Section 5.2. A local collision for this attack can be obtained in the
similar method.

Table 5. Message word distribution for 3-pass HAVAL

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 · · · 21 22 23 24 25 26 27 28 29 30 31
index 0© 1© 2 3 4 5© 6 7 8 9 10 11© 12 13 · · · 21 22 23 24 25 26 27 28 29 30 31

skip first chunk

Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 · · · 53 54 55 56 57 58 59 60 61 62 63
index 5© 14 26 18 11© 28 7 16 0© 23 20 22 1© 10 · · · 24 29 6 19 12 15 13 2 25 31 27

first chunk second chunk

Step 64 65 66 67 68 69 70 71 72 73 74 75 · · · 83 84 85 86 87 88 89 90 91 92 93 94 95
index 19 9 4 20 28 17 8 22 29 14 25 12 · · · 3 1© 0© 18 27 13 6 21 10 23 11© 5© 2

second chunk skip

of the attack is 2256 · 128−(19+59+7)
128 ≈ 2254.43. On 5-pass HAVAL, applying local

collision in the first round between Steps 19-27, the complexity of the attack is
2256 · 160−(56+23+7)

160 ≈ 2254.89.

5 Preimage attacks on HAVAL following the strategy 2

Our general strategy 1 can work for all passes of HAVAL, however, the efficiency
is not so high. This section further reduces the complexity of preimage attacks
by using the general strategy 2, which uses the meet-in-the-middle approach.

5.1 A preimage attack on 3-pass HAVAL

We propose a preimage attack on 3-pass HAVAL, which finds a pseudo-preimage
of 3-pass HAVAL at the complexity of 2192, and is converted to a preimage
attack of the complexity of 2225. Thus, the resulting preimage is 2-block long.
This attack uses the splice-and-cut and partial-matching techniques as shown in
Table 5.

The attack procedure for a hash value Hn = (Ha‖Hb‖Hc‖Hd‖He‖Hf‖Hg‖
Hh) is as follows.

Attack procedure
1. Fix m29,m30, and m31 to satisfy the padding for a 2-block message.
2. Fix mi (i 6∈ {0, 1, 5, 11}) and p40 to randomly chosen values.
3. For all (m0,m1), do: pj+1 ← Rj(pj ,mπ(j)) for j = 40, 41, . . . , 92.
4. Make a table of (m0,m1, p93, (He−Q93, H

d−Q92,H
c−Q91))s which are com-

puted in the last step, where p93 = (Q86‖Q87‖Q88‖Q89‖Q90‖Q91‖Q92‖Q93).
5. For all (m5,m11),

(a) do the following: pj ← R−1
j (pj+1,mπ(j)) for j = 39, 38, . . . , 2,

where, p2 = (Q−5‖Q−4‖Q−3‖Q−2‖Q−1‖Q0‖Q1‖Q2).
(b) Check whether Q−5, Q−4, and Q−3 are matched with Hc−Q91,H

d−Q92,
and He −Q93 in the table.

(c) If they are matched, compute p94, p95, p96, p0, and p1 by using the matched
pairs, and check whether Hn = p0 + p96 are satisfied.

(d) If satisfied, the pair of corresponding message and p0 is a pseudo-preimage
of Hn.

Table 6. Message word distribution for 4-pass HAVAL

Step 0 1 2 3 4 5 6 7 · · · 20 21 22 23 24 25 26 27 28 29 30 31
index 0 1 2 3 4 5© 6 7 · · · 20 21 22 23 24© 25 26 27 28 29 30 31

second chunk local collision (1-cycle)

Step 32 33 34 · · · 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
index 5© 14 26 · · · 30 3 21 9 17 24© 29 6 19 12 15 13 2 25 31 27

first chunk

Step 64 65 66 67 68 69 70 71 72 73 74 75 76 77 · · · 90 91 92 93 94 95
index 19 9 4 20 28 17 8 22 29 14 25 12 24© 30 · · · 21 10 23 11 5© 2

first chunk skip

Step 96 97 98 · · · 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
index 24© 4 0 · · · 22 11 31 21 8 27 12 9 1 29 5© 15 17 10 16 13

second chunk

In the above procedure, the complexity of step 3 is 264 · 5396 and the complexity
of step 5a is 264 · 38

96 . After step 5b, 232(= 2128 · 2−96) pairs are expected to be
remained. After step 5c, 2−128(= 2−160 · 232) pair are expected to be remained.
Therefore, by repeating the above procedure 2128 times, we expect to obtain a
pseudo-preimage, where the complexity is 2192(= 264 ·2128). Finally, this pseudo-
primage attack is converted to a preimage attack of the complexity of 2225 by
the generic approach explained in Section 2.24. Step 4 requires 13 × 264 words
of memory and other steps require negligible amount of memory.

