Hardware Acceleration of the Tate Pairing in
Characteristic Three *

P. Grabher! and D. Page?

! Institute for Applied
Information Processing and Communications,
Graz University of Technology,
Inffeldgasse 16a,

A-8010 Graz,

Austria.
grabherp@sbox.tugraz.at
2 Department of Computer Science,
University of Bristol,
Merchant Venturers Building,
Woodland Road,

Bristol, BS8 1RB,

United Kingdom.

page@cs.bris.ac.uk

Abstract. Although identity based cryptography offers many functional
advantages over conventional public key alternatives, the computational
costs are significantly greater. The core computational task is evaluation
of a bilinear map, or pairing, over elliptic curves. In this paper we pro-
totype and evaluate polynomial and normal basis field arithmetic on an
FPGA device and use it to construct a hardware accelerator for pair-
ings over fields of characteristic three. The performance of our prototype
improves roughly ten-fold on previous known hardware implementations
and orders of magnitude on the fastest known software implementation.
As a result we reason that even on constrained devices one can usefully
evaluate the pairing, a fact that gives credence to the idea that identity
based cryptography is an ideal partner for identity aware smart-cards.

Keywords. Identity Based Encryption, Pairing, Elliptic Curve, FPGA.

1 Introduction

The notion of identity based cryptography was first proposed by Shamir [25] in
1984. Essentially it allows a user identity, an arbitrary string, to play the role of

* The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the author’s views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability

a public key rather than have the key derived from a relationship with private
information as would be the case in traditional schemes such as RSA. This can
vastly reduce the amount of certification infrastructure required and generally
presents a rich set of functional and security characteristics that are difficult
or impossible to realise with other solutions. The first efficient Identity Based
Encryption (IBE) scheme was presented by Boneh and Franklin [8] who followed
the idea of Sakai, Ohgishi and Kasahara [23] in basing their scheme on bilinear
maps, or pairings, over elliptic curves.

Although pairing and identity based cryptography has sparked a wealth of
research into cryptographic schemes [7,11] and proof techniques, it has remained
an ongoing task to reduce the computational cost that underpins such work.
Theorists have generally worked under the gross assumption that a pairing takes
around ten times as long to compute than the major computational task in
elliptic curve cryptography (ECC), the point multiplication. Although in reality
this ratio is significantly lower, the cost of pairing evaluation still constitutes
a major hurdle. This is particularly true in constrained environments such as
smart-cards which, due to their use as identity-aware tokens, seem a natural
partner for identity based cryptography.

Recently, Gemplus announced that it had developed a smart-card hosted IBE
implementation in partnership with the market leaders Voltage Security [27]. Al-
though details are scarce, it seems probable that they use an existing core for F,
arithmetic to accelerate a software implementation of the BKLS algorithm [4].
This seems the natural decision given the increasing flexibility in parameterisa-
tion [3,5,19] and expertise related to implementing arithmetic in F,, accumulated
from building conventional ECC and RSA based systems. However, in the short
term at least it is attractive to consider working over fields of characteristic three
since when parameterised using suitable supersingular elliptic curves, the result-
ing system boasts a higher security multiplier [12], given by the MOV embed-
ding degree [20]. Additionally, there are some specialised, high-performance algo-
rithms for computing pairings in this context: the Duursma-Lee algorithm [10],
recently improved upon by Kwon [18] and Barreto et al. [2], uses a closed for-
mula for the pairing which is efficient as long as the underlying field arithmetic
in F3m is also efficient. To this end, previous work has considered the possibility
of using polynomial [6,22] and normal bases [13] to implement said arithmetic.
However, such work has focused mainly on arithmetic performance rather than
placing the designs in context to actually compute IBE related functions, the
exception being Kerins, Popovici and Marnane [17] who quote estimated timings
for FPGA hosted pairing hardware using a BKLS style algorithm.

