
Attacking DSA Under a Repeated Bits

Assumption

P.J. Leadbitter, D. Page, and N.P. Smart

Dept. Computer Science,

University of Bristol,

Merchant Venturers Building,

Woodland Road,

Bristol, BS8 1UB,

United Kingdom.

{peterl,page,nigel}@cs.bris.ac.uk

Abstract. We discuss how to recover the private key for DSA style

signature schemes if partial information about the ephemeral keys is re-

vealed. The partial information we examine is of a second order nature

that allows the attacker to know whether certain bits of the ephemeral

key are equal, without actually knowing their values. Therefore, we ex-

tend the work of Howgrave-Graham, Smart, Nguyen and Shparlinski

who, in contrast, examine the case where the attacker knows the actual

value of such bits. We also discuss how such partial information leakage

could occur in a real life scenario. Indeed, the type of leakage envisaged

by our attack would appear to be feasible than that considered in the

prior work.

1 Introduction

In previous work [4], Howgrave-Graham and Smart introduced a lattice based
attack on DSA and EC-DSA in which they assumed that the adversary could
obtain a certain number of bits of the secret ephemeral key for each message
signed. By knowing only a few bits of each ephemeral key, an attacker could
use their method to recover the entire secret and hence break the underlying
cryptosystem. This method is related to the attacks of Bellare et. al. [1] and
Bleichenbacher [2] who looked at issues related to poor generation of the random
numbers which should be used in DSA/EC-DSA. Nguyen and Shparlinski [12,
13] subsequently extended the work of [4] to produce a more rigorous attack.

The concept of revealing secret information from a secure device such as
a smart-card was made practical by the introduction of side-channel analysis.
Specifically, on an undefended device, a simple power analysis (SPA) attack
could leak a small number of bits from an exponentiation. When combined with
the lattice techniques above, this leakage would result in the static private key
being determined. However, defences against side-channel analysis are both in-
creasingly well understood and frequently used in the field. Therefore the as-
sumption that an attacker may be able to determine a specific set of bits from

the ephemeral secrets is less probable than when the original attacks were first
published. It is far more probable that second order, seemingly innocuous infor-
mation can still be recovered and used by the attacker, even if defence against
first order leakage is implemented.

Consider the possibility that an attacker can determine some relation amongst
the bits of the secret ephemeral key rather than their specific values. For exam-
ple, if the target device were using a window method for exponentiation, by
examining the data transfers across the bus it could be possible for the attacker
to determine that the first window of bits is equal to the second window of bits.
This would be the case whenever the same value was fetched from memory in
successive iterations of the main exponentiation loop. In such a situation we
would have

ki = zi + 2tyi + 2t+wyi + 2t+2wxi

where xi, yi and zi are variables satisfying

xi < 2l−t−2w, yi < 2w, zi < 2t,

for a secret of l bits in length. We use this information to formulate a lattice
reduction problem which, when solved, gives us the value of the static secret key.

In this paper, for convenience, we investigate the case where zi = t = 0 so ki

is the concatenation
yi‖yi‖xi.

Such a scenario requires we take on average 2w samples before one of this form
should present itself by chance. This simplification is advantageous since it allows
us to keep the lattice dimension small, speeding up the lattice reduction stage of
the attack. A successful attack yields the private key of the signer enabling the
attacker to impersonate his victim and forge a signature of any message without
the victim’s consent or knowledge of his having done so. Although we focus on
the applicability to DSA/EC-DSA, we note that it is possible to apply the attack
to protocols with a similar signing equation such as Schnorr signatures.

We organise our work as follows. To justify our assumption that obtaining
relational information about bits in the ephemeral secret, in Section 2 we start
by investigating situations where such leakage could occur. We then recap on the
DSA/EC-DSA algorithm and basics of lattice basis reduction in Section 3. In
Section 4 we examine how one embeds the information obtained from the side
channel into a lattice before reporting on some experimental results from our
technique in Section 5. Finally, we present some concluding remarks in Section 6.