5.2 A preimage attack on 4-pass HAVAL

We propose a preimage attack on 4-pass HAVAL, which finds a pseudo-preimage
of 4-pass HAVAL at the complexity of 2224, and is converted to a preimage attack
of the complexity of 2241. Thus, the resulting preimage is 2-block long. This
attack uses the splice-and-cut, partial-matching, and local-collision techniques
as shown in Table 6.

In this attack, we need to guarantee that the neutral words form a local-
collision in Steps 24-32. This is achieved by fixing chaining variables so that
the change of a chaining variable corresponding to both neutral words does not
propagate through the Boolean functions. How chaining variables are fixed is
shown in Table 7, where, 0, 1, Ci, and ∗ denote 0x00000000, 0xffffffff, a
fixed value, and a flexible value which depends on the value of neutral words,
respectively.

The attack procedure for a hash value Hn = (Ha‖Hb‖Hc‖Hd‖He‖Hf‖
Hg‖Hh) is as follows.

Attack procedure
1. Randomly choose the values of C1, . . . ,C5, and fix the values of chaining

variables denoted by C1, . . . ,C5,0, and 1 in Table 7.
2. Compute mi (i ∈ {25, 26, 27, 28}) by solving the step function.
4 Combination of the attack proposed by Aumasson et al. described in Section 2.3

and P3graph proposed in [3] will be the preimage attack with a complexity of 2225.
Moreover, following [1, Appendix], the complexity is further improved to 2224, but
the length of the preimage message will be very long.

Table 7. Fixed values for preimage attack on 4-pass HAVAL

step j mπ(j) Qj−7 Qj−6 Qj−5 Qj−4 Qj−3 Qj−2 Qj−1 Qj

24 m24© Q17© C1 C2 C3 C4 1 0 0

25 m25 C1 C2 C3 C4 1 0 0 ∗
26 m26 C2 C3 C4 1 0 0 ∗ 0

27 m27 C3 C4 1 0 0 ∗ 0 0

28 m28 C4 1 0 0 ∗ 0 0 0

29 m29 1 0 0 ∗ 0 0 0 C5

30 m30 0 0 ∗ 0 0 0 C5 C6

31 m31 0 ∗ 0 0 0 C5 C6 C7

32 m5© ∗ 0 0 0 C5 C6 C7 C8

33 0 0 0 C5 C6 C7 C8 Q33©
Messages used for the padding string are underlined.
Variables which we try all possible values are circled.

3. Fix m29,m30, and m31 to satisfy the padding for a 2-block message.
4. Compute Q30, Q31, and Q32 by the step function.
5. Randomly determine other message words that are not specified yet.
6. For all (m5, Q17), do the following:





pj ← R−1
j (pj+1,mπ(j)) for j = 23, 22, . . . , 0,

p128 ← Hn − p0,
pj ← R−1

j (pj+1,mπ(j)) for j = 127, 126, . . . , 97.

7. Make a table of (m5, Q17, p97)s which are computed in the last step, where
p97 = (Q90‖Q91‖Q92‖Q93‖Q94‖Q95‖Q96‖Q97).

8. For all (m24, Q33),
(a) do the following: pj+1 ← Rj(pj ,mπ(j)) for j = 33, 34, . . . , 93,

where, p94 = (Q87‖Q88‖Q89‖Q90‖Q91‖Q92‖Q93‖Q94).
(b) Check whether Q94, Q93, Q92, Q91, and Q90 are matched with those stored

in the table.
(c) If they are matched, compute p95, p96, and p97 with the matched pairs,

and check whether they are matched with those stored in the table.
(d) If matched, compute Q25, which is denoted by ∗ in Table 7, by the step

function for Step 24 with matched (m24, Q17) and by the step function
for Step 33 with matched (m5, Q33).