In this paper, our main aims are three-fold: to evaluate the performance and
cost of constructing hardware polynomial and normal basis arithmetic in Fgm ;
to investigate the possibility of construct a hardware accelerator that is small
enough for use in constrained environments; to prove pairings over Fszm using
the closed form family of algorithms are a viable alternative to the use of I, and
BKLS. We prototype our work on an FPGA device and present experimental
results of the performance and cost comparisons with previous work in this area.

Algorithm 1: The Duursma-Lee algorithm [10] for calculating the Tate
pairing in characteristic three.

Input : point P = (z1,¥1), point Q = (22, y2)
Output : fp(¢(Q)) € Fo /Frs

f+1

for i =1 upto m do
7 1
IRt
pé— T +x0+0
A= —y1y20 — pi°
g X—pp—p*
f<_f‘133
Ta < Ty
y2<—y;/3

return f

We organise our work as follows: in Section 2 we give an overview of pairings
before using Section 3 to present details of arithmetic in Fzm . We then discuss
the details of our accelerator architecture and present experimental results in
Section 4 before concluding in Section 5.

2 An Introduction to Pairings

To provide a concrete case for discussion, we use the example of pairings where
the base field is of characteristic three, i.e. F, where ¢ = 3™. To allow inves-
tigation of both polynomial and normal bases we consider cases m = 97 and
m = 89 respectively. Let E be an elliptic curve over a finite field F,, and let O
denote the identity element of the associated group of rational points E(IF,). For
a positive integer I|#E(IF;) coprime to ¢, let F» be the smallest extension field
of F, which contains the I-th roots of unity in F,. Also, let E(F,)[I] denote the
subgroup of E(F,) of all points of order dividing I, and similarly for the degree
k extension of F;. Setting k = 6, we parameterise Fge as the quadratic extension
F,o = Fulo]/(0® + 1). Further, we set F,s = F,[p]/(p® — p — 1). For efficient
arithmetic in these fields, we to the work of Granger et al. [14].

Our choice of prime values for m is motivated by well known security con-
siderations; both our choices offer an security level which is roughly equivalent
to 800 — —900-bit RSA. Using a polynomial basis with m = 97 provides us with
a curve which is well known in the literature and hence a good reference against
which to compare our results. However, one can only construct a type-two nor-
mal basis where 2m + 1 is also prime: the most efficient type-one basis is never
available. This limits our choices significantly. We settled on m = 89 since it is
the closest choice to m = 97 for which affords a suitable parameterisation. For
both our choices of m, we use the curve E : Y2 = X3 — X + 1. In the case

Algorithm 2: The Kwon-BGOS algorithm [18] for calculating the Tate pair-
ing in characteristic three.

Input : point P = (z1,¥1), point Q = (22, y2)
Output : fp(¢(Q)) € Fo /Frs

f+1

To < T3

Y2 < U5

d < mb

for i = 1 upto m do
371(—3791)
yi <oy
wx +axy+d
A = yiyp0 — i
g X—pp—p’

f«rg

Y2 < —Y2

d+<d—>b
return f

of m = 89 this has an unattractively large cofactor [13]: this parameterisation
problem alone might be viewed as a reason not to use a normal basis represen-
tation; we stress that our aim in selecting these parameters is performance and
cost comparison only.

The Reduced Tate Pairing For a thorough treatment of the following, we
refer the reader to [4] and also [12], and to [24] for an introduction to divisors.
The reduced Tate pairing of order [is the map

er s B(F,)[l] x E(F)ll] = F /()

given by e;(P, Q) = fpi(D). Here fp; is a function on E whose divisor is equiva-
lent to I(P)—1(0), D is a divisor equivalent to (Q)—(O), whose support is disjoint
from the support of fp;, and fp;(D) = [1; fri(FP;)*, where D = 3. a; P;. Tt
satisfies the following properties:

For each P # O there exists Q € E(F)[l] such that €(P,Q) # 1 €
Fo /(Fy)t (non-degeneracy).

For any integer n, e;([n]P,Q) = ¢;(P,[n]Q) = e;(P, Q)" for all P € E(F,)[]
and Q € E(Fx)[l] (bilinearity).

Let L = hl. Then e;(P, Q)" =D/l = e, (P,Q)¢"~1/L.