2 Possible Attack Scenario

Side-channel analysis is a fairly new but increasingly effective cryptanalytic
method that focuses on the implementation of an algorithm rather than the
specification. By observing an implementation being executed, the attacker can
make correlations between the events that occur in the host processor and the
data being processed. Perhaps the most famous of these types of attack involve

timing [7, 3] and power analysis [8]. In the former method, the attacker uses
execution timings for either the whole algorithm or constituent parts to reason
about the execution flow. For example, an implementation might take longer
to run if a conditional branch is taken than if it is not taken. If that branch
depends on a secret, key related value then being able to determine if it was
taken or not can reveal said value. The later method uses the amount of power
a processor uses to infer what operations and data items are being processed. A
multiplication, for example, has a distinct profile within a power usage trace and
will differ considerably from an addition. Furthermore, it is possible to discover
the values of information being written into register or transfered across a bus
since the state change in underlying logic will be different, and hence draw a dif-
ferent amount of power, depending on what values are used. If these values are
assumed secret as part of the algorithm specification, the attacker is granted an
easy and dangerous method of bypassing whatever hard mathematical problem
the cryptosystem is based. There are two well accepted methods for performing
power analysis attacks: simple power analysis (SPA) where only a single profile
is enough to reveal information and differential power analysis (DPA) where cor-
relation between multiple profiles is used to mount attacks that might otherwise
fail in the SPA setting.

These techniques are made more dangerous by the environment in which they
exist and the processing devices that are involved. Traditionally, side-channel
attacks are mounted against accessible, portable processing units such as smart-
cards. Such devices are attractive to the attacker since they carry a potentially
valuable, money or identity related payload and the physical access required for
attacks is easier than in other cases. Furthermore, it has consistently been shown
that a skilled engineer can mount side-channel attacks with low cost, commodity
equipment essentially lowering the bar in terms of the investment required to
break a given cryptosystem.

Often in side-channel attacks, directly revealing secret information is made
difficult either by the inherent problems of mounting the profiling phase to collect
observations of execution, or by defences employed in either hardware or software
by the system designers. Such defences aim to reduce the amount of exploitable
information that can be collected by the attacker. However, it has often been
the case that seemingly innocuous information can still be harnessed by the
attacker to their advantage thereby enabling new attacks that were not thought
possible. Three such examples of new attack methods involve fixed table based
implementations of elliptic curve (ECC) point multiplication [14, 18]; so called
address-bit DPA which uses address calculation rather than data utilisation to
provide information; and cache directed analysis of block ciphers [16, 17].

2.1 Table Based Exponentiation

Consider the following algorithm for computing an ECC point multiplication
using the windowed, or w-ary, method.

– Preprocessing Stage

• Ti←O.
• For i = 1 upto 2w − 1.
∗ Ti←Ti−1 + P .

– Main Loop
• Q←O.
• For i = |k|/w downto 0.
∗ For j = 0 upto w.
· Q← 2Q.

∗ Q←Q + Tki
.

• Return Q.

In order to improve upon standard methods, the algorithm precomputes a table
containing small multiples of P . Using this table, we process the multiplier k in
chunks of w bits in size rather than one bit at a time, by writing

k =

|k|/w
∑

i=0

ki2
iw.

This acts to reduce the number of additive operations we perform and hence
accelerate execution.

Although this method is attractive where memory for the precomputation
can be spared, it is vulnerable to side-channel attack. If the attacker can isolate
the portion of execution where the point Tki

is read from memory he can compare
this to known bit patterns, discover which table index is being read and thereby
recover k. Even if the point in question can not be uniquely determined for some
reason, equality or relations between two points, and hence values of ki, may
be established which at least lessen the workload of the attacker using further
analytic methods. This vulnerability was thought to be such a problem that
Möller [11], among others, formulated a defence whereby each point in the table
was subject to some form of projective randomisation so that the points are no
longer fixed and hence present an observer with no useful information.

