
A New Attack with Side Channel Leakage

during Exponent Recoding Computations

Yasuyuki Sakai1 and Kouichi Sakurai2

1 Mitsubishi Electric Corporation,
5-1-1 Ofuna, Kamakura, Kanagawa 247-8501, Japan

ysakai@iss.isl.melco.co.jp
2 Kyushu University,

6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
sakurai@csce.kyushu-u.ac.jp

Abstract. In this paper we propose a new side channel attack, where ex-
ponent recodings for public key cryptosystems such as RSA and ECDSA
are considered. The known side channel attacks and countermeasures for
public key cryptosystems were against the main stage (square and mul-
tiply stage) of the modular exponentiation (or the point multiplication
on an elliptic curve). We have many algorithms which achieve fast com-
putation of exponentiations. When we compute an exponentiation, the
exponent recoding has to be carried out before the main stage. There
are some exponent recoding algorithms including conditional branches,
in which instructions depend on the given exponent value. Consequently
exponent recoding can constitute an information channel, providing the
attacker with valuable information on the secret exponent. In this paper
we show new algorithms of attack on exponent recoding. The proposed
algorithms can recover the secret exponent, when the width-w NAF [9]
and the unsigned/signed fractional window representation [5] are used.

Keywords: Side channel attack, exponent recoding, RSA cryptosys-
tems, elliptic curve cryptosystems.

1 Introduction

Smart cards are one of the major application fields of cryptographic algorithms,
and may contain sensitive data, such as RSA private key. Some implementa-
tions of cryptographic algorithms often leak “side channel information.” Side
channel information includes power consumption, electromagnetic fields and tim-
ing to process. Side channel attacks, which use side channel information leaked
from real implementation of cryptographic algorithms, were first introduced by
Kocher, Jaffe and Jun [2, 3]. Side channel attacks can be often much more power-
ful than mathematical cryptanalysis. Thus, many papers on side channel crypt-
analysis have been published.

RSA based cryptosystems and elliptic curve based cryptosystems require
computation of the modular exponentiation (or the point multiplication on an



elliptic curve). The computational performance of cryptographic protocols with
public key cryptosystems strongly depends on the efficiency of the modular ex-
ponentiation procedure. Therefore, it is very attractive to provide algorithms
that allow efficient implementation. One approach to reducing the computa-
tional complexity of the modular exponentiation is to replace the binary repre-
sentation of the given exponent with a representation which has fewer non-zero
terms. Transforming an exponent from one representation to another is called
“exponent recoding .”

Since the concept of the side channel attacks was firstly proposed by Kocher,
Jaffe and Jun [2, 3], various methods of attacks and countermeasures have been
proposed. For example related to public key cryptosystems, Coron proposed
three concepts of countermeasures for differential power analysis (DPA) on ellip-
tic curve cryptosystems [1]: 1) randomization of the secret exponent, 2) blinding
the point, 3) randomized projective coordinates. Side channel information leaked
from cryptographic devices may provide much information about the operations
that take place and involved parameters. Known power analysis in the literature
were related to modular exponentiation (or elliptic point multiplication).

If we carefully observe the exponentiation procedure, we can find one more
stage in which instructions depend on the secret exponent. Some efficient modu-
lar exponentiations have to perform the exponent recoding in advance, then the
main stage (square and multiply stage) of the modular exponentiation is com-
puted. Since the exponent recoding may be executed with conditional branches
depending on the secret exponent value, the computation of the exponent re-
coding can constitute an information channel which provides valuable infor-
mation for the attacker. In this paper, we discuss side channel information
leaked from cryptographic devices during exponent recoding computation. We
will show methods of attacks on the exponent recoding for width-w NAF [9] and
signed/unsigned fractional window representation [5].

The rest of this paper is organized as follows. Section 2 will give a brief
description of exponent recoding algorithms. In Section 3, information leakage
during exponent recoding will be discussed. Section 4 gives algorithms of attacks
on the exponent recodings. Finally, Section 5 gives our conclusion.

