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Abstract. MISTY1 is a Feistel block cipher that received a great deal
of cryptographic attention. Its recursive structure, as well as the added
FL layers, have been successful in thwarting various cryptanalytic tech-
niques. The best known attacks on reduced variants of the cipher are
on either a 4-round variant with the FL functions, or a 6-round variant
without the FL functions (out of the 8 rounds of the cipher).
In this paper we combine the generic impossible differential attack against
5-round Feistel ciphers with the dedicated Slicing attack to mount an
attack on 5-round MISTY1 with all the FL functions with time com-
plexity of 246.45 simple operations. We then extend the attack to 6-
round MISTY1 with the FL functions present, leading to the best known
cryptanalytic result on the cipher. We also present an attack on 7-round
MISTY1 without the FL layers.

1 Introduction

MISTY1 [10] is a 64-bit block cipher with presence in many cryptographic stan-
dards and applications. For example, MISTY1 was selected to be in the CRYP-
TREC e-government recommended ciphers in 2002 and in the final NESSIE
portfolio of block ciphers, as well as an ISO standard (in 2005).

MISTY1 has a recursive Feistel structure, where the round function is in
itself (very close to) a 3-round Feistel construction. To add to the security of the
cipher, after every two rounds (and before the first round), an FL function is
applied to each of the halves independently. The FL functions are key-dependent
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linear functions which play the role of whitening layers (even in the middle of
the encryption).

MISTY1 has withstood extensive cryptanalytic efforts. The most successful
attacks on it are an impossible differential attack on 4 rounds (when the FL
layers are present) [8], an integral attack on 5 rounds (when all but the last FL
layers are present) [6], and an impossible differential attack on 6 rounds (without
FL layers) [9].

In this paper we show that the generic impossible differential attack against
5-round Feistel constructions [2, 5] can be combined with the dedicated slicing
attack [8] to yield an attack on 5-round MISTY1 with all the FL functions. The
data complexity of the attack is 238 chosen plaintexts, and the time complexity
is 246.45 simple operations. The main idea behind this attack is to actually attack
the FL functions themselves as these functions are keyed linear transformations.

After presenting the 5-round attack, we extend it by one more round, and
show that by using key schedule considerations and a delicately tailored attack
algorithm, it is possible to attack 6 rounds of MISTY1 with all the FL functions
present. The 6-round attack requires 251 chosen plaintexts and has a running
time of 2123.4 encryptions.

Finally, we present an impossible differential attack on 7-round MISTY1
when the FL layers are omitted. The attack uses 250.2 known plaintexts, and
has a running time of 2114.1 encryptions. We summarize our results along with
previously known results on MISTY1 in Table 1.

This paper is organized as follows: In Section 2 we give a brief description
of the structure of MISTY1. We present our 5-round attack in Section 3, and
discuss its extension to 6 rounds in Section 4. In Section 5 we present a 7-round
attack which can be applied when there are no FL layers. Section 6 concludes
the paper.

2 The MISTY1 cipher

MISTY1 [10] is a 64-bit block cipher that has a key size of 128 bits. Since its
introduction it withstood several cryptanalytic attacks [1, 6–9], mostly due to its
very strong round function (which accepts 32-bit input and 112-bit subkey1) and
the FL layers (keyed linear transformations) which are applied every two rounds.
The security of MISTY1 was acknowledged several times, when it was selected
to the NESSIE portfolio, the CRYPTREC’s list of recommended ciphers, and
as an ISO standard.

MISTY1 has a recursive structure. The general structure of the cipher is a
8-round Feistel construction, where the round function, FO, is in itself close to
a 3-round Feistel construction. The input to the FO function is divided into two
halves. The left one is XORed with a subkey, enters a keyed permutation FI,
and the output is XORed with the right half. After the XOR the two halves are
swapped, and the same process (including the swap) is repeated two more times.