2.2 Address-bit DPA

Table based point multiplication algorithms are also attackable via address-bit
DPA [5] since if one can focus on and recover the index ki that is calculated and
used to perform the load of Tki

, the multiplier k is insecure. Defences against
this new form of attack have been proposed [6] that mix a random value r into
the index so that the access is performed as Tki⊕r. If r is refreshed before each
application of the point multiplication algorithm, the table accesses are permuted
to some extent meaning that simply recovering the address of a given access does
not reveal the corresponding part of the secret multiplier. The problem with this
approach is that relationships between the permuted indices will be retained so
that if ki = kj then after application of the proposed defence, it is still true
that ki⊕ r = kj⊕ r. If the attacker can recover this relational information either
directly or as part of some higher-order statistical approach [10], it could perhaps
be used to break the defence.

2.3 Cache-based cryptanalysis

Using the behaviour of the bus is one way to snoop on how the table is accessed
but since it is located in memory and potentially accessed through a cache, the
data dependent behaviour of said cache could also yield information. This form
of attack was successfully performed against DES [16, 17] whereby the attacks
processed many plaintexts and collected those which took the longest to operate
on. The attackers then made the correlation that longer execution time means
more cache misses and that more cache misses meant a higher probability that
two S-box entries were distinct. Hence, by using only conglomerate information
about the total time of execution the attackers used the statistical bias in their
collected sample to break the algorithm using further processing involving a
workload of 224 DES applications. This attack was performed on and against
a desktop computer with a normal cache memory and minimal profiling tools.
Clearly a similar principle applies in the point multiplication algorithm described
above. Under the admittedly gross assumption that the cache is initially empty,
the accesses to Tki

will provoke a series of cache hits or misses depending on
if the point in question has been loaded before or not. Using this information,
relations about the values of ki that provoked the table accesses can be recovered.
Indeed, direct probing of the cache hits and misses might not even be required
since statistical methods as described above could be used to guess the required
value from a biased set of collected results.

2.4 Attack Summary

Clearly, as in most side-channel attack methods, the ability to perform a phase
of profiling that yields the required information is vital to success. The rest of
this paper assumes that an attacker can construct such a profiling phase and
extract relational information as described. That is, we assume the attacker can
recover wi, a set of relations about w bit sized windows of k, with the following
form

w0 = w1

w1 6= w2

· · ·

This example indicates that window zero is equal to window one which in turn
is not equal to window two. If w = 4 and we count from the least significant bit,
this means bits zero to three of k are equal to bits four to seven and so on. It is
imperative to note that in each case we have no idea about the actual value of
the bits involved, only relations between them.

Under this assumption, we focus on lattice based mathematical techniques
that could be used to exploit such information should the attacker be able to
recover it, using multiple runs of DSA/EC-DSA style signature schemes. Al-
though we should consider the effect of an algorithm under attack within con-
text, i.e. within a system with a composite defence against a number of attack

avenues, our goal is to explore the effect of neglecting to secure this sort of
presumed innocuous side-channel information. As such, this work provides three
main contributions: a potential side-channel attack technique, a warning to those
implementing systems that may fall under attack and an advancement in lattice
based analytic methods. All are useful since it is clearly important to understand
new vulnerabilities, even of a potential or theoretical nature, so that they can
be solved before production systems are released into the market.

3 Notation: Signature Schemes and Lattices

In this section we introduce the notations and ideas required in subsequent
discussion of our attack technique. In particular we recap on DSA style signature
schemes and the notion of lattice basis reduction.

3.1 DSA-style Signature Schemes

The DSA algorithm, or equivalently EC-DSA, works in a finite abelian group G
of prime order q generated by g. The private key is an integer α ∈ {0, . . . , q−1},
and the public key is the group element y = gα. We assume a conversion function

f : G −→ Fq.

For DSA this function is given by

f :

{

G < F
∗
p −→ Fq

h 7−→ h (mod q).