2 Exponent Recoding

In this section we will give a brief description of exponent recodings. In some
efficient modular exponentiations, an exponent recoding has to be performed
in advance, then the main stage (square and multiply stage) of the modular
exponentiation is computed. In the exponent recoding stage, the binary repre-
sentation of the given exponent is replaced by a representation which has fewer
non-zero terms. We will examine three methods of exponent recoding: width-w
NAF [9] and signed/unsigned fractional window representation [5].



2.1 NAF

The signed binary representation, which is also referred to as non-adjacent form
(NAF), is a “sparse” signed binary representation of an integer. An algorithm
of recoding to NAF is given in Algorithm 1 [8]. Step 3 and 4 of Algorithm 1 can
be carried out with a table which contains all possible inputs to i-th iteration of
Step 3 and 4 and the corresponding outputs. Algorithm 2 also generates NAF,
and is equivalent to Algorithm 1.

The average density achieved by NAF is 1/3 for exponent d→∞.

Algorithm 1 Exponent recoding for NAF

Input a non-negative t-bit integer d = (dt−1 · · · d0)2
Output b = (bt · · · b0), where bi ∈ {−1, 0, 1} and bibi+1 = 0 for all i
1. c0 ← 0, dt+1 ← 0, dt ← 0
2. for i from 0 to t do
3. ci+1 ← ⌊(ci + di + di+1)/2⌋
4. bi ← ci + di − 2ci+1

5. end for

6. Return b = (bt · · · b0)

Algorithm 2 Exponent recoding for NAF: a variant

Input a non-negative t-bit integer d = (dt−1 · · · d0)2
Output b = (bt · · · b0), where bi ∈ {−1, 0, 1} and bibi+1 = 0 for all i
1. b = (st · · · s0d0)2 ← 3d
2. b← b− 2d (bi = si − di+1 with 0− 1 = 1̃,where 1̃ denotes− 1)
3. Return b = (bt · · · b0)

2.2 Width-w NAF

Width-w NAF, proposed by independently Solinas [9] and Cohen, can be viewed
as a generalization of NAF. The case w = 2 is that of the ordinary NAF. Algo-
rithm 3 is a typical implementation of the exponent recoding for width-w NAF
representation.

The average density achieved by width-w NAF is 1/(w + 1) for exponent
d→∞.

Algorithm 3 Exponent recoding for the width-w NAF

Input a non-negative t-bit integer d, an integer w ≥ 2
Output b = (bt · · · b0), where bi ∈ {0,±1,±3, · · · ,±(2w−1−1)} and among any

w consecutive bis, at most one is nonzero.
1. c← d, i← 0



2. while c > 0 do

3. if c odd then

4. bi ← c mod 2w

5. if bi ≥ 2w−1 then

6. bi ← bi − 2w

7. end if

8. c← c− bi

9. else

10. bi ← 0
11. end if

12. c← ⌊c/2⌋, i← i + 1
13. end while

14. Return b = (bt · · · b0)

2.3 Fractional Window

In small devices, the choice of w for exponentiation using the width-w NAF
may be dictated by memory limitations. Möller proposed a fractional window

technique [5], which can be viewed as a generalization of the sliding window and
width-w approach. The fractional window exponentiation has better flexibility
of the table size. See [5] for details.

The fractional window method of exponentiation has two variants. One is the
signed version, where negative digits are allowed. The other is the unsigned vari-
ant of the fractional window method for the case that only non-negative digits
are permissible. The recoding methods for unsigned fractional window represen-
tation and signed fractional window representation are described in Algorithm
4 and 5, respectively.

Let w ≥ 2 be an integer and m an odd integer such that 1 ≤ m ≤ 2w−3. The
average density of signed fractional window representations with parameters w
and m is

1

w + m+1

2w
+ 2

for d→∞ [5]. The average density of unsigned fractional window representations
with parameters w and m is

1

w + m+1

2w
+ 1

for d→∞ [5].