1 In [7] it was observed that the round function has an equivalent description that
accepts 105 equivalent subkey bits.
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Table 1. Summary of the Attacks on MISTY1

Attack Rounds FL Complexity
functions Data Time

Impossible Differential [7] 4 Most 223 CP 290.4

Impossible Differential [7] 4 Most 238 CP 262

Collision Search [7] 4 Most 220 CP 289

Collision Search [7] 4 Most 228 CP 276

Slicing Attack [8] 4† All 222.25 CP 245

Slicing Attack & Impossible Differential [8] 4 All 227.2 CP 281.6

Impossible Differential [8] 4 All 227.5 CP 2116

Integral [6] 5 Most 210.5 CP 222.11

Impossible Differential (Section 3) 5† All 238 CP 246.45

Impossible Differential (Section 4) 6 All 251 CP 2123.4

Higher-Order Differential [1] 5 None 210.5 CP 217

Impossible Differential [7] 6 None 254 CP 261

Impossible Differential [7] 6 None 239 CP 2106

Impossible Differential [9] 6 None 239 CP 285

Impossible Differential (Section 5) 7 None 250.2 KP 2114.1

KP – Known plaintext, CP – Chosen plaintext
† – the attack retrieves 41.36 bits of information about the key

After that, an additional swap and an XOR of the left half with a subkey are
performed.

The FI in itself also has a Feistel-like structure. The 16-bit input is divided
into two unequal halves — one of 9 bits, and the second of 7 bits. The left half
(which contains 9 bits) enters an S-box, S9, and the output is XORed with the
7-bit half (after padding the 7-bit value with two zeroes). The two halves are
swapped, the 7-bit half enters a different S-box, S7, and the output is XORed
with 7 bits out of the 9 of the right half. The two halves are then XORed with
a subkey, and swapped again. The 9-bit value again enters S9, and the output
is XORed with the 7-bit half (after padding). The two halves are then swapped
for the last time.

Every two rounds, starting before the first one, the two 32-bit halves enter
an FL layer. The FL layer is a simple transformation. The input is divided into
two halves of 16 bits each, the AND of the left half with a subkey is XORed
to the right half, and the OR of the updated right half with another subkey is
XORed to the left half. We outline the structure of MISTY1 and its parts in
Figure 1.
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Fig. 1. Outline of MISTY1

The key schedule of MISTY1 takes the 128-bit key, and treats it as eight 16-
bit words K1, K2, . . . , K8. From this set of subkeys, another eight 16-bit words
are generated according to K ′

i = FIKi+1
(Ki).

2

In each round, seven words are used as the round subkey, and each of the FL
functions accepts two subkey words. We give the exact key schedule of MISTY1
in Table 2.

2 In case the index of the key j is greater than 8, the used key word is j − 8. This
convention is used throughout the paper.
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Table 2. The Key Schedule Algorithm of MISTY1

KOi,1 KOi,2 KOi,3 KOi,4 KIi,1 KIi,2 KIi,3 KLi,1 KLi,2

K i+1

2

(odd i) K′
i+1

2
+6

(odd i)

Ki Ki+2 Ki+7 Ki+4 K′
i+5 K′

i+1 K′
i+3

K′
i

2
+2

(even i) K i

2
+4

(even i)

3 An Impossible Differential Attack on 5-Round MISTY1

Our attack on 5-round MISTY1 with all the FL functions is based on the generic
impossible differential attack against 5-round Feistel constructions with a bijec-
tive round function [2, 5] and on the dedicated slicing attack [8] on reduced-round
MISTY1.

3.1 The New 5-Round Impossible Differential

The generic attack on 5-round Feistel constructions is based on the following
impossible differential:

Observation 1 ([2], page 136) Let E : {0, 1}2n → {0, 1}2n be a 5-round Feis-
tel construction with a bijective round function f : {0, 1}n → {0, 1}n. Then for
all non-zero α ∈ {0, 1}n, the differential (0, α) → (0, α) through E is impossible.

Our proposition is based on the fact that a similar impossible differential can
be constructed even if FL layers are added to the construction, as in MISTY1.
Note that since for a given key the FL layers are linear, we can define FL(α) for a
difference α as the unique difference β such that (x⊕y = α) ⇒ (FL(x)⊕FL(y) =
β).

