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Abstract. It is shown that the amount of true randomness produced by
the recently introduced Galois and Fibonacci ring oscillators can be eval-
uated experimentally by restarting the oscillators from the same initial
conditions and by examining the time evolution of the standard devi-
ation of the oscillating signals. The restart approach is also applied to
classical ring oscillators and the results obtained demonstrate that the
new oscillators can achieve orders of magnitude higher entropy rates.
A theoretical explanation is also provided. The restart and continuous
modes of operation and a novel sampling method almost doubling the
entropy rate are proposed. Accordingly, the new oscillators appear to
be by far more effective than other known solutions for random number
generation with logic gates only.
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1 Introduction

Unpredictable random numbers are essential for the security of cryptographic
algorithms and protocols and their implementations, especially for generating
the underlying secret keys. Ideally, they should be truly random and hence un-
predictable in terms of high entropy content even by an opponent with unlimited
computational power. Practically, they may also be allowed to be only pseudo
random and hence unpredictable by an opponent with a limited computational
power, but then they contain low entropy and their unpredictability is intrinsi-
cally heuristic.

Digital true random number generators (TRNGs or RNGs), which can be im-
plemented by using only logic gates in digital semiconductor technology, would
be very practical in terms of cost effectiveness and flexibility, but are not suffi-
ciently robust and are not able to produce high entropy rates. A common type of
such RNGs utilizes unpredictable variations in the phase and frequency (jitter)
of free-running oscillators implemented as ring oscillators, which are here also
called classical ring oscillators. A ring oscillator consists of an odd number of
logic inverters connected cyclically to form a ring. Typically, a high-frequency



ring oscillator is sampled at a much lower speed by an independent (system)
clock through a D-type flip-flop. If the sampling clock is generated by another
ring oscillator, then there is a tendency of the ring oscillators to couple with each
other, thus significantly reducing the amount of randomness produced. Accord-
ingly, it has been suggested to produce the clock by a slow, possibly external
oscillator based on analog elements (e.g., see [7], [10], and [16]).

In [15], it is suggested to use ring oscillator signals to clock linear feedback
shift registers (LFSRs) and then sample the produced output signal at a lower
speed by the system clock, thus combining randomness with pseudo randomness.
However, it is demonstrated in [4] that such a scheme is not secure in that the
RNG sequence may be predictable by guessing the limited phase or frequency
uncertainties and by solving the linear equations.

In [1], it is proposed to introduce a feedback signal for synchronizing the
slow and fast ring oscillators so that the fast one is sampled close to its edges,
i.e., transition points. This approach, which requires a considerable amount of
hardware with very precise timing, may increase the sensitivity to phase jitter
at the expense of introducing some statistical dependences. In [2], it is suggested
to restart the two oscillators and the sampling D-type flip-flop from the same
state, for each new random bit to be produced. Under a reasonable assumption
regarding the absence of long-term correlations in the underlying noise process,
this would ensure statistical independence of the random bits produced, but
cannot increase the speed. We look forward to seeing experimental data showing
how these methods work in practice.

Recently, a TRNG based on a multitude of ring oscillators combined by XOR
logic gates was suggested in [14], but its security proof turns out to be based on
highly unrealistic assumptions. The statistical results [13] for this design may be
caused by pseudo random behavior and, hence, do not allow one to judge the
amount of entropy produced.

Another type of digital RNGs exploits the metastability of RS latches and
edge-triggered flip-flops based on RS latches such as the D-type flip-flop (e.g., see
[6]). The metastability essentially results from an even number of logic inverters
connected in a loop. For example, the input and clock signals for a D-type
flip-flop can be produced by ring oscillators. Since the metastability events are
relatively rare and are sensitive to manufacturing variations and temperature
and voltage changes, the resulting designs are slow and not very reliable.