Algorithm 4 Exponent recoding for the unsigned fractional window represen-
tation

Input a non-negative integer d, an integer w ≥ 2, an odd integer m, 1 ≤ m ≤
2w − 3

Output b = (bi−1 · · · b0), bi ∈ {0, 1, 3, · · · , 2w + m}
1. c← d, i← 0
2. while c > 0 do

3. if c odd then

4. bi ← c mod 2w+1

5. if 2w + m < bi then

6. bi ← bi − 2w

7. end if

8. c← c− bi

9. else

10. bi ← 0
11. end if

12. c← ⌊c/2⌋, i← i + 1
13. end while

14. Return b = (bi−1 · · · b0)

Algorithm 5 Exponent recoding for the signed fractional window representa-
tion

Input a non negative integer d, an integer w ≥ 2, an odd integer m, 1 ≤ m ≤
2w − 3

Output b = (bi−1 · · · b0), bi ∈ {0,±1,±3, · · · ,±(2w + m)}
1. c← d, i← 0
2. while c > 0 do

3. if c odd then

4. bi ← c mod 2w+2

5. if 2w + m < bi < 3 · 2w −m then

6. bi ← bi − 2w+1

7. else if 3 · 2w −m ≤ bi < 2w+2 then

8. bi ← bi − 2w+2

9. end if

10. c← c− bi

11. else

12. bi ← 0
13. end if

14. c← ⌊c/2⌋, i← i + 1
15. end while

16. Return b = (bi−1 · · · b0)



3 Information Leakage during Exponent Recoding

As we have seen in Section 2, exponent recodings of Algorithms 3, 4 and 5 have
conditional branches during the computation.

While the effects of the conditional branch might be difficult to identify from
direct observations of a device’s power consumption, the statistical operations
used in DPA are able to reliably identify extraordinarily small differences in
power consumption [4]. In this section we will discuss the information leaked
from cryptographic devices during the exponent recodings.

3.1 The Model of the Attacker

We assume the model of the attacker as follows.

– The attacker has access to a device which calculates exponent recoding.

– The attacker has knowledge about the implementation, i.e., he knows the
algorithm, including the parameter w and m, of the exponent recoding im-
plemented on the device.

– The attacker can distinguish the conditional branch in Algorithm 3, 4 and 5
by monitoring power consumption during the computation of the exponent
recoding.

The goal of the attacker is:

– Recovering the secret exponent.

3.2 Leakage during Exponent Recoding

Width-w NAF recoding (Algorithm 3) has two conditional branches, Step 3 and
5, in the main loop. If the symbol in the window of width-w is odd, Step 4
through 8 should be performed. Else if the symbol is even, Step 10 should be
performed. When the symbol is odd, inner conditional branch will be evaluated,
then if the symbol bi ≥ 2w−1, bi has to be subtracted by 2w. Consequently the
execution path of width-w recoding branches into three cases. In the execution
path, subtraction instruction have to be performed depending on the exponent
value.

We define a “SN -sequence” as follows.

– At the i-th loop of the main loop, if the subtraction instruction is performed
two times, we call the observed power consumption SSN .

– If the subtraction instruction is performed one time, we call the observed
power consumption SN .

– If no subtraction instruction is performed, we call the observed power con-
sumption N .



SN -sequence is a series of SSN , SN and N observed during the computation
of the exponent recoding:

SN -sequence := {SSN ,SN ,N}∗

The attacker can obtain SN -sequences by monitoring power consumption. A
SN -sequence is the side channel information leaked from cryptographic devices.

As in the case of width-w NAF recoding, both the unsigned/signed fractional
recoding (Algorithm 4, 5) have conditional branches depending on the exponent
value. Hence the attacker can observe SN -sequences during the computation of
the recoding.