Proposition 1. Let E denote a 5-round variant of MISTY1, with all the FL
functions present (including an FL layer after round 5). If for the given secret
key we have FL8(FL6(FL4(FL2(α)))) = β, where FLn is FL with the key
KLn, then the differential (0, α) → (0, β) through E is impossible.

Proof. If the plaintext difference is (0, α), then after the first FL layer, the dif-
ference becomes (0, FL2(α)). This difference evolves after two rounds (including
the second FL layer) to (x, FL4(FL2(α))), where x 6= 0 due to the bijectiveness
of the round function of MISTY1.

On the other hand, if the output difference is (0, β) such that β = FL8(FL6(FL4(FL2(α)))),
then before the last FL layer, the difference is (0, FL6(FL4(FL2(α)))), and thus
the input difference to round 5 is also (0, FL6(FL4(FL2(α)))). Thus, the differ-
ence before the third FL layer is (0, FL4(FL2(α))).

However, if the input difference to round 3 is (x, FL4(FL2(α))) and the
output difference of round 4 (before the FL layer) is (0, FL4(FL2(α))), then
the output difference of the FO function in round 3 is zero. This is impossible
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since the input difference to this FO function is x 6= 0, and the FO function is
bijective.

Hence, the differential (0, α) → (0, β) is indeed impossible.
⊓⊔

We note that a similar approach is used in the slicing attack on 4-round
MISTY1 [8]. The slicing attack is based on the generic 3-round impossible dif-
ferential (0, α) → (0, β) for all non-zero α, β which holds for every 3-round Feistel
construction with a bijective round function.

3.2 The Structure of the FL Functions

A straightforward way to use the new impossible differential to attack 5-round
MISTY1 is to encrypt many pairs with difference (0, α) for non-zero α, con-
sider the pairs whose ciphertext difference is of the form (0, β), and discard
subkeys of the FL layers for which FL8(FL6(FL4(FL2(α)))) = β. However,
since the subkeys used in FL2, FL4, FL6, and FL8 are determined by 96 key
bits, this approach is very time consuming. Instead, we examine the structure
of the FL functions in order to find an efficient way to find the instances for
which FL8(FL6(FL4(FL2(α)))) = β, for a given pair (α, β). We use a series of
observations, most of which were first presented in [8].

In the rest of this section, the function FL8 ◦ FL6 ◦ FL4 ◦ FL2 is denoted
by G.

1. For each 0 ≤ i ≤ 15, the i-th bits of both halves of the input to an FL
function and the i-th bits of both halves of the subkey used in the FL
function, influence only the i-th bits of both halves of the output of the
function. As a result, each FL function can be represented as a parallel
application of 16 functions fi : {0, 1}2 → {0, 1}2 keyed by two different
subkey bits each.

2. Each fi is linear and invertible.
3. The two observations above hold also for a series of FL functions applied

sequentially. In particular, the function G = FL8 ◦ FL6 ◦ FL4 ◦ FL2 can
be represented as a parallel application of 16 functions gi : {0, 1}2 → {0, 1}2

keyed by eight subkey bits each. The gi’s are all linear and invertible, and
hence, can realize only six possible functions.3 Thus, there are only 616 =
241.36 possible G functions.

4. Since each gi is invertible, the differentials 0 → a and a → 0 through gi

are impossible, for each non-zero a ∈ {0, 1}2. As a result, most of the dif-
ferentials of the form α → β through G are impossible, regardless of the
subkeys used in the FL functions. In each of the gi-s, only 10 out of the 16
possible input/output pairs are possible. Hence, only (10/16)16 = 2−10.85 of
the input/output pairs for G are possible.