— It is efficiently computable.

The non-degeneracy condition requires that @ is not a multiple of P, i.e. that @
is in some order I subgroup of E(F,x) disjoint from E(F,)[/]. When one computes

fpi(D), the value obtained belongs to the quotient group Fyy /(F;,)!, and not

]F;,c . In this quotient, for a and b in F;k, a ~ b if and only if there exists ¢ €]F;,c

such that a = bc!. Clearly, this is equivalent to
a ~ b if and only if CE b(qkfl)/l,

and hence one ordinarily uses this value as the canonical representative of each
coset. The isomorphism between Fy, /(F7,)! and the elements of order [in Fy
given by this exponentiation makes it possible to compute fp;(Q) rather than

fri(D).

The Modified Tate Pairing Duursma and Lee introduced their algorithm [10]
in the context of pairings on a family of supersingular hyperelliptic curves. The
performance of their method was improved upon by Kwon [18] and Barreto et
al. [2] who also provide similar algorithms for other characteristics.

Let ¢ =3™ and E(F,) : Y? = X3 — X +b, with b= £1, and let P = (z1,41)
and Q = (z2,y2) be points of order I. Let F;z = Fy[p]/(p®> — p — b), with b =
+1 depending on the curve equation, and let F,e = Fyz[0]/(0? + 1). Then the
modified Tate pairing on E is the mapping fp(¢(Q)) where ¢ : E(Fy) — E(Fys)
is the distortion map ¢(z2,y2) = (p — z2,0y2). The methods for computing
the Duursma-Lee and Kwon-BGOS algorithms are shown in Algorithm 1 and
Algorithm 2 respectively. Note that the final result is powered by ¢* — 1 to form
a compatible result with the BKLS [4] algorithm.

3 Arithmetic in Fsm

The finite field Fsm is isomorphic to F5[X]/(p) and Fs () where pis an irreducible

polynomial of degree m in F3[X] and « is a root of p. We will identify these three

fields, but our notation will be tailored toward Fs (a). In a polynomial basis 5 («)

is regarded as an m-dimensional vector space over F3 with basis
(@®,a',...,a™).

For an element a € F3 («) we will simply write the elements in a polynomial, or

standard basis as
m—1
P N i
a= E a; o' .
=0

Arithmetic in a polynomial basis is fairly straightforward when based on con-
ventional polynomial arithmetic. When discussing implementation of such arith-
metic, it is often useful to denote elements as a vector of coefficients such as

a = (Go,a1,02,...,4m-1) ,

so that physical operations such as shifting and rotation of coefficients is more
naturally expressed. We use the notation @) to denote the (left) rotation of the
coefficients in such a vector by distance 7. That is, we write

~(i ~ ~ ~ ~
al¥ = (Git0s Qig1,@ig2yeenyGigm—1)-

where in all cases, coefficient indices are reduced modulo m. Using this notation,
dg-l) represents the j-th coefficient of the rotated element a(?.
In a normal basis, things are slightly more involved. Given an irreducible

polynomial p of degree m and with root «, the full set of roots of p in F3(«) is
B = (a,a3,a32, ... ,a3m71).

If the elements of B are linearly independent then the set of roots forms a basis

of IF5 («) over F3 and this basis, p and « are all called normal. To construct such

as basis, and the matrix M which determines how the multiplication operation

works, we use the techniques of Granger et. al [13] based on work by Nocker [21].

For an element a € Fs (o) we write

m—1)
a= E a; - o’
i=0

but again, for brevity, we often denote a normal basis field element using the
coefficient vector and rotated coefficient vector notation as described above.
When using both polynomial and normal basis representations, we hold a
polynomial over F3 of degree m as a 2m length vector of bits. Two sequential
bits are used to hold each coefficient so that
a=(al,all alf al,... ok H Yy

where

al =a; mod 2

all =a; div 2.
For concreteness, we set the defining polynomial for our polynomial basis to
a”” + a'® + 2 and the normal polynomial p that defines M in our normal basis
to 0% + 0% + 2087 + ot + 2058 + 2052 + a8l +a™ + ol + a0 + 2089 + a6 1
2055 1 2084 4 a3 42054 + 035 1+ a3t 42033 4 00 12029 + 2028 + a7 + 2018 4+
2017 1+ 2016 1+ 15 4 2012 4 ol 4 al0 1209 4 1.