Two new types of ring oscillators called Fibonacci and Galois ring oscillators
are proposed in [8] and it is suggested that much higher entropy rates can thus be
achieved in comparison with other existing RNG proposals based on digital logic
circuits only, even when implemented in FPGA technology. This would of course
be of great practical interest, but no firm experimental evidence is provided,
possibly due to the paradigm of mixing randomness with pseudo randomness.
The main objective of this work is to evaluate and analyze the amount of true
randomness produced by these oscillators. This is achieved by using the restart
approach, which consists in repeating the experiments from identical starting



conditions.1 In this way, it is practically possible to distinguish between true
and pseudo randomness. In addition, the restart approach practically ensures
mutual statistical independence of the random bits produced [2] and, as such,
enables simple on-line testing of randomness properties. For comparison, similar
experiments are also conducted for classical ring oscillators and a significant
difference in performance is observed.

A short description of Fibonacci and Galois ring oscillators is provided in
Section 2. The experimental results of the restart approach for distinguishing
between true and pseudo randomness produced by these oscillators are pre-
sented in Section 3, whereas a comparison with classical ring oscillators is given
in Section 4. Section 5 explains why the ring oscillator based TRNG designs
from [14] and [13] fail. The TRNG designs resulting from Fibonacci and Galois
ring oscillators including the restart and continuous modes of operation are pro-
posed and discussed in Sections 6.1 and 6.2, respectively, a new sampling method
almost doubling the entropy rate is introduced in Section 6.3, and the FPGA
implementation details are given in Section 7. Section 8 contains a theoretical
explanation of the improved true randomness and the conclusions are pointed
out in Section 9.

2 Fibonacci and Galois Ring Oscillators

Fibonacci and Galois ring oscillators [8] (FIRO and GARO, respectively) are
both defined as generalizations of a ring oscillator (RO). They consist of a num-
ber, r, of inverters connected in a cascade together with a number of XOR logic
gates forming a feedback in an analogous way as in the well-known Fibonacci
and Galois configurations of an LFSR (see Figures 1 and 2). The difference is
that the delay synchronous units in an LFSR, i.e., synchronously clocked D-type
flip-flops are replaced by the inverters. A FIRO or GARO is thus defined by the
binary feedback coefficients or, equivalently, by the associated feedback polyno-
mial f(x) =

∑r
i=0 fix

i, f0 = fr = 1. The output signal could be taken from any
inverter in the cascade.

It is shown in [8] that to make sure that the inverter outputs cannot get
stuck at a fixed state, the feedback polynomial should be chosen to have a form
f(x) = (1 + x)h(x), with h(1) = 1 for a FIRO and with r odd for a GARO. It
is also suggested to choose a primitive polynomial h(x), as then in both cases
the state-transition diagram of the associated synchronously operated oscillator
contains one long cycle of length 2r − 2 and one short cycle of length 2, which
is metastable in the asynchronous operation.

It is claimed in [8] that the high-speed output oscillating signal has both
pseudo and true randomness properties, where the latter result from unpre-
dictable variations in the delay of internal logic gates which get propagated and
enhanced through feedback, possibly in a chaotic manner, and also from internal
metastability events. It is suggested that further randomness due to metastabil-
ity may be induced within a sampling unit (e.g., a D-type flip-flop) as well as
1 M. Dichtl used restart methods in TRNG simulations for certification since 2003.
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Fig. 2. Galois ring oscillator.

that the mutual coupling effect between the oscillating and sampling signals may
be significantly reduced by the pseudo random noise-like form of the oscillating
signal. To increase randomness and robustness, it is also proposed to use an
XOR combination of a FIRO and a GARO (FIGARO).

3 Distinguishing between True and Pseudo Randomness

In order to assess the quality of TRNGs based on FIROs or GAROs, we need
to distinguish the amount of true randomness contained in a pseudo random
oscillating signal. We can do this by repeating the experiments from identical
starting conditions, that is, by restarting a TRNG from the same initial states of
all the logic gates. Pseudo randomness is deterministic and hence shows identical
behavior in each repetition of the experiment. True randomness, on the other
hand, behaves differently in repetitions, despite the identical starting conditions.
To a minor extent, true randomness may also be present in the starting condi-
tions, which are not ideally identical. We conducted experiments in the FPGA
technology making sure that the initial conditions are essentially identical, with
the all-zero state as the initial state. For implementation details, see Section 7.