3 Since we are interested only in differences, we treat two functions that differ by an
additive constant as the same function. The total number of functions for each fi is
actually 24.
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5. Assume that G(α) = β, for fixed α and β. We want to find how many
functions of the form G (out of the possible 241.36 functions) satisfy this
condition. For each gi, there are 10 possible input/output pairs (the other six
pairs are impossible for any subkey). For the 0 → 0 pair, all the six possible gi

functions satisfy this condition. For each of the 9 remaining pairs, two of the
six functions satisfy the condition. Since the gi functions are independent,
the expected number of functions satisfying the conditions for all the gi-s is:

16
∑

j=0

(

16

j

)

·

(

9

10

)j

·

(

1

10

)16−j

· 2j · 616−j = 220.2.

The 241.36 possible G functions can be enumerated in such a way that the
functions satisfying the condition for each (α, β) pair can be found efficiently.

Using these observations on the structure of the FL functions, we are ready
to present our attack.

3.3 The New Attack

1. Ask for the encryption of 64 structures of 232 plaintexts each, such that in
each structure, the left half of all the plaintexts is equal to some random value
A, while the right half obtains all possible values. (As a result, the difference
between two plaintexts in the same structure is of the form (0, α)).

2. For each structure, find the pairs whose output difference is of the form
(0, β).

3. For each pair with input difference (0, α) and output difference (0, β) check
whether α → β is an impossible differential for the function G (as described
in Section 3.2). Discard pairs which fail this test.

4. For each remaining pair, find all the G functions satisfying the condition
G(α) = β and discard them from the list of all possible G functions.

5. After analyzing all the remaining pairs, output the list of remaining G func-
tions.

Step 2 of the algorithm can be easily implemented by a hash table, resulting in
about 231 pairs from each structure. Step 3 can be easily performed by evaluating
a simple Boolean function on the input and the output (as we are concerned with
cases of a zero input causing a non-zero output or vice versa).4

As noted in Section 3.2, out of the 231 pairs, about 231 ·2−10.85 = 220.15 pairs
remain from each structure at this point. Each of these pairs discards about
220.2 possible values of G on average (as shown in Section 3.2), and thus, each

4 The exact Boolean expression is as follows: Let the input difference of G be (x1, x2)
and the output difference of G be (y1, y2). Also let t be the bitwise NOT of t, let & be
a bitwise AND, and | be a bitwise OR. If x1&x2&(y1|y2) is non-zero then there is a
zero input difference transformed to a non-zero output difference. It is also required
to check whether the output difference is zero and the input difference is non-zero,
which is done by evaluating: y1&y2&(x1|x2).
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structure is expected to discard about 240.35 G functions. The identification of
the discarded functions can be performed very efficiently.

Thus, after analyzing about 64 structures, we are left only with the right G
function.5 The time complexity of the attack is about 64 · 220.15 · 220.2 = 246.35

simple operations, and the information retrieved by the attacker is equivalent to
41.36 key bits. In many situations, this is considered a break of the system and
the attack terminates.

3.4 Retrieving the Rest of the Secret Key

If the attacker wants to retrieve the actual value of the key, she can use the
G function found in the attack to retrieve the value of the subkeys used in the
G function. A naive approach is to try the possible 296 subkeys which affect
the functions FL2, FL4, FL6, and FL8, and check (for each subkey) whether it
yields the correct G function. A more efficient algorithm is to guess the values of
the subkeys K ′

3, K4, K5, K6, and K7, and check whether they induce the correct
transformation from the input of G to the right half of the output of G. If
this is the case, the attacker can retrieve the suggested value for K8 efficiently,
and if the suggestion is consistent with the correct G function, the attacker
obtains a candidate for 96 bits of the key (the knowledge of K ′

3 and K4 allows
computing K3). The time complexity of this approach is roughly 280 evaluations
of four FL functions, and the attacker gets a list of 296 · 2−41.36 = 254.64 96-bit
subkeys. Retrieving the rest of the key by exhaustive search leads to a total time
complexity of 286.64 encryptions.

We note that possibly this part of the attack can be performed much more ef-
ficiently using some different attack technique and exploiting the key information
obtained so far.6

4 Extending the Attack to 6 Rounds

The simplest way to extend a 5-round attack to 6 rounds is to guess the subkey of
the last round, peel the last round off, and apply the 5-round attack. In MISTY1,
this requires guessing the key of the last FL layer, as well as 112 subkey bits
which enter the sixth FO function. Thus, we need to use a more careful analysis
and key schedule considerations to present this attack.