3.1 Addition and Subtraction

The most basic operations on field elements are addition and subtraction. These
are made reasonably straightforward because they can be performed component-
wise with no interaction with other coefficients. Given that our coefficients are
held using two bits, we can construct cells for the required arithmetic using
simple logical operations. Following Harrison et al. [15], the addition r; = a; +b;
of two coefficients a; and b; can be specified using

ril = (aF vk ot
rl =@fvil)et
where
t=(a¥ vo) @ (aff viF).
Subtraction, and hence multiplication by two, are equally efficient since the

negation of an element a simply swaps the bits a!! and a¥ over and can therefore
be implemented by the same function as addition.

3.2 Cubing and Cube Roots

When working in characteristic three, cubing is an important operation since
curve and pairing arithmetic is often manipulated to utilise cubing rather than
a more costly multiplication. In addition, the cube root operation is important
in the Duursma-Lee algorithm if pre-computation is avoided.

When using a normal basis, the cube and cube root operations are very
efficient in characteristic three: both can be achieved by cyclic shifting the coef-
ficients in an elements so that for an element a

C_l?)
3

= (amflyam .. '7am73;am72)7
a= (alaa% s)amflyao)-

Clearly these rotations can be easily implemented in a hardware circuit, where
they reduce to wired permutation of bits with no actual computational overhead.

In a polynomial basis, cubing is a linear operation in the same way squaring
is linear in characteristic two [6,22]. That is, we have

(a;a®)® = ala® = a;a® .

Therefore, we can implement it using by simply thinning the coefficients, i.e.
padding them with zeros, before performing a reduction. Cube root is somewhat
more involved but since our chosen field is of the right form, we can utilise the
method highlighted by Barreto [1]. Specifically, since our defining polynomial for
m = 97 is a®” +a'® +2 we have that 97 = 3u+1 and 16 = 3v+ 1 so that u = 32
and v = 5. Hence, for an element a = tg + t; + t where

u A~ ;
to =Y ;o a3
u—1 ~ i
t1 =) g Gzit10

=0)
to =) .o (3ip20’
we have that

\3/5 =t + t1<<2u+1 _ t1<<u+v+1 + t1<<2v+2 _ 2t2<<u+1 _ 2t2<<v+1

given that for ¢ € F3m , t<™ denotes ta™, the value ¢ shifted left by n coefficients
and suitable reduced.

3.3 Multiplication

In addition to component-wise addition and subtraction, for normal basis multi-
plication we also require a component-wise multiplication of the form r; = a; - b;.
This can be performed using similarly inexpensive logical operations

rif:(ai/\bg)v(ag/\bé)
ri = (a7 ANb)V (ai AbT) .

Armed with a function to perform this operation, we construct a general multi-
plication result of the form ¢ = a - b using

3
L

m—1
k=) @yi- p Mij by,
i=0 j

i
o

where in all cases, coefficient indices are reduced modulo m. The sparse matrix
M in this description is constructed from the normal polynomial p and essentially
dictates how reduction behaves for the field. We developed a compiler that takes
M and automatically produces circuitry to implement the three phases of the
above formula: an addition phase to compute the terms M;; - l_)kﬂ-, keeping
in mind that M;; € {0,1,2}; a multiplication phase to multiply ax+; by the
summed terms; and accumulation phase sum all the multiplied terms and form
Cr- Such circuitry generates a single coefficient and hence requires m clock cycles
to complete a multiply; we can place several of them working in parallel to
accelerate the multiplication [13].