Whilst for ECDSA the conversion function is given by

f :

{

E(Fp) −→ Fq

P 7−→ x(P) (mod q),

where we interpret the x coordinates of P , denoted x(P), as an integer before
reduction modulo q.

Signing: To sign a message m, the owner of the key α selects an ephemeral
secret k and computes

r = f(gk)

before evaluating the signing equation

s = (H(m) + rα)/k (mod k).

The signature on the message m is then the pair (r, s).

Verification: To verify a signature (r, s) on a message m one first computes

a = H(m)/s (mod q) and b = r/s (mod q).

One then checks that

f
(

gayb
)

= f
(

g(H(m)+rα)/s
)

= f
(

gks/s
)

= f(gk)

= r.

3.2 Lattice Basis Reduction

We first fix a positive integer d. For our purposes a lattice is a Z-module spanned
by n-linearly independent vectors in R

d. The spanning set {b1, . . . , bd} is called
the basis of the lattice. If we let the d×d matrix B be defined by column i being
equal to lattice basis vector bi then the associated lattice L is given by the set

L = {B · z : z ∈ Z
d}.

Lattice bases, and hence bases matrices, are unique up to multiplication on the
right by an element of GLd(Z). Hence the integer

∆(L) = |det(B)|
is well defined and does not depend on the actual basis being considered.

Amongst all possible basis there are some which are “better” than others,
however finding a “good” basis and defining what one means by “good” can
be quite difficult. In 1983 Lenstra, Lenstra and Lovász [9] defined a notion of a
“good” lattice basis and gave a polynomial time algorithm to reduce an arbitrary
lattice basis to one which satisfied their conditions. A basis which is reduced in
the sense of Lenstra, Lenstra and Lovász is called LLL-reduced. We do not give
the definition and algorithm here but simply refer the reader to [9] for more
details. However, we do require the following result about LLL-reduced lattice
bases

Theorem 1. If B = {b1, . . . , bd} denotes an LLL-reduced basis for the lattice L
then

1. For all x 6= 0 in the lattice L we have, for some constant c,

‖b1‖2 ≤ c‖x‖2.
The constant c in the above statement can be taken to be 2d−1.

2. We have

‖b1‖ ≤ 2(d−1)/4∆(L)1/d.

The above theorem tells us that the first vector in an LLL-reduced basis is a
close approximation to the smallest vector in a lattice and that the lattice size is
approximately ∆(L)1/n. One should note that the problem of finding the smallest
non-zero vector in a lattice appears to be a very hard computational problem,
but that the LLL-algorithm provides an approximation in polynomial time.

4 Embedding into a Lattice Problem

Suppose we run DSA/EC-DSA repeatedly and, through the side-channel attacks
mentioned previously, or otherwise, we find n+1 signatures where the ephemeral
key ki is of the form, for i = 0, . . . , n,

yi‖yi‖xi

where
q ≈ 2l, yi < 2w and xi < 2l−2w,

i.e. we have
ki = xi2

l−2w + yi(1 + 2w)

where xi and yi are unknowns. Note that it will take on average n2w signatures
to obtain all this data if ephemeral keys are chosen at random and the means of
detecting whether such an ephemeral key occurs is one hundred percent accurate.
From the n + 1 signing equations

si = (H(mi) + riα)k−1
i (mod q) for i = 0, . . . , n,

we can form n equations

r0siki − ris0k0 = r0H(mi)− riH(m0) (mod q) for i = 1, . . . , n,

by eliminating the variable α corresponding to the static private key. Substituting
ki = xi2

l−2w + yi(1 + 2w) we have,

yi = ai + bix0 + cixi + diy0 + λiq for i = 1, . . . , n,

for some λi ∈ Z where

ai = (2w + 1)−1s−1
i (H(mi)−H(m0)rir

−1
0)

bi = 2l−2w(2w + 1)−1s−1
i s0rir

−1
0

ci = −2l−2w(2w + 1)−1

di = s−1
i s0rir

−1
0

Embedding these equations into the d = 2n + 3 dimensional lattice L generated
by the columns of the matrix

E =

































β 0 0 0 0
0 γ 0 0 0
0 0 γ 0 0
...