In our attack we guess the subkey of the last FL layer (composed of 64 bits),
and examine only ciphertext pairs with a special structure in order to reduce

5 We expect 240.35 · 64 = 246.35 functions to be discarded (with overlap). Thus, the
probability that a specific function remains after the analysis is

`

1 − 2−41.36
´2

46.35

≈ e
−32 = 2−46.2

.

6 We note that a similar problem is discussed in [8], and several techniques applicable in
special cases (e.g., if the attacker can use both chosen plaintext and chosen ciphertext
queries) are presented.
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the amount of subkey material in the sixth FO we need to handle. Finally, we
repeat the five round attack, taking into consideration the already known subkey
material.

The special structure of the pairs examined in the attack is based on the
following observation, presented in [7]:

Observation 2 ([7]) Assume that the input values to the function FOi are
known. The question whether the output difference of FOi is of the form (δ, δ),
for a 16-bit value δ, depends only on the 50 subkey bits KOi,1, KOi,2, KIi,1,2,
and KIi,2,2.

4.1 The Attack’s Algorithm

1. Take m structures (generated just like in the 5-round attack).
2. For each guess of the subkey used in the last FL layer (subkeys K ′

2, K4, K
′

6,
and K8), partially decrypt all the ciphertexts.

3. Find all pairs with plaintext difference (0, α) and ciphertext difference ((δ, δ), (x, y)),7

such that differential α → (x, y) through FL6 ◦FL4 ◦FL2 is not impossible
(see Section 3.2).

4. Analysis of Round 6: For each such pair, with difference ((δ, δ), (x, y)),
perform the following steps:
(a) Given KO6,2 = K8 compute the actual values just before the key addi-

tion with KI6,2 for the pair. If the difference in the 7 left bits does not
fit the corresponding 7 difference bits of δ — discard the pair.

(b) Using the input and output differences of the second S9 S-box of the
function FI6,2, find the pairs of actual input values satisfying this dif-
ference relation.8 From the actual input values obtain (on average) one
candidate for the 9 bits of KI6,2,2.

(c) For each possible guess of KI6,2,1 (i.e., the remaining unknown bits of
K ′

7) compute KO6,1 = K6, and check whether the difference in the 7 left
bits before the key addition in the first FI is equal to the difference in
the 7 left bits of y.

(d) Similarly to Step (4b), deduce KI6,1,2 using the input/output differences
of the second S9 in the function FI6,1, suggested by the pair.

5. Application of the 5-Round Attack: For each guess of the 89 subkey
bits (i.e., K ′

2, K4, K
′

6, K
′

7, K8, KI6,1,2) and for each pair corresponding to this
subkey guess, perform the following:

(a) Guess the 9 least significant bits of K5 and use the key schedule to com-
pute bits 7, 8 of K ′

4 and K ′

5. Check whether the relation FL6(FL4(FL2(α))) =
(x, y) holds at bits 7, 8 of the left and the right halves of α and β (note
that all the subkey bits involved in this relation are already known). If
no, discard the pair.

7 The reader is advised that we give the values without the swap operation, to be
consistent with our figure describing MISTY1.

8 This can be done easily by examining the difference distribution table of S9.
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(b) Guess the remainder of K5, and compute the full values of K ′

4 and K ′

5.
Check whether the pair can achieve α → (x, y), and retrieve the sug-
gested value for the 7 remaining bits of K ′

3.
(c) If at this stage, for a given key guess there are remaining pairs, discard

the subkey guess (as it suggests an impossible event). Otherwise, retrieve
the remaining key bits by exhaustive search.