It is straight forward to implement the basic NAF recoding without condi-
tional branches as described in Algorithm 1 with a look-up table. Algorithm 2
is also a secure implementation of NAF recoding.

4 The Attacks

In this section we describe new attacks on exponent recodings for width-w NAF
and signed/unsigned fractional window representation given in Section 2. The
attacker tries to recover the secret exponent from observed SN -sequences. We
assume that exponent recodings are implemented by Algorithm 3, 4 and 5.

4.1 Basic Strategy

As we have already mentioned, execution of width-w recoding has three branches.
For a given exponent, the SN -sequence is uniquely determined. For exam-
ple, when width-3 NAF recoding is implemented by Algorithm 3, SN -value
(∈ {SSN ,SN ,N}) in each i-th loop will be as the following Table 1.

Table 1. Relation between data in the window and resulting SN -value: width-3 NAF

data in the window mapped digit bi SN -value

0 = (000)2 0 N

1 = (001)2 1 SN

2 = (010)2 0 N

3 = (011)2 3 SN

4 = (100)2 0 N

5 = (101)2 −3 SSN

6 = (110)2 0 N

7 = (111)2 −1 SSN

Basically an attack can be constructed based on Table 1. However, there exist
a difficulty in guessing the secret exponent value from given SN -sequence. While
the SN -sequence is uniquely determined from the given exponent, the converse
is not true. When SN is observed, the data in the window should be (001)2 or



(011)2. Therefore the attacker can decide the LSB and MSB in the window, but
the middle bit can not be guessed uniquely. The same situation happens when
SSN is observed.

The second difficulty is the “carry .” When the data in the window is odd and
greater than 2w−1, mapped digit bi has to be subtracted by 2w, then the resulting
bi (Step 6) will have negative value. The following subtraction instruction (Step
8) should be addition and a carry will always occur. Consequently, at the next
(i + 1)-th loop, the temporary exponent c will has a different bit-pattern from
the originally given exponent d. For example, assume 45 = (101101)2 is the given
exponent d and width-3 NAF recoding is performed. At the first loop, mapped
digit bi should be −3 (Step 6). Then at Step 8, the temporary exponent c should
be 48 = (110000)2. Since the carry occurs, at the later loop, observed SN -value
can not be a direct information of the exponent value.

We have to construct attacks in consideration of above two observations.

4.2 An Attack on Width-w NAF Recoding

We show an attack on width-w NAF recoding. The algorithm of the attack is
based on the following observations.

– In the case of SSN , a carry occurs at Step 8.
– In the case of SSN and all the passed values after previously observed
SSN were N s, i.e., sub-sequence is (SSN ,N ,N , · · · ,N ,SSN ), the carry
was transmitted to the current SSN .

– In the case of SSN and if a carry is transmitted, the attacker should guess
di = 0. Otherwise if a carry is not transmitted, the attacker should guess
di = 1.

– In the case of SSN , the attacker should guess di+w−1 = 1.
– In the case of N and a carry is transmitted, the attacker should guess di = 1.

Otherwise if a carry is not transmitted, the attacker should guess di = 0.
– In the case of SN , the attacker should guess di as the same strategies as in

the case of SSN .
– In the case of SN and the length of the rest bits to be guessed is smaller

than the window width w, the attacker should guess dt−1 = 1 by definition
such that MSB of d is always “1”.

– In the case of SN , the transmission of a carry stops at this place.

The attack is described in Algorithm 6. The symbol “state” is used for the
consideration of a carry. If the data of the middle in the window can not be
guessed uniquely, the symbol “unknown” is used.