There has already been plenty of previous work dedicated to hardware poly-
nomial basis multiplication methods in characteristic three [6,17,22]. We follow
the approach of Bertoni et al. [6] in employing a digit-serial approach. In a sim-
ilar way that a normal basis is scalable since we can utilise D parallel coefficient
calculation circuits, a digit-serial multiplier allows us to scale the digit-size D in
order to find a suitable balance between size and speed.

3.4 Inversion

Inversion is generally the most expensive operation when dealing with finite
field arithmetic, so much so that in systems like ECC every effort is made to
construct higher level operations so that inversion is not required. Due to the cost
of constructing dedicated hardware for limited return, we implement inversion
in software using our hardware for other operations in Fsm . To avoid the extra
hardware cost described by Kerins et al. [17], we implement inversion using the
relationship
o=l =372,

using a ternary expansion of the exponent since cubing operations are so inex-
pensive. In a polynomial basis this could be improved upon incrementally by
using a translation of the standard binary Euclidean algorithm [15]. Since we
only require inversion once in the final powering, we leave this issue for further
work.

3.5 Exponentiation

Generally, we avoid exponentiation of pairing values by arbitrary exponents since
one can use the bilinearity property to push the operation inside the pairing as a
point multiplication which is more efficient, see the work of Granger et al. [14] for
efficient methods in this area. However, we do need to consider the final powering

Fym ALU

PowerPC MicroBlaze

Registers

| | | | | | | |
USB Ethernet LCD ATA PCMCIA

Fig.1. A block diagram of our experimental architecture as hosted on a Xil-
inx ML300 prototyping device. Note that FPGA hosted elements are shown in
dashed boxes while dedicated elements are shown in solid boxes.

of the pairing output by ¢® — 1 in order to yield a value compatible with BKLS.
To power the pairing output f by the required exponent, we decompose the
operation into

f33m . f—l
the first term of which is simply three applications of the g-frobenius and the
second is an inversion. Thanks to our field arithmetic, the inversion is reasonably

efficient essentially because it can be done directly [14] rather than using an
iterative method.

4 Architecture and Results

4.1 Architecture

Our design was realised using VHDL synthesised with a combination of Xilinx
EDK 7.1 and ISE 7.1. Our experimental platform was a Xilinx ML300 prototyp-
ing board which hosts a Virtex-II PRO FPGA (XC2VP4FF672-6) device with
4928 slices. Our philosophy with this design was to treat the Fsm arithmetic as
a kind of co-processor, which is controlled by a more general purpose processor
rather than hardwiring logic to directly compute the pairing. By swapping the
co-processor we can provide arithmetic in either polynomial or normal bases; the
FPGA size prevented making both available in one design. Since the instructions
that are issued to the co-processor are executed synchronously, one might view
this as a kind of instruction set extension. With this approach, we can easily im-
plement other higher level operations based on the same field arithmetic, such as

| F3o7 in Polynomial Basis |

Slices | Cycles | Instructions Speed

At 16 MHz | At 150 MHz
Add 112 3 1 - -
Subtract 112 3 1 - -
Multiply 946 28 1 - -
Cube 128 3 1 - -
Cube Root 115 3 1 - -
Point Doubling - 220 15 13.8us 1.5us
Point Tripling - 52 9 3.3us 0.4us
Point Addition - 366 22 22.9us 2.4pus
Pairing
Duursma-Lee - | 59946 7857 3746.6us 399.4us
Kwon - | 64602 9409 4037.6us 430.7us
Powering - 4941 397 308.8us 32.9us
Total 4481 - - - -

| [F3s0 in Normal Basis |
Slices | Cycles | Instructions Speed

At 16 MHz | At 85 MHz
Add 102 3 1 - -
Subtract 102 3 1 - -
Multiply 1505 48 1 - -
Cube 0 3 1 - -
Cube Root 0 3 1 - -
Point Doubling - 360 15 22.5us 4.2us
Point Tripling - 72 9 4.5us 0.8us
Point Addition - 606 22 37.9us T 1us
Pairing
Duursma-Lee - | 89046 7857 5563.3us 1047.6us
Kwon -1 93702 9409 5856.3us 1102.4us
Powering - 7941 397 496.3us 93.4us
Total 4233 - - - -

Table 1. Cost and performance characteristics of hardware based field, point
and pairing arithmetic using polynomial and normal bases, clocked at low and
maximum frequencies.

the ECC point multiplication over E(F3m) which is also required in most pairing
based schemes.