4.2 Analysis of the Attack

Starting with m structures, for each guess of the subkey used in the last FL
layer (64 bits), about m · 263 · 2−16 · 2−10.85 = m · 236.15 pairs are expected to
enter Step (4). Each of these pairs has probability 2−7 to satisfy the differential
condition of Step (4a), leaving m ·229.15 pairs for each guess of the first 64 subkey
bits. Then, in Step (4b) we obtain (for each pair) one candidate on average for
9 additional subkey bits, reducing the number of pairs associated with a given
subkey guess (of 73 bits) to m·220.15 pairs. These two operations (a 7-bit filtering
and a 9-bit subkey suggestion) are performed again in Steps (4c,4d) for each
guess of 7 additional subkey bits. As a result, m · 220.15 · 2−16 = m · 24.15 pairs
are expected to enter Step (5), for each of the 89-bit subkey guesses.

In Step (5), we guess a total of 16 additional key bits, and discard all the
pairs for which FL6(FL4(FL2(α))) 6= (x, y). Since all the pairs for which the
differential α → (x, y) through FL6 ◦FL4 ◦FL2 is impossible were discarded in
Step (3) of the attack, the probability of a pair to pass the filtering of Step (5)
is 2−21.15. Hence, the number of pairs remaining after Step (5) for each subkey
guess is m · 24.15 · 2−21.15 = m · 2−17. As a result, the probability that a subkey
guess is not discarded is e−m·2

−17

. Thus, the time complexity of Step (5c) is

2128 · e−m·2
−17

encryptions.
We note that the number of pairs entering Step (5b) is m·21.5 for each subkey

guess. Indeed, in Step (5a) we discard the pairs for which FL6(FL4(FL2(α))) 6=
(x, y) in four bits. It may seem that the probability of a pair to pass this filtering
is 2−4. However, since the pairs for which the differential α → (x, y) through
FL6 ◦FL4 ◦FL2 is impossible were already discarded before, the probability of
a pair to pass the filtering9 is 2−2.65, and hence the number of remaining pairs
is indeed m · 21.5 for each subkey guess.

The two most time consuming steps of the attack are Steps (5b) and (5c).
Step (5b) takes 3 · m · 21.5 · 2105 = m · 2108.1 evaluations of FL. We take the
moderate assumption that the time complexity of three FL evaluations is not
greater than 1/8 of the time required for a 6-round encryption. Hence, the time
complexity of Step(5b) is about m · 2103.5 MISTY1 encryptions. Step (5c) takes

2128 · e−m·2
−17

encryptions.
The least overall time complexity is achieved when both terms are the same,

i.e., when m ·2103.5 = 2128 ·e−m·2
−17

. Solving this equation numerically, suggests

9 As noted earlier, in the filtering in Step 3, the attacker discards (for a given pair of
bits) 6 out of 16 possible values. Hence, in this step, the attacker discards 9 out of
the remaining 10 values.
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that m = 218.945 is the optimal value. Thus, the data complexity of the attack
is m · 232 ≈ 251 chosen plaintexts, and the time complexity is 2123.4 encryptions.

5 Attack on 7-Round MISTY1 with no FL Layers

In this section we show that if the FL layers are removed from the structure of
MISTY1, then the generic impossible differential for 5-round Feistel construc-
tions [2, 5] can be used to mount an attack on a 7-round variant of the cipher.
The attack is based on examining pairs with input difference (α, x) and output
difference (α, y), and discarding all the subkeys which lead to the impossible dif-
ferential (α, 0) → (α, 0) in rounds 2–6. However, since each of the FO functions
uses 112 key bits, trying all the possible subkeys is infeasible. Instead, we use dif-
ferential properties of the FO function, along with key schedule considerations,
in order to discard the possible subkeys efficiently.

5.1 Differential Properties of the FO Function

We start with an observation presented in [7].

Observation 3 ([7]) Given a pair of input values to the function FOi, the
corresponding output difference depends only on the equivalent of 75 subkey bits.
These bits are the subkeys KOi,1, KOi,2, KIi,1,2, KIi,2,2, and KIi,3,2, and the
equivalent subkey

AKOi,3 = KOi,3 ⊕ KIi,1,1||00||KIi,1,1,

where || denotes concatenation.