Algorithm 6 An attack on width-w NAF recoding

Input SN -sequence (v0, v1, · · ·), where vi ∈ {SSN ,SN ,N}, an integer w ≥ 2,
t =bitlength of d

Output an exponent d = (dt−1 · · · d0)2



1. i← 0
2. state← 0
3. while i < t do
4. if vi = SSN then

5. if state = 1 then di ← 0
6. else if state = 0 then di ← 1
7. for j from i + 1 to i + w − 2 do di ← “unknown”
8. di+w−1 ← 1
9. i← i + w

10. state← 1
11. else if vi = SN then

12. if i + w − 1 > t
13. if state = 1 then di ← 0
14. else if state = 0 then di ← 1
15. for j from i + 1 to t− 2 do di ← “unknown”
16. dt−1 ← 1
17. i← t
18. else

19. if state = 1 then di ← 0
20. else if state = 0 then di ← 1
21. for j from i + 1 to i + w − 2 do di ← “unknown”
22. di+w−1 ← 0
23. i← i + w
24. end if

25. state← 0
26. else if vi = N then

27. if state = 1 then di ← 1
28. else if state = 0 then di ← 0
29. i← i + 1
30. end if

31. end while

32. Return d = (dt−1 · · · d0)2

We can evaluate that how many bits can be recovered from observed SN -
sequences in the case of the width-w NAF recoding.

Theorem 1. Assume that width-w NAF recoding is implemented by Algorithm

3 and that SN -sequence can be observed during the recoding. The ratio of suc-

cessfully recovered bits can be evaluated by 3/(w + 1) for t→∞.

Proof. It is easy to prove from the fact that the density of width-w NAF
recoding is 1/(w + 1) for t→∞. ⊓⊔

4.3 An Attack on Unsigned Fractional Window Recoding

We show an attack on the unsigned fractional window recoding. Similar strategies
as in the width-w recoding case can be applied. Data dependent subtraction



instructions have to be carried out at Step 6 and 8 of Algorithm 4. Therefore,
the attacker can observe SN -sequence during the recoding. The difference on
the strategies from the case of width-w NAF is that even when the subtraction
instruction at Step 8 is carried out, no carry occur.

The attack is shown in Algorithm 7.

Remark 1. Even if the case of “unknown”, the probability of “0” or “1” may
not be equal in some cases depending on the parameter m. In such a case we
can modify the attack with weighted probability of guessed value. In appendix
A relations between successive unknown bits are described.

Algorithm 7 An attack on unsigned fractional window recoding

Input SN -sequence (v0, v1, · · ·), vi ∈ {SSN ,SN ,N}, an integer w ≥ 2, an
odd integer m, 1 ≤ m ≤ 2w − 3, t =bitlength of d

Output an exponent d = (dt−1 · · · d0)2
1. i← 0
2. while i < t do
3. if vi = SSN then

4. di ← 1
5. for j from i + 1 to i + w − 1 do di ← “unknown”
6. i← i + w
7. else if vi = SN then

8. di ← 1
9. if i + w + 1 > t

10. for j from i + 1 to t− 2 do di ← “unknown”
11. dt−1 ← 1
12. i← t
13. else

14. for j from i + 1 to i + w do di ← “unknown”
15. i← i + w + 1
16. end if

17. else if vi = N then

18. di ← 0
19. i← i + 1
20. end if

21. end while

22. Return d = (dt−1 · · · d0)2

4.4 An Attack on Signed Fractional Window Recoding

An attack on the signed fractional window recoding is shown in Algorithm 8.
The similar strategies as width-w recoding can be applied, but handling of the
transmission of a carry should be more complicated. Only when w+1 continuous
N s are observed after SSN , a carry may be transmitted to SN or SSN . The
variable c in Algorithm 8 is used to store the number of continuous N .