(e) Check whether both results of Q25 are matched.
(f) If matched, the pair of corresponding message and p0 is a pseudo-preimage

of Hn.

In the above procedure, the complexity of step 6 is 264· 55
128 and the complexity

of step 8a is 264 · 61
128 . After step 8b, 2−32(= 2128 · 2−160) pair is expected to be

remained. After step 8c, 2−128(= 2−32 · 2−96) pair is expected to be remained.
After step 8e, 2−160(= 2−32 · 2−128) pair is expected to be remained. Therefore,
by repeating the above procedure 2160 times, we expect to obtain a pseudo-
preimage, where the complexity is 2224(= 264 ·2160). Finally, this pseudo-primage
attack is converted to a preimage attack of the complexity of 2241 by the generic
approach explained in Section 2.2. Step 7 requires 10×264 words of memory and
other steps require negligible amount of memory.

Table 8. Message word distribution for 5-pass HAVAL (full)

Step 0 1 2 3 4 5 · · · 19 20 21 22 23 24 25 26 27 28 29 30 31
index 0 1 2 3 4 5 · · · 19 20© 21 22 23 24 25 26© 27 28 29 30 31

second chunk skip

Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 · · · 63
index 5 14 26© 18 11 28 7 16 0 23 20© 22 1 10 4 8 30 3 · · · 27

skip

Step 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 · · · 95
index 19 9 4 20© 28 17 8 22 29 14 25 12 24 30 16 26© 31 15 · · · 2

skip first chunk

Step 96 · · · 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 · · · 121 · · ·
index 24 · · · 23 26© 6 30 20© 18 25 19 3 22 11 31 21 8 27 · · · 29 · · ·

first chunk local collision (3-cycle)

Step 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 · · · 159
index 27 3 21 26© 17 11 20© 29 19 0 12 7 13 8 31 10 5 9 · · · 15

local collision second chunk

5.3 Notes on preimage attack on 5-pass HAVAL
A preimage attack on 5-pass HAVAL reduced to 151 steps
5-pass HAVAL reduced to 151 steps, which use the first 151 steps of 5-pass
HAVAL, can be attacked by using the almost same approach as the attack on
4-pass HAVAL. In Table 6, Step 127 is a part of the second chunk that includes
m5 and is independent of m24. According to the message expansion shown in
Table 2, Steps 128-150 are independent from m24. Therefore, the attack on 4-
pass HAVAL in the last section can also be applied to the first 151 steps of
5-pass HAVAL. The complexity is almost the same, so we can find a pseudo-
preimage at the complexity of 2224, and this attack is converted to a preimage
attack of the complexity of 2241, and requires 10× 264 words of memory. Note,
we experimentally confirmed that there is no selection of chunks that can attack
more than 151 steps at the better complexity.
A preimage attack on full 5-pass HAVAL
As mentioned in Section 3.2, our attack works efficiently on a hash function
with less than or equal to 4 rounds, but does not work on the one with more
than 4 rounds. However, by combining the exhaustive search, we can find a
pseudo-preimage at 2253.81.

To attack full 5-pass HAVAL, we need to use all the techniques explained:
splice-and-cut, partial-matching, and local-collision techniques. The selection of
the chunks are shown in Table 8. We stress that our computer search program
did not find a pair of chunks that can be attacked with a 9-step local collision.
This problem was solved by using a long collision path introduced in Section 3.2.

To guarantee that the neutral words form a local-collision in Steps 107-131,
we fix chaining variables as shown in Table 9.

1. Fix the value of chaining variables as shown in Table 9, and derive the
corresponding messages by using the step function.

2. Fix the value of message words that are not used inside the local collision
steps. Note there is enough message space to find a pseudo-preimage.