As such, we combine our arithmetic in F3m with a register file, backed by
BlockRAM, of 32 registers each able to store an element of Fs» which total under
1 kilobyte for our choices of m. We control this combined data-path with a Xilinx
MicroBlaze soft-core, a 32-bit, 3-stage pipelined RISC processor which interfaces
to the logic using the Fast Simplex Link (FSL) interface. The MicroBlaze code
to control the co-processor was compiled using a re-targeted GCC tool-chain;
we were able to achieve fast development times as a result. In short, the FPGA
of our prototyping board is filled, as described by Figure 1, with what could be
considered an embedded processor with a co-processor for arithmetic in Fzm .
The obvious real-world analogy of this type of architecture is a smart-card with
an associated co-processor.

4.2 Results

Having selected our fields for polynomial and normal bases so that they were as
close as possible in size, we took the approach of utilising as equal an amount
of the FPGA as possible to make comparison easier. Since our multiplier ar-
chitecture in both cases allows for scalability by altering the digit-size D, we
parameterised the polynomial basis multiplier with D = 4 and the normal basis
multiplier with D = 2, choices that resulted in roughly the same area cost.

Table 1 shows the performance of our arithmetic and higher level functions
at a modest clock speed that could be useful in a constrained environment and
the fastest possible speed resulting from our synthesis results. A given arithmetic
operation essentially requires n + 2 cycles, 1 cycle for the instruction fetch and
decode, n for the execution and 1 to write-back the result into the register file.
As well as cycle and wall-clock timings, we quote the number of instructions
issued by the MicroBlaze core to the ALU. The area costs are inclusive of all
system elements bar the instruction memory and register file which are backed by
BlockRAM. The MicroBlaze core, FSL interface and debugging unit consumes
roughly 1300 slices; the finite state machine to control the ALU consumes roughly
500 slices; the ALU logic consumes roughly 1700 slices depending on which
elements are included. Note that our upper clock speed was bounded by 150
MHz since this was the maximum permitted by use of the MicroBlaze.

In terms of field arithmetic, we find that the polynomial basis representation
is generally faster since although the cube and cube root circuits are more com-
plex, the dominant feature was the multiplier. The critical path of the normal
basis multiplier was far longer, forcing a lower clock speed, and the design much
larger, meaning the polynomial multiplier could employ a larger, more efficient
digit-size. Using these results and by simply looking at the algorithms, it is clear
that the Duursma-Lee algorithm will be faster than that of Kwon-BGOS since
although the later removes the need for a cube root in F,, it requires a cubing
in Fx. Thanks to the single-cycle cube root implementations, the cube in Fyx
will inevitably be slower. Table 1 confirms this by quoting results for evaluating

the pairing and for the final powering: one should view a pairing as being the
combination of these two if the goal is compatibility with other algorithms.

Note that although the Kwon-BGOS algorithm is marginally slower it offers
an attractive trade-off since we can omit the cube root logic from our design and
save the associated slices. Also note that because of the fast cube root method of
Barreto [1], the perceived advantage of a normal basis in being able to perform
fast cube root operations is eliminated: the multiplier is the dominant cost as a
result.

4.3 Analysis

In characteristic three, given our constrained setting, an efficient way to perform
point multiplication using minimal pre-computation is to use the generalised
non-adjacent form (GNAF) [9,26], to construct a signed ternary expansion of
the exponent d (mod [). Such a representation is easy to compute and reduces
the average density of non-zero trits from two thirds to one half. Using A to
denote point addition and 7 to denote point tripling, the cost of an average

point multiplication is
log(d) log(d) ,

log(3) 21og(3)