Algorithm 8 An attack on signed fractional window recoding

Input SN -sequence (v0, v1, · · ·), vi ∈ {SSN ,SN ,N}, an integer w ≥ 2 an
odd integer m, 1 ≤ m ≤ 2w − 3, t =bitlength of d

Output an exponent d = (dt−1 · · · d0)2
1. i← 0
2. state← 0
3. c← 0
4. while i < t do
5. if vi = SSN then

6. if c ≥ w + 1 and state = 1 then di ← 0
7. else if c = w and state = 1 then di ← “unknown”
8. else di ← 1
9. for j from i + 1 to i + w do di ← “unknown”

10. i← i + w + 1
11. c← w
12. state← 1
13. else if vi = SN then

14. if c ≥ w + 1 and state = 1 then di ← 0
15. else if c = w and state = 1 then di ← “unknown”
16. else di ← 1
17. if i + w + 1 > t
18. for j from i + 1 to t− 2 do di ← “unknown”
19. dt−1 ← 1
20. i← t
21. else

22. for j from i + 1 to i + w do di ← “unknown”
23. di+w+1 ← 0
24. i← i + w + 2
25. end if

26. c← w
27. state← 0
28. else if vi = N then

29. if state = 1 then di ← 1
30. else if state = 0 then di ← 0
31. c← c + 1
32. i← i + 1
33. end if

34. end while

35. Return d = (dt−1 · · · d0)2

4.5 Experimental Results

We carried out experiments by a simulation on the attacks described in the
previous sections as follows.



1. randomly generate 10,000 exponents d, which have 160-bit, 512-bit or 1024-
bit.

2. implement algorithms for exponent recodings described in Algorithms 3, 4
and 5 in S/W written in C-language.

3. generate SN -sequences using this S/W.

4. using the SN -sequences, we guess the secret exponent d by Algorithm 6, 7
and 8.

5. count the successfully recovered bits (= number of recovered bits / bitlength
of exponent d)

The results are given in Table 2. The experiments were carried out with 160-
bit, 512-bit and 1024-bit exponents. Almost the same percentages were obtained
in each case.

The window width w were examined from 2 through 5. In the fractional
window expansion the parameter m were examined from 1 through the upper
bound, i.e. 2w−3. The intermediate (2 ≤ m ≤ 2w−4) are omitted because of the
space limitation. The successfully recovered bits decrease in larger w, because
as we have already mentioned, the bits of the middle in the window can not be
guessed uniquely. In the fractional window expansion the successfully recovered
bits increase in larger m. Examples of the three proposed attacks with small
exponents are illustrated in Appendix B.

Remark 2. No guessing errors occur in the attacks. Only “unknown” bits can be
un-recovered bits.

Table 2. Successfully recovered bits (%) (= number of recovered bits / bitlength of
exponent d): Experimental results

w m width-w NAF unsigned fract. signed fract.

2 — 100 — —
1 — 50.5 50.3

3 — 75.1 — —
1 — 38.9 36.3
5 — 40.0 46.0

4 — 60.2 — —
1 — 31.3 28.3
13 — 33.7 41.4

5 — 50.3 — —
1 — 26.2 23.5
29 — 29.1 37.1



5 Concluding Remarks

We have shown that unless the exponent recoding is carefully implemented, RSA
and elliptic curve based cryptosystems are vulnerable to power analysis. We have
introduced new side channel attacks on exponent recoding.

While the effects of a single transistor switching would be normally be im-
possible to identify from direct observations of a device’s power consumption
[4], the statistical operations are able to reliably identify extraordinarily small
differences in power consumption.

Okeya and Takagi proposed efficient counter measures for side channel at-
tacks [6, 7]. The exponent recodings given in [6, 7] are based on width-w NAF
or fractional window. Therefore, it may be possible to construct attacks on the
recodings.

References

1. J.-S. Coron, “Resistance against differential power analysis for elliptic curve cryp-
tosystems,” CHES’99, LNCS 1717, pp.292–302, Springer-Verlag, 1999.

2. P.C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems,” Advances in Cryptology – CRYPTO’96, LNCS 1109, pp.104–113,
Springer-Verlag, 1996.

3. P.C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” Advances in Cryp-
tology – CRYPTO’99, LNCS 1666, pp.388–397, Springer-Verlag, 1999.