We refer the reader to [7] for the complete proof of this observation.
Our next proposition is a novel observation concerning MISTY1:

Proposition 2. Assume that the input values and the output difference of the
function FOi are known, along with one of the following sets of subkey bits:

1. KOi,1, KIi,1,2, KIi,2,2, KIi,3,2, or
2. KOi,2, KIi,1,2, KIi,2,2, KIi,3,2.

Consider the remaining 32 key bits that influence the output difference (i.e.,
KOi,2 or KOi,1, respectively, along with AKOi,3). There exists one value of
these 32 bits on average which satisfies the input/output condition, and this
value can be found efficiently (using only several simple operations).

Proof. Consider the case when the bits of Set (1) are known. The knowledge
of bits KOi,1 and KIi,1,2 allows to encrypt the pair through the first FI layer
and (using the output difference of FOi) obtain the output difference of FIi,2.
The input difference to FIi,2 can be computed from the input of FOi. Given the
input and the output differences to the function FIi,2 and the subkey KIi,2,2,
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there exists one pair of inputs on average which satisfies the input/output differ-
ence condition. This pair of actual values, along with the input to FOi, suggests
a unique value for the subkey KOi,2. Similarly, since the input and output dif-
ferences to FIi,3 and the subkey KIi,3,2 are known, they suggest one value of
the subkey AKOi,3 on average which satisfies these differences.

In the second case, when the bits of Set (2) are known, the knowledge of
bits KOi,2 and KIi,2,2 allows to encrypt the pair through the second FI layer
and (using the output difference of FOi) obtain the output difference of FIi,1.
The input difference to FIi,1 can be computed from the input of FOi. This
input/output difference pair suggests a single value of the subkey KOi,1 on
average. The single suggestion for AKOi,3 can be retrieved as in the first case.

In order to obtain the suggested subkeys efficiently, it is sufficient to pre-
compute the full difference distribution table [4] of the FI function (i.e., a table
containing also the actual values which satisfy each input/output difference con-
dition), for each possible value of KIi,j,2. Each such table requires about 234

bytes of memory. In the on-line phase of the attack, given the input/output
differences to an FI function, along with the corresponding subkey KIi,j,2, the
possible actual values of the input can be found using a single table look-up.
Hence, the suggested values for the 32 subkey bits can be found using only
several simple operations.

⊓⊔
Now we are ready to present the attack.

5.2 The Attack Algorithm

The attack algorithm is as follows:

1. Ask for the encryption of 250.2 known plaintexts.
2. Find all pairs (P1, P2) and their corresponding ciphertexts (C1, C2), re-

spectively, such that P1 ⊕ P2 = (α, x) and C1 ⊕ C2 = (α, y) for some
x, y and α. The expected number of pairs remaining after this stage is
(250.2)2/2 · 2−32 = 267.4.

3. Examining round 1: For each of the remaining pairs, perform the follow-
ing:
(a) Guess the subkey K1 and the 9 least significant bits of the subkeys

K ′

2, K
′

4, K
′

6 (which compose the subkeys KO1,1, KI1,1,2, KI1,2,2, and KI1,3,2).
Use Proposition 2 to find the suggested value for the subkeys KO1,2 =
K3 and AKO1,3.

(b) Guess the remaining bits of K ′

6 (which are the bits of KI1,1,1), and use
the value of AKO1,3 to obtain the value KO1,3 = K8.

(c) For each value of the subkeys K3 and K8, store the list of all the pairs
which suggested this value. The expected number of such pairs is 267.4 ·
216+9+9+9 · 27/282 = 235.4.

4. Examining round 7: For each possible value of the 82 bits of the key
considered in Step 3 (subkeys K1, K3, K

′

6, K8, and the 9 least significant bits
of K ′

2 and K ′

4), and for each of the pairs corresponding to each subkey value,
perform the following:
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(a) Use Proposition 2 to find the values KO7,1 = K7 and AKO7,3 (note that
the values KO7,2, KI7,1,2, KI7,2,2, and KI7,3,2 are known at this stage).