As an example, Figure 3 shows the oscillograms of repeated restarts of a FIRO
of length 15, from identical starting conditions. In the figure, the horizontal axis
is the time, the period of time shown for each restart is 80 ns, the vertical
axis is the output voltage, and only 25 curves of 1000 recorded are shown. The
sampling rate on the oscilloscope was 20 Gsamples/s. It is clearly visible that
many different curve forms occur in the figure. They are identical or similar only



in the beginning and then they diverge from each other surprisingly quickly. The
FIRO thus produced true randomness in a form of random analog signals.

Fig. 3. Output voltages of 25 restarts, each 80 ns long, of a FIRO with feedback
polynomial x15 + x14 + x7 + x6 + x5 + x4 + x2 + 1. The occurrence of various curve
forms shows that true randomness is produced.

The amount of randomness in the obtained curves that is relevant for en-
tropy extraction by sampling can be measured by the standard deviation of the
output voltage as a function of time. More precisely, if this standard deviation is
relatively large, then extracting one bit of true randomness by sampling is easy
and reliable. On the other hand, if this standard deviation is relatively small,
then the extracted random bit will be heavily biased and the bias will strongly
depend on the implementation. Accordingly, we computed the standard devia-
tion and the mean value of the output voltage as functions of time for the 1000
curves, recorded for a longer period of time. The results are displayed in Figure
4, for the standard deviation, and in Figure 5, for the mean value.
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Fig. 4. Standard deviation of the output voltage of 1000 restarts of a FIRO with
feedback polynomial x15 + x14 + x7 + x6 + x5 + x4 + x2 + 1.
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Fig. 5. Mean output voltage of 1000 restarts of a FIRO with feedback polynomial
x15 + x14 + x7 + x6 + x5 + x4 + x2 + 1.

In another example, analogous experiments were conducted for a GARO of
length 31 and the results obtained are shown in Figures 6, 7, and 8.

Fig. 6. Output voltages of 25 restarts, each 80 ns long, of a GARO with feedback
polynomial x31 +x27 +x23 +x21 +x20 +x17 +x16 +x15 +x13 +x10 +x9 +x8 +x6 +x5 +
x4 + x3 + x + 1. The occurrence of various curve forms shows that true randomness is
produced.

The obtained experimental results clearly show that both FIROs and GAROs
are capable of producing true randomness. After about 25-30 ns, the standard
deviation becomes significantly large to enable an extraction of 1 bit of entropy
via sampling, at least in principle. After about 50 ns, as both the means and
the standard deviations achieve relatively stable values, the entropy extraction
becomes fairly robust and reliable. To be precise, these observations pertain to
the restart mode of operation examined in the experiments. Similar observations
also hold for a more random and more robust FIGARO.
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Fig. 7. Standard deviation of the output voltage of 1000 restarts of a GARO with
feedback polynomial x31 + x27 + x23 + x21 + x20 + x17 + x16 + x15 + x13 + x10 + x9 +
x8 + x6 + x5 + x4 + x3 + x + 1.
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Fig. 8. Mean output voltage of 1000 restarts of a GARO with feedback polynomial
x31+x27+x23+x21+x20+x17+x16+x15+x13+x10+x9+x8+x6+x5+x4+x3+x+1.

4 Comparison with Classical Ring Oscillators

In order to assess the practical suitability of FIROs and GAROs for the gen-
eration of true random numbers, we now compare them with a classical RO
composed of three inverters implemented in the same FPGA technology. For the
same reasons as in Section 3, in order to determine the amount of randomness
generated by ROs, we use the restart approach. The frequency of the RO was
about 296 MHz. We recorded the output voltage in the first 80 ns after restarting
from the all-zero state, but the curves were so similar that no useful information
about the phase jitter could be derived. Instead, we recorded a time frame from
490 to 510 ns after restarting, by sampling at a rate of 20 Gsamples/s, for 1000
restarts.