Table 9. Fixed values for preimage attack on 5-pass HAVAL

Round Step j mπ(j) Qj−7 Qj−6 Qj−5 Qj−4 Qj−3 Qj−2 Qj−1 Qj

4R 107 m20© Q100© C1 C2 C3 1 0 1 1
108 m18 C1 C2 C3 1 0 1 1 ∗(Q108)
109 m25 C2 C3 1 0 1 1 ∗ 1
110 m19 C3 1 0 1 1 ∗ 1 1
111 ◦m3 1 0 1 1 ∗ 1 1 1
112 m22 0 1 1 ∗ 1 1 1 1
113 m11 1 1 ∗ 1 1 1 1 0
114 m31 1 ∗ 1 1 1 1 0 1
115 (◦m21) ∗ 1 1 1 1 0 1 1
116 m8 1 1 1 1 0 1 1 ∗(Q116)
117 ◦m27 1 1 1 0 1 1 ∗ 1
118 m12 1 1 0 1 1 ∗ 1 1
119 m9 1 0 1 1 ∗ 1 1 1
120 m1 0 1 1 ∗ 1 1 1 1
121 m29 1 1 ∗ 1 1 1 1 0
122 m5 1 ∗ 1 1 1 1 0 0
123 (m15) ∗ 1 1 1 1 0 0 0
124 m17 1 1 1 1 0 0 0 ∗(Q124)
125 m10 1 1 1 0 0 0 ∗ 0
126 m16 1 1 0 0 0 ∗ 0 0
127 m13 1 0 0 0 ∗ 0 0 C4

5R 128 ◦m27 0 0 0 ∗ 0 0 C4 0
129 ◦m3 0 0 ∗ 0 0 C4 0 C5

130 ◦m21 0 ∗ 0 0 C4 0 C5 C6

131 m26© ∗ 0 0 C4 0 C5 C6 C7

132 0 0 C4 0 C5 C6 C7 Q132©
Messages that appear twice are stressed with ◦.
Uninvolved messages are written in parentheses.

3. For all 232 values of Q108, compute a corresponding value of Q124. Store the
result in a table named Table A.

4. For all 264 values of (m26, Q100), do the following:

pj ← R−1
j (pj+1,mπ(j)) for j = 106, 105, . . . , 68.

Store (m26, Q100, p68) in a table named Table B.
5. For all 264 values of (m20, Q132), do the followings:





pj+1 ← Rj(pj , mπ(j)) for j = 132, 133, . . . , 159,
p0 ← Hn − p160,
pj+1 ← Rj(pj , mπ(j)) for j = 0, 1, . . . , 25.

Store (m20, Q132, p26) in a table named Table C.
6. For all 296 values of (m26, Q100,m20), do the followings.

(a) Compute a value of Q108 by using (m20, Q100).
(b) Find a value of corresponding Q124 by looking up Table A.
(c) Compute a value of corresponding Q132 by using Q124 and m26.

(d) Find values of corresponding p68 and p26 by looking up Table B and C.
(e) Compute skipped steps, which are Steps 26-67, by using (m26, p26,m20,

p68).
(f) If skipped steps are matched, output corresponding messages.

In the above procedure, steps 1 and 2 finish in negligible time. Step 3 takes
the complexity of about 232 · 3

160 . Step 4 takes the complexity of 264 · 39
160 , and

step 5 takes the complexity of 264 · 54
160 . Steps 6a to 6d finishes in negligible time

for each of (m26, Q100,m20). Step 6e seems to take the complexity of 296 · 42
160 ,

but this can be easily improved to 296 · 35
160 by the partial-matching technique.

Furthermore, the equation for computing Step 26 can be written as follows:

Q27 ← mπ(26) + (term independent from mπ(26)).

Therefore, Step 26 can be computed in negligible cost compared to one step
function, and thus, the complexity becomes 296 · 34

160 . After Step 6e, the number
of matched message is evaluated as 2−160(= 2−256 ·296). Therefore, by repeating
steps 2 to 6 of the above procedure 2160 times, a pseudo-preimage can be found
at the complexity of 2160 · 296 · 34

160 ≈ 2253.81. Steps 4 and 5 require 20 × 264

words of memory in total and other steps require negligible amount of memory.
To apply the depth first search for steps 4-6, Table B or C can be removed and
memory requirement becomes half.