(b) Use the key schedule to find the value of K6. Use the knowledge of
AKO7,3 and KO7,3 = K6 to get the value of KI7,1,1, along with a 9-bit
filtering condition (only pairs for which AKO7,3 ⊕ KO7,3 is of the form
a||00||a, for some 7-bit value a, remain, and suggest the value KI7,1,1 =
a).

5. Discard the values of the 105 examined key bits (K1, K3, K
′

4, K6, K7, K8, and
the 9 least significant bits of K ′

2) suggested by at least one pair. The expected
number of pairs suggesting each subkey value is 235.4 · 2−9/223 = 10.56. As
the number of pairs suggesting a subkey value has a Poisson distribution, a
subkey remains (i.e., is not suggested by any pairs) with probability e−10.56 =
2−15.23. Hence, the expected number of remaining 105-bit subkeys is 2105 ·
2−15.23 = 289.77.

6. For the remaining possibilities of the 105-bit subkey, exhaustively search all
possible keys, until the right key is found.

The data complexity of the attack is 250.2 known plaintexts. Its time com-
plexity is mostly dominated by Step (4) and Step (6). Step (4) is repeated
235.4 ·282 = 2117.4 times. Each such key deduction is expected to take one FI ap-
plication, two memory accesses, and a few XOR operations. For sake of simplicity
we assume that this is equal to 1/16 of 7-round MISTY1 encryption, and thus,
Step (4) takes a total of 2113.4 encryptions. Step (6) takes 2128 · 2−15.23 = 2112.8

trial encryptions. Therefore, the total time complexity of the attack is 2114.1

encryptions.

6 Summary and Conclusions

In this paper we presented several new impossible differential attacks on MISTY1.
While previous attacks were applicable only up to 4 rounds of the cipher (includ-
ing the FL layers), we presented a 5-round attack with time complexity of 246.45

simple operations, and extended it to an attack on a 6-round variant faster than
exhaustive key search. We also presented a 7-round attack on a variant of the
cipher without FL functions. The best previously known attacks against this
variant were on 6 rounds.

It seems interesting to compare between the attacks on reduced-round vari-
ants of MISTY1 including the FL functions, and the attacks on the variant
without the FL functions. If the FL functions do not exist, much simpler im-
possible differential attacks can be mounted, and as a result, the attacks extend
to one more round, compared to the case where the FL-s are present. On the
other hand, when the FL functions are present, their linear structure can be
exploited in order to reduce significantly the time complexity of impossible dif-
ferential attacks.

Thus, we conclude that while the FL functions do contribute to the security
of the full MISTY1 with respect to impossible differential attacks, they may
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reduce the practical security of reduced variants with a relatively small number
of rounds.10
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8. Ulrich Kühn, Improved cryptanalysis of MISTY1, Proceedings of Fast Software
Encryption 2002, Lecture Notes in Computer Science 2365, pp. 61–75, Springer-
Verlag, 2002.

9. Jiqiang Lu, Jongsung Kim, Nathan Keller, Orr Dunkelman, Improving the Effi-

ciency of Impossible Differential Cryptanalysis of Reduced Camellia and MISTY1,
Proceedings of CT-RSA 2008, Lecture Notes in Computer Science 4964 pp. 370–
386, Springer-Verlag, 2008.

10. Mitsuru Matsui, Block encryption algorithm MISTY, Proceedings of Fast Software
Encryption 1997, Lecture Notes in Computer Science 1267, pp. 64–74, Springer-
Verlag, 1997.

11. Hidema Tanaka, Kazuyuki Hisamatsu, Toshinobu Kaneko, Strength of MISTY1

without FL function for higher order differential attack, Proceedings of AAECC-
13, Lecture Notes in Computer Science 1719, pp. 221–230, Springer-Verlag, 1999.

10 It seems that the extremely low time complexity of the impossible differential attack
on 5-round MISTY1 with the FL layers cannot be achieved if the FL layers are
absent (even for a 5-round variant), due to the big amount of subkey bits affecting
each FO function. As a result, the practical security of 5-round MISTY1 w.r.t.
impossible differential attacks is reduced if the FL layers are present. A similar
observation regarding a 4-round variant of MISTY1 was made in [8].

14