Figure 9 shows the first 100 of these curves in one plot. To get a numeri-
cal measure for the jitter, we also evaluated the 1000 curves statistically. We
computed the average output voltage Uav over all 401000 samples, which was
1.7143 V. For each curve i, the time ti is defined as the first time greater than
500 ns at which the output voltage was larger than Uav. Graphically, these times
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Fig. 9. Output voltages of 100 restarts of the RO. The vertical position of the horizontal
axis is the mean voltage Uav.

can be seen in Figure 9 as the points to the right of the number 500, where the
curves cut the horizontal axis. The minimum ti from the 1000 curves was 500.7
ns, the maximum was 501.3 ns. The standard deviation of the 1000 tis was 0.1005
ns. This is only about 3% of the period of the RO. This low standard deviation
shows clearly that even after about 148 periods, the RO had accumulated only
a very small amount of phase jitter, whereas the FIRO and GARO of Figures 3
and 6, respectively, started to produce very different curves after only 25-30 ns.

Consequently, the arithmetic mean and the standard deviation of the output
voltages as functions of time after the restart of the RO are both computed
for a much longer time frame. The graphs for the standard deviation and the
mean value are shown in Figures 10 and 11, respectively. Zoomed in details from
Figure 10 are shown in Figure 12. The observed oscillations are due to the fact
that the variations of the output voltage are much larger around the edges of
the oscillating signal.

Time in ns after restart

Standard deviation of the output voltage in V

Fig. 10. Standard deviation the output voltage of 1000 restarts of the RO. The curve
oscillates very much, so that it smears to the black area.
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Fig. 11. Mean output voltage of 1000 restarts of the RO. The curve oscillates very
much such that it smears to the black area.
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Fig. 12. Zoomed in detail of Figure 10.

These figures show very clearly that the classical ROs need more than 5
µs until they reach an approximately stable value of the standard deviation of
the output voltage, that is, until the output voltage is in a completely random
phase. In contrast, the FIROs and GAROs achieve a more or less stable standard
deviation of their output voltages already after about 50 ns. Accordingly, the
entropy rate achievable by FIROs, GAROs, and FIGAROs is orders of magnitude
higher than that of classical ROs.

Moreover, one may extrapolate that similar conclusions also hold for the con-
tinuous mode of operation, without restarts from the same state, as the obtained
results are independent of the initial state chosen. On the conservative side, the
shown experimental results at least serve as a more or less firm indication for
the achievable entropy rates of the continuous mode of operation.



5 A ‘Provably Secure’ TRNG Based on Ring Oscillators

Section 4 shows that a ring oscillator can produce randomness only at a relatively
low rate. To overcome the problem, one may be tempted to use a very large
number of ring oscillators instead of a single one. In [14], it is thus suggested
to combine the outputs of a large number of ROs of equal length by an XOR
operation, and then to sample the resulting signal and use the binary samples
as inputs to a resilient postprocessing function. The resulting design has a large
gate count and a high power consumption. For concrete implementations, it is
suggested to use 114 ROs of length 13. The authors claim their design to be
provably secure, with respect to the amount of true randomness produced.

The basic idea of the security proof is that transitions in the RO signals
lead to transitions in the XOR output signal. If sampling occurs close enough
to a jittering transition, then the sampling result is assumed to be random, as
previously already suggested in [1]. One RO period is split up into 100 time slots
of equal length. The sampled bit is considered random if the sampling occurs in
a time slot with a transition. The probability of this happening is analyzed in
an urn model.

However, it turns out that the security claim [14] is not justified, as its
proof relies on several highly unrealistic assumptions. As such, the security proof
[14] cannot be considered relevant. A criticism of the underlying assumptions is
briefly presented in the sequel, whereas a detailed analysis of the TRNG design
[14] is given in [5]. Note that the statistical results reported in [13], for another
instance of the design using 210 ROs of length 3, provide no evidence that the
design produces substantial amounts of true randomness, because a large number
of ROs may also be a good source of pseudo randomness.