Notes on local collision shown in Table 9. In the local collision shown
in Table 9, m3,m21, and m27 appear twice. Therefore, we need to be careful
so that all fixed values in Table 9 can be achieved. m21 is used in Steps 115
and 130. Since a message used in Step 115 is an uninvolved message, we can
determine m21 so that Step 130 is satisfied. We can ignore the influence to Step
115. Regarding m3 and m27, since they are used in Steps 129 and 128 whose
outputs can be any value (C6 and C5), m3 and m27 can be fixed so that Steps
111 and 117 are satisfied. This local collision also includes m29, which is involved
to the message padding. Unfortunately, this local collision needs to fix m29 to
a unique value, since all input and output values of Step 121 are fixed. As a
result, this attack cannot satisfy the message padding of 5-pass HAVAL. It is
interesting that the uniquely fixed m29 satisfies the message padding rules of
MD5. Since the padding rules of HAVAL require to produce more information
than those of MD5, for example output length and pass number, the fixed m29

does not satisfy the padding for HAVAL but satisfies the padding for MD5.

6 Conclusion

In this paper, we proposed preimage attacks on HAVAL. We considered two
general strategies to find a preimage. The first approach is speeding up the brute-
force attack. By this approach, we can reduce the complexity of preimage attacks
by a few bits. The second approach is the meet-in-the-middle approach. We
found that the techniques proposed by [1] and [2] can be combined to attack hash
functions with more rounds than previous works. As a result, we found a pseudo-
preimage attack and a preimage attack on 3-pass HAVAL whose complexities

are 2192 and 2225, a pseudo-preimage attack and a preimage attack on 4-pass
HAVAL whose complexities are 2224 and 2241, and a pseudo-preimage attack
and a preimage attack on 151-step 5-pass HAVAL whose complexities are also
2224 and 2241. Moreover, we optimized the computational order for brute force
attack on 5-pass HAVAL and its complexity is 2254.89. As far as we know, the
proposed attack on 3-pass HAVAL is the best attack and proposed attacks on
4-pass HAVAL and 5-pass HAVAL are the first attacks.

References

1. Kazumaro Aoki and Yu Sasaki. Preimage attacks on one-block MD4, 63-step
MD5 and more. In Roberto Avanzi, Liam Keliher, and Francesco Sica, editors,
Selected Areas in Cryptography — Workshop Records of 15th Annual International
Workshop, SAC 2008, pages 82–98, Sackville, New Brunswick, Canada, 2008.

2. Jean-Philippe Aumasson, Willi Meier, and Florian Mendel. Preimage attacks on
3-pass HAVAL and step-reduced MD5. In Roberto Avanzi, Liam Keliher, and
Francesco Sica, editors, Selected Areas in Cryptography — Workshop Records of
15th Annual International Workshop, SAC 2008, pages 99–114, Sackville, New
Brunswick, Canada, 2008. (also appeared in IACR Cryptology ePrint Archive:
Report 2008/183 http://eprint.iacr.org/2008/183).

3. Christophe De Cannière and Christian Rechberger. Preimages for reduced SHA-
0 and SHA-1. In David Wagner, editor, Advances in Cryptology — CRYPTO
2008, volume 5157 of Lecture Notes in Computer Science, pages 179–202, Berlin,
Heidelberg, New York, 2008. Springer-Verlag. (slides on preliminary results were
appeared at ESC 2008 seminar http://wiki.uni.lu/esc/).

4. Hans Dobbertin. The first two rounds of MD4 are not one-way. In Serge Vaudenay,
editor, Fast Software Encryption — 5th International Workshop, FSE’98, volume
1372 of Lecture Notes in Computer Science, pages 284–292, Berlin, Heidelberg,
New York, 1998. Springer-Verlag.

5. Jongsung Kim, Alex Biryukov, Bart Preneel, and Seokhie Hong. On the security
of HMAC and NMAC based on HAVAL, MD4, MD5, SHA-0 and SHA-1. In
Roberto De Prisco and Moti Yung, editors, Security in Communication Networks
SCN 2006, volume 4116 of Lecture Notes in Computer Science, pages 242–256.
Springer-Verlag, Berlin, Heidelberg, New York, 2006.