The Boneh-Franklin IBE scheme [8] is perhaps the most definitive example of
the use of pairings within a concrete scheme. The trust authority or TA has a
public key Pry = s - P for a master secret s. A users public key is calculated
from the string I D using a hash function as Prp = H;(ID). The corresponding
secret key is calculated by the TA as S;p = s Prp. To encrypt the message M,
one selects a random r and computes the tuple

C = (U, V) = (T . P,M D H(G(P[D,PTA)T)),
to decrypt C = (U, V), one computes the result
M=V ® H(G(S]D, U))

Considering our faster implementation using polynomial basis and Duursma-
Lee algorithm with a modest clock speed of 16 MHz, we use P to denote the
combination of pairing and final powering, M a point multiplication and £ a field
exponentiation. Using this notation we see that encryption costs 2M + P while
decryption costs P. Although we do not consider it as an option, given some
extra storage the pairing required for encryption can be pre-computed which
results in the cost being M + £. Using these costs and our timings from Table 1,
we find that using our architecture we can perform Boneh-Franklin encryption
in & 7ms and decryption in & 4ms.

This performance is easily enough for practical applications since a given
scheme will typically try to minimise the number of pairings executed. Thus,
one can consider making a trade-off between performance and cost to reduce
the device size. For example, we can remove the cube root logic as described

above and utilise the Kwon-BGOS algorithm. Additional optimisations in this
direction include: reduction of the digit-size in our multiplication units; sharing
a group of addition cells between the addition and multiplication operations, at
the moment we place individual copies for each; improving the register allocation
strategy or spilling values to the main memory so as to reduce the size of our
register file containing [F, elements; and further turning of the MicroBlaze to
eliminate the debug and RS232 logic used for development purposes only.

5 Conclusions

We have presented an accelerator for arithmetic in F3m and used it to implement
the Tate pairing, a primitive which is of increasing importance in cryptographic
schemes. Unlike previous work, we investigate both polynomial and normal basis
representations of field elements and both the Duursma-Lee and Kwon-BGOS
algorithms to compute the pairing. Our results demonstrate roughly a ten-fold
improvement on the only other known hardware implementation [17] and orders
of magnitude better than the fastest known software implementations.

The issue of size of slightly harder to quantify due to the use of FPGA as
a target. Although our design is clearly still unrealistically large to place on a
smart-card for example, we have demonstrated that our performance margin
is so great, trade-offs that significantly reduce the area are viable. We leave
the realisation of such optimisations for further work which might also include
other marginal issues: acceleration of inversion in Fsm» using Euclidean tech-
niques rather than by powering, perhaps by using extra hardware [17]; some
comparison with existing, proprietary smart-card hosted implementations of the
Tate pairing [27].

Acknowledgements

The authors would like to thank Rob Granger, Johann Grofschidl, Elisabeth
Oswald, Nigel Smart, Martijn Stam and Fré Vercauteren for invaluable help and
support throughout the course of this work.

References

1. P.S.L.M. Barreto. A Note On Efficient Computation Of Cube Roots In Charac-
teristic 3. In Cryptology ePrint Archive, Report 2004/305, 2004.

2. P.S.L.M. Barreto, S. Galbraith, C. O’hEigeartaigh and M. Scott. Efficient Pairing
Computation on Supersingular Abelian Varieties. In Cryptology ePrint Archive,
Report 2004/375, 2004.

3. P.S.L.M. Barreto, B. Lynn. M. Scott. Constructing Elliptic Curves with Prescribed
Embedding Degree. In Security in Communication Networks (SCN), Springer-
Verlag LNCS 2576, 257-267, 2002.

4. P.S.L.M. Barreto, H. Kim, B. Lynn and M. Scott. Efficient Algorithms for Pairing-
Based Cryptosystems. In Advances in Cryptology (CRYPTO), Springer-Verlag
LNCS 2442, 354-368, 2002.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24

P.S.L.M. Barreto and M. Naehrig. Pairing-Friendly Elliptic Curves of Prime Order.
In Cryptology ePrint Archive, Report 2005/133, 2005.