...
. . .

... 0
0 0 0 γ 0
0 0 0 . . . 0 δ 0 . . . 0
a1 b1 c 0 d1 δq 0
...

...
. . .

...
. . .

an bn 0 c dn 0 δq

































.

Then we have that E · x = z where

xt = (1, x0, x1, . . . , xn, y0, λ1, . . . , λn),

zt = (β, γx0, γx1, . . . , γxn, δy0, δy1, . . . , δyn).

In addition we would like the target vector z to be a short vector in the lattice.
Hence, we need to choose the weights β, γ and δ in such a way as to increase
the likelihood that z is indeed a short vector and hence likely to be found by
lattice basis reduction. In our implementation we chose β, γ and δ to be related
by γ = 22w−lβ and δ = 2−wβ, to see why this is a good choice we need perform
the following calculation.

From Theorem 1, a useful heuristic for predicting the success of such a lattice
attack is to check whether our target vector z satisfies

‖z‖ ≤ ∆(L)1/d.

It is easy to see that, for our t

∆(L)2 = βγn+1δn+1qn

= β2n+32(n+1)((2w−l)−w)2ln

= β2n+32(n+1)(w−l)+ln

= β2n+32nw+w−l.

and

‖z‖2 = β2 +

n
∑

i=0

(

γ2x2
i + δ2y2

i

)

≤ β2
(

1 + (n + 1)24w−2l22l−4w + (n + 1)2−2w22w
)

= β2(2n + 3).

Hence, for our lattice based approach to have a chance of succeeding, we must
have √

2n + 3 ≤ 2(nw+w−l)/(2n+3).

In practice l is 160 and if d is much larger than 300, the computation of LLL
reduced bases takes a prohibitively long time. If we assume reduction of 300
dimension lattices is both feasible and results in vectors close to the minimum
(which is a very optimistic assumption), we are assuming that n ≈ 100. We will
recover the full secret if

3.83 ≈ log2

(√
2n + 3

)

≤ (101w − 160)/203.

i.e.
w ≥ (3.83 · 203 + 160)/101 = 9.28

Thus we expect 10 equal bits in consecutive positions to be sufficient in our
problem.

5 Experimental Results

In order to get an idea of how successful this sort of attack might be, we ran
a large number of experiments. Our initial goal was to sweep a reasonable area
of the parameter space and determine a rough success rates for different com-
binations of window size and number of messages. However, as the number of
messages grows the lattice dimensions and hence the time take to perform the
attack also grows. This effect means that a great deal of processing time is re-
quired to perform attacks with a large number of messages. To enable completion
of our experiments within a reasonable time frame, we distributed the workload
across a network of around fifty Linux workstations each incorporating 2 GHz
Intel Pentium 4 processors and around 512 Mb of memory. Using these machines
we conducted one hundred runs of each combination of parameters and quote
the success rate of these attacks in Table 1.

Messages

Window 10 20 30 40 50 60

5 0% 0% 0% 0% 0% 0%

6 0% 0% 0% 0% 0% 0%

7 0% 0% 0% 0% 0% 0%

8 0% 0% 0% 0% 0% 0%

9 0% 0% 0% 12% 26% 30%

10 0% 0% 41% 96% 99% 98%

11 0% 0% 100% 100% 100% 100%

12 0% 31% 100% 100% 100% 100%

13 0% 99% 100% 100% 100% 100%

14 0% 100% 100% 100% 100% 100%

Time 0.38 4.72 21.70 106.28 317.21 570.89

Table 1. A table showing the success rate of attacking a 160 bit exponent with variable

window size and different numbers of messages. Note that window sizes below 9 and

number of messages below 20 yielded no successful attacks. Also note that the number

of messages is the dominant factor in how long each attack takes and that we measure

the average time taken in minutes.