6. Jongsung Kim, Alex Biryukov, Bart Preneel, and Sangjin Lee. On the security of
encryption modes of MD4, MD5 and HAVAL. In Sihan Qing, Wenbo Mao, Javier
Lopez, and Guilin Wang, editors, Information and Communications Security — 7th
International Conference ICICS 2005, volume 3783 of Lecture Notes in Computer
Science, pages 147–158. Springer-Verlag, Berlin, Heidelberg, New York, 2005.

7. Eunjin Lee, Jongsung Kim, Donghoon Chang, Jaechul Sung, and Seokhie Hong.
Second preimage attack on 3-pass HAVAL and partial key-recovery attacks on
NMAC/HMAC-3-pass HAVAL. In Kaisa Nyberg, editor, Fast Software Encryp-
tion — 15th International Workshop, FSE 2008, volume 5086 of Lecture Notes in
Computer Science, pages 189–206, Berlin, Heidelberg, New York, 2008. Springer-
Verlag.

8. Gaëtan Leurent. MD4 is not one-way. In Kaisa Nyberg, editor, Fast Software
Encryption — 15th International Workshop, FSE 2008, volume 5086 of Lecture
Notes in Computer Science, pages 412–428, Berlin, Heidelberg, New York, 2008.
Springer-Verlag.

9. Alfred John Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
applied cryptography. CRC Press, 1997.

10. Ronald L. Rivest. Request for Comments 1321: The MD5 Message Digest Algo-
rithm. The Internet Engineering Task Force, 1992. (http://www.ietf.org/rfc/
rfc1321.txt).

11. Kazuhiro Suzuki and Kaoru Kurosawa. How to find many collisions of 3-pass
HAVAL. In Atsuko Miyaji, Hiroaki Kikuchi, and Kai Rannenberg, editors, Ad-
vances in Information and Computer Security, IWSEC 2007, volume 4752 of Lec-
ture Notes in Computer Science, pages 428–443, Berlin, Heidelberg, New York,
2007. Springer-Verlag. (A preliminary version was appeared in IACR Cryptology
ePrint Archive: Report 2007/079 http://eprint.iacr.org/2007/079).

12. Bart van Rompay, Alex Biryukov, Bart Preneel, and Joos Vandewalle. Crypt-
analysis of 3-pass HAVAL. In Chi Sung Laih, editor, Advances in Cryptology —
ASIACRYPT 2003, volume 2894 of Lecture Notes in Computer Science, pages
228–245. Springer-Verlag, Berlin, Heidelberg, New York, 2003.

13. Xiaoyun Wang, Dengguo Feng, and Xiuyuan Yu. An attack on hash function
HAVAL-128. Science in China (Information Sciences), 48(5):545–556, 2005.

14. Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In
Ronald Cramer, editor, Advances in Cryptology — EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 19–35. Springer-Verlag, Berlin,
Heidelberg, New York, 2005.

15. Zhangyi Wang, Huanguo Zhang, Zhongping Qin, and Qingshu Meng. Cryptanalysis
of 4-pass HAVAL. (IACR Cryptology ePrint Archive: Report 2006/161 http:

//eprint.iacr.org/2006/161), 2006.
16. Hirotaka Yoshida, Alex Biryukov, Christophe De Cannière, Joseph Lano, and Bart

Preneel. Non-randomness of the full 4 and 5-pass HAVAL. In Blundo Carlo and
Cimato Stelvio, editors, Security in Communication Networks SCN 2004, volume
3352 of Lecture Notes in Computer Science, pages 324–336. Springer-Verlag, Berlin,
Heidelberg, New York, 2004.

17. Hongbo Yu, Xiaoyun Wang, Aaram Yun, and Sangwoo Park. Cryptanalysis of
the full HAVAL with 4 and 5 passes. In Matthew Robshaw, editor, Fast Software
Encryption — 13th International Workshop, FSE 2006, volume 4047 of Lecture
Notes in Computer Science, pages 89–110, Berlin, Heidelberg, New York, 2006.
Springer-Verlag.

18. Yuliang Zheng, Josef Pieprzyk, and Jennifer Seberry. HAVAL — one-way hashing
algorithm with variable length of output. In Jennifer Seberry and Yuliang Zheng,
editors, Advances in Cryptology — AUSCRYPT’92, volume 718 of Lecture Notes in
Computer Science, pages 83–104. Springer-Verlag, Berlin, Heidelberg, New York,
1993.