G. Bertoni, J. Guajardo, S. Kumar, G. Orlando, C. Paar and T. Wollinger. Efficient
GF(p™) Arithmetic Architectures for Cryptographic Applications. In Topics in
Cryptology (CT-RSA), Springer-Verlag LNCS 2612, 158-175, 2003.

LF. Blake G. Seroussi and N.P. Smart. Advances in Elliptic Curve Cryptography.
Cambridge University Press, 2004.

D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. In
SIAM Journal on Computing, 32(3), 586—615, 2003.

W. Clark and J. Liang. On Arithmetic Weight for a General Radix Representation
of Integers. In IEEE Transactions on Information Theory, 19, 823-826, 1973.

I. Duursma and H. Lee. Tate Pairing Implementation for Hyperelliptic Curves
y> = 2P — 2 4+ d. In Advances in Cryptology (ASTACRYPT), Springer-Verlag
LNCS 2894, 111-123, 2003.

R. Dutta, R. Barua and P. Sarkar, Pairing-Based Cryptographic Protocols : A
Survey. In Cryptology ePrint Archive, Report 2004/064, 2004.

S. Galbraith. Supersingular Curves in Cryptography. In Advances in Cryptology
(ASIACRYPT), Springer-Verlag LNCS 2248, 495-513, 2001.

R. Granger, D. Page and M. Stam. Hardware and Software Normal Basis Arith-
metic for Pairing Based Cryptography in Characteristic Three. In Cryptology
ePrint Archive, Report 2004/157, 2004.

R. Granger, D. Page and M. Stam. On Small Characteristic Algebraic Tori in
Pairing-Based Cryptography. In Cryptology ePrint Archive, Report 2004/132,
2004.

K. Harrison, D. Page and N.P. Smart. Software Implementation of Finite Fields
of Characteristic Three, for use in Pairing Based Cryptosystems. In LMS Journal
of Computation and Mathematics, 5 (1), 181-193, London Mathematical Society,
2002.

T. Itoh and S. Tsujii. A Fast Algorithm for Computing Multiplicative Inverses in
GF(2") Using Normal Bases. In Information and Computation 78, 171-177, 1988.
T. Kerins, E. Popovici and W.P. Marnane. Algorithms and Architectures for
Use in FPGA Implementations of Identity Based Encryption Schemes. In Field
Programmable Logic and Application (FPL), Springer-Verlag LNCS 3203, 74-83,
2004.

S. Kwon. Efficient Tate Pairing Computation for Supersingular Elliptic Curves
over Binary Fields. In Cryptology ePrint Archive, Report 2004/303, 2004.

A. Miyaji, M. Nakabayashi and S. Takano. New explicit conditions of elliptic curve
traces for FR-reduction. In IEICE Transactions on Fundamentals, E84-A (5),
1234-1243, 2001.

A. Menezes, T. Okamoto, and S. A. Vanstone. Reducing Elliptic Curve Logarithms
to Logarithms in a Finite Field. In IEEE Transactions on Information Theory,
39, 1639-1646, 1993.

M. Nocker. Data Structures for Parallel Exponentiation in Finite Fields. PhD
Thesis, Universitat Paderborn, 2001.

D. Page and N.P. Smart. Hardware Implementation of Finite Fields of Character-
istic Three. In 4th Workshop on Cryptographic Hardware and Embedded Systems
(CHES), Springer-Verlag LNCS 2523, 529-539, 2002.

R. Sakai, K. Ohgishi and M. Kasahara. Cryptosystems Based on Pairings. In
Symposium on Cryptography and Information Security (SCIS), 2000.

. J. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag GTM 106, 1986.

25. A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In Advances in
Cryptology (CRYPTO), Springer-Verlag LNCS 196, 47-53, 1985.

26. T. Takagi, S-M. Yen and B-C. Wu. Radix-r Non-Adjacent Form. In Information
Security Conference (ISC), Springer-Verlag LNCS 3225, 99-110, 2004.

27. Voltage Security, Press Release, Gemplus Develops the World’s First Identity-
Based Encryption for Smart Cards. Available from http://www.voltage.com/
about/pressreleases/PR041102.htm.