4. P.C. Kocher, J. Jaffe, and B. Jun, “Introduction to differential power analysis and
related attacks,” Cryptography Research, http://www.cryptography.com

5. B. Möller, “Improved techniques for fast exponentiation,” ICISC 2002, LNCS 2587,
pp.298–312, Springer-Verlag, 2002.

6. K. Okeya, T. Takagi, “The width-w NAF method provides small memory and fast
elliptic scalar multiplications secure against side channel attacks,” CT-RSA 2003,
LNCS 2612, pp.328–342, Springer-Verlag, 2003.

7. K. Okeya, T. Takagi, “A more flexible countermeasure against side channel attacks
using window method,” CHES 2003, LNCS 2779, pp.397–410, Springer-Verlag, 2003.

8. G.W. Reitwiesner, “Binary arithmetic,” Advances in Computers, vol.1, pp.231–308,
1960.

9. J.A. Solinas, “Efficient arithmetic on Koblitz curve,” Designs, Codes and Cryptog-
raphy, vol.87, pp.195–249. Kluwer Academic Publishers, 2000.

A Relation between Unknown Bits

In this appendix we show relations between unknown bits. If several unknown
bits occur in succession, some unknown bits can be “0” or “1” with high proba-
bility. Table 3 shows the probability that unknown bits can be “0” or “1” in the
case of the unsigned fractional window recoding with the parameter w = 3 and
m = 1.



Table 3. Observed SN -values and unknown bits: unsigned fractional window recoding
with w = 3, m = 1

observed SN -value SN SSN

candidates of the 0 0 0 1 1 0 1 1
secret exponent 0 0 1 1 1 1 0 1
in the window 0 1 0 1 1 1 1 1

0 1 1 1
1 0 0 1

recovered bits x x x 1 1 x x 1
(“x” denotes the unknown)

probability that x=0 4

5

3

5

3

5

1

3

1

3

B Examples of the Attacks

In this appendix we illustrate small examples of the three attacks. In examples
below, given randomly generated 32-bit exponents, recoded representations and
expected SN -sequences are described. The attacker can recover the exponents
from the observed SN -sequences as shown below. The symbol “x” in the recov-
ered bits denotes the “unknown” bit.

width-3 NAF

exponent: 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 0 1 1
recoded: 1 0 0 -1 0 0 0 1 0 0 0 0 0 -3 0 0 3 0 0 0 0 -1 0 0 0 -3 0 0 3 0 0 0 3

SN -sequence: 1 0 0 0 1 0 0 2 0 0 0 2 0 0 0 0 1 0 0 2 0 0 0 0 0 1 0 0 0 2 0 0 1
recovered: 1 x 1 0 0 x 0 1 x 1 1 0 x 0 1 0 1 x 1 1 x 1 1 0 1 0 x 1 0 0 x 1

unsigned fractional window with w = 3, m = 1

exponent: 1 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 1
recoded: 1 0 0 0 7 0 0 0 1 0 0 7 0 0 0 0 1 0 0 0 7 0 0 0 5 0 0 0 0 0 0 7

SN -sequence: 1 0 0 0 1 0 0 0 1 0 0 2 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1
recovered: 1 x x x 1 x x x 1 x x 1 0 x x x 1 x x x 1 x x x 1 0 0 0 x x x 1

signed fractional window with w = 3, m = 1

exponent: 1 0 0 1 1 0 1 1 0 0 1 1 1 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 0 0
recoded: 1 0 0 0 0 7 0 0 0 -3 0 0 0 0 -1 0 0 0 5 0 0 0 -3 0 0 0 0 0 0 9 0 0

SN -sequence: 1 0 0 0 0 1 0 0 0 2 0 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 0 0 0 1 0 0
recovered: 1 0 x x x x x x x 0 1 x x x x x x x x x x x 1 0 0 0 x x x 1 0 0