Each attack involved two successive LLL reductions. The first LLL application
used a floating point implementation of the Schnorr–Euchner algorithm [15]
using deep insertions. Due to floating point errors this only provided an approx-
imation to an LLL reduced basis. To obtain a fully reduced basis the version of
De Weger [19] was then applied to the output basis from the Schnorr–Euchner
algorithm.

There are several interesting features in these results. Firstly, it is clear that
window sizes below 9 and number of messages less than 20 yielded no successful
attacks. In terms of window size this is unfortunate since we would expect real

attack scenarios to utilise small windows, for example window widths of size 4 or
5, that correspond to table indices or addresses for example. Secondly, there is a
fairly polar behaviour in terms of success in that an attack seems to either work
either nearly all of the time or nearly none of the time. Again, this is unfortunate
from a practical stand point since as an attacker we can tolerate probabilistic
success if the parameters allow more realistic choices.

The polar behaviour is a common feature of LLL experiments. For each lattice
Λ, we can consider the value

D(Λ, a) = |{v ∈ Λ : 0 < ‖v‖ < a}|

We shall call function D the norm distribution of Λ. In out attack, we looked at
lattices of a particular form

L(n, β, γ, δ,a, b, c,d)

in which we know the size of one of the non-zero lattice points is small; our target
vector z is less than some number Z. For fixed w and n, our norm distribution
D(L, ·) changes very little from experiment to experiment. When D(L,Z+ǫ) = 1,
where ǫ is a small number that accounts for the LLL error as an SVP oracle, we
expect the attack to succeed. Moreover we expect it to succeed for all the other
experiments of the same w and n values. Similarly when D(L,Z + ǫ) is large, we
expect failure every time. Probabilistic success occurs when D(L,Z + ǫ) is small
but larger than 1. Compared to the huge number of lattice points we are dealing
with dwarfs the number of experiments we were able to do, we see probabilistic
success on only a few of the parameter choices.

Our results only seem to succeed for n ≤ 9. We believe this to be the limit
of attacks using this style of lattice. A different lattice style could have quite a
different norm distribution and could respond better to LLL, reducing our ǫ error
term. This could yield much more favourable results than those presented here
and remains an open problem. Indeed in the DSA attacks with several known
bits, the success rate has been raised by simply inputting the information in a
different way, see [12] and [13].

To get a better idea of how the attack behaves when using parameters that
are ideal from an attackers point of view, we started a second set of experiments
that focus on a window size of four but with much larger number of messages.
We expected this to be more suitable in practice since, as discussed in Section 2,
four bit indices are often used in table driven exponentiation. If capturing re-
lations between these indices is possible, we would therefore be interested in
knowing their potential for use in an attack. Unfortunately, the results of these
experiments were inconclusive due to the length of time and amount of memory
required to complete each one. The bottleneck proved to be the efficiency of our
LLL implementation which, with a large number of messages, required so much
memory to store the lattice that the virtual memory system was unable to main-
tain an acceptable performance level. Although negative, this second result does
provide us some information in the context of our investigation. That is, forcing
an attacker to collect many signatures is clearly a good way to foil attack in a

practical situation since performing the lattice reduction is too computationally
hard.

6 Conclusions

We have presented an interesting extension of prior work on lattice reduction
used in the context of side-channel attacks. We weaken the assumptions of pre-
vious work so that it is more probable that the profiling phase of an attack will
recover useful information, even when defence measures are deployed against
other techniques. By extending prior work that assumes an attack can obtain
the value of secret information by allowing them simply to uncover relation-
ships between different parts of said information. This is especially dangerous in
the context of signature schemes such as DSA/EC-DSA where such leakage can
totally reveal the underlying secret.

However, the results from our experimentation are not as positive as the
initial attack scenario. We found that the attacker would need to collect rela-
tionships about a large number of bits in contrast with knowing the value of a
small number of bits in previous work. Such large relationships would be diffi-
cult to collect with existing side-channel analytic techniques and, in this respect,
further work is needed to extend the attack. We expect that continued research
into physically obtaining bit relationships from a target device and more effi-
cient implementations of the lattice reduction stage might make our attacker
more feasible in the future.

References

1. M. Bellare and S. Goldwasser and D. Micciancio. “Pseudo-Random” Number

Generation Within Cryptographic Algorithms: The DSS Case. In Advances in
Cryptology – EUROCRYPT ’97, Springer-Verlag LKNCS 1233, 277–291, 1997.

2. D. Bleichenbacher. On the generation of DSS one-time keys. Preprint, 2001.

3. D. Boneh and D. Brumley. Remote Timing Attacks Are Practical. To appear in

12th USENIX Security Symposium, USENIX Press, 2003.

4. N. Howgrave-Graham and N.P. Smart. Lattice attacks on digital signature

schemes. Designs, Codes and Cryptography, 23, 283–290, 2001.

5. K. Itoh, T. Izu and M. Takenaka. Address-Bit Differential Power Analysis of Cryp-

tographic Schemes OK-ECDH and OK-ECDSA. In Workshop on Cryptographic
Hardware and Embedded Systems (CHES), Springer-Verlag LNCS 2523, 129–143,

2002.

6. K. Itoh, T. Izu and M. Takenaka. A Practical Countermeasure Against Address-

Bit Differential Power Analysis. In Workshop on Cryptographic Hardware and
Embedded Systems (CHES), Springer-Verlag LNCS 2779, 382–396, 2003.

7. P.C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,

and Other Systems. In Advances in Cryptology – CRYPTO ’96, Springer-Verlag

LNCS 1109, 104–113, 1996.

8. P.C. Kocher, J. Jaffe and B. Jun. Differential Power Analysis. In Advances in
Cryptology – CRYPTO ’99, Springer-Verlag LNCS 2139, 388–397, 1999.

9. A.K. Lenstra, H.W. Lenstra and L. Lovász. Factoring polynomials with rational

coefficients. Math. Ann., 261, 515–534, 1982.

10. T.S. Messerges. Using Second-Order Power Analysis to Attack DPA Resistant Soft-

ware. In Workshop on Cryptographic Hardware and Embedded Systems (CHES),
Springer-Verlag LNCS 1965, 238–251, 2000.

11. B. Möller. Parallelizable Elliptic Curve Point Multiplication Method with Resis-

tance against Side-Channel Attacks. In Information Security (ISC), Springer-

Verlag LNCS 2433, 402–413, 2002.

12. P.Q. Nguyen and I.E. Shparlinski. The insecurity of the Digital Signature Algo-

rithm with partially known nonces. J. Cryptology, 15, 151–176, 2002.

13. P.Q. Nguyen and I.E. Shparlinski. On the insecurity of the elliptic curve digital sig-

nature algorithm with partially known nonces. Designs, Codes and Cryptography,
To appear.

14. W. Schindler. A Combined Timing and Power Attack. In 5th Workshop on Practice
and Theory in Public Key Cryptosystems (PKC), Springer-Verlag LNCS 2274,

263–279, 2002.

15. C.P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algo-

rithms and solving subset sum problems. In Proc. FCT 1991, Springer-Verlag

LNCS 529, 68–85, 1991.

16. Y. Tsunoo, E. Tsujihara, K. Minematsu and H. Miyauchi. Cryptanalysis of Block

Ciphers Implemented on Computers with Cache. In International Symposium on
Information Theory and Its Applications (ISITA), 2002.

17. Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri and H. Miyauchi. Cryptanalysis of DES

Implemented on Computers with Cache. In Workshop on Cryptographic Hardware
and Embedded Systems (CHES), Springer-Verlag LNCS 2779, 62–76, 2003.

18. C.D. Walter and S. Thompson. Distinguishing Exponent Digits by Observing

Modular Subtractions. In Topics in Cryptology (CT-RSA), Springer-Verlag LNCS

2020, 192–207, 2001.

19. B.M.M. de Weger. Solving exponential diophantine equations using lattice basis

reduction. J. Number Theory, 26, 325–367, 1987.