Unrealistic Probabilistic Model of Jitter The following assumption for an
individual RO with average period T is stated in [14]. In any open time interval
(mT−T/4,mT+T/4), there is a unique point t where the signal crosses (L+H)/2
volts and this t behaves as a normally distributed random variable with mean
mT and some variance σ2. Here, L and H stand for the voltages that represent
the logic low and high values, respectively. This assumption essentially means
that a RO has a built-in perfect clock of period T and that jittering only occurs
around the transition times of this perfect clock. This assumption is obviously
very unrealistic. It would imply that the ROs cannot accumulate phase jitter,
but Figure 10 shows clearly that this is not the case.

Interaction of Ring Oscillators In the urn model [14] for the transitions
in the XOR output signal, it is assumed that the transitions in individual RO
signals are uniformly and independently distributed among the chosen 100 time
slots the period T is divided into. In [14], it is claimed that [3] shows that
the phase drift is independent from one ring oscillator to another. However, no
such result could be found in [3]. The whole paper analyzes jitter in individual
ROs, and it never mentions having implemented two ROs on the same FPGA



simultaneously. Hence, [3] does not provide any insight into the statistical inde-
pendence of transitions of several ROs implemented on the same chip. Our own
experiments [5] show clearly that ROs implemented on the same FPGA interact
strongly and are hence not statistically independent. Accordingly, as ROs im-
plemented on the same chip interact strongly, it is not justified to assume that
their transitions occur in statistically independent time slots.

Unrealistic Speed The security proof of [14] is implicitly based on the assump-
tion that each transition (0-1 or 1-0) in each RO signal leads to a transition in
the XOR output signal to be sampled. For the suggested design with 114 ROs of
length 13, this implies that in the RO period of 26 gate delays, 228 transitions
need to occur. This means 8.77 transitions per gate delay, independently of the
gate technology used. This is not feasible with any technology known today.

The practical implementation from [13] has even much more severe speed
problems. There, a ‘robust’ FPGA implementation of the design with 210 ROs
of length 3, which oscillate at frequencies of about 333 MHz, is suggested. This
means 70 transitions per gate delay or an average frequency of about 69.9 GHz
in the XOR output signal.

Violation of Operating Conditions for Sampling Flip-Flop Even if the
high-speed signal of the XOR of a large number of RO signals could be com-
puted, it could not be sampled correctly. For flip-flops implemented in different
technologies, the numerical values of the required setup- and hold-times vary,
but no flip-flop can reliably sample signals with 8 transitions per gate delay. The
Virtex II Pro FPGA used in [13] requires a signal to be sampled to be constant
for 0.17 ns. During this time the XOR output signal would, if it could be com-
puted, make about 23.8 transitions. The sampling flip-flop would thus be very
far away from its specified operating conditions and, hence, cannot be assumed
to work correctly.

Now, one might object that violating the required hold- or setup-times of
a flip-flop can bring the flip-flop into a metastable state, which itself can be a
source of randomness. Indeed, this is true, but whether metastability is really
achieved depends to a large extent on small manufacturing variations and also
on environmental conditions like supply voltage and temperature. Therefore, a
security proof can hardly be based on the metastability of sampling flip-flops.

6 TRNGs Based on Fibonacci and Galois Ring Oscillators

By repeatedly restarting FIROs and GAROs, we have seen that they indeed
generate true randomness. There are several ways of using this randomness in a
practical random number generator that produces random bits sequentially.

6.1 Restart Mode of Operation

Since we have seen that a FIRO or GARO behaves differently each time even
when restarted from identical starting conditions, we can use this restart method



also in the practical implementation of a TRNG. A FIRO or GARO is normally
in a static reset state. Only when a random bit is needed, the oscillator is allowed
to run for a short period of time. After sampling, the oscillator is stopped and
reset to its initial state. A D-type flip-flop used for sampling should also be reset
to a fixed state. An obvious advantage of the restart mode of operation is a low
power consumption.

The main advantage of the restart method is that the bits generated in this
way are statistically independent. More precisely, this is true under a reason-
able assumption that, after restarting, there are no residual long-term statistical
dependencies in the underlying noise process causing the true randomness. In
fact, the long-term statistical dependences are very unlikely to exist also without
restarting. This is very important for satisfying the evaluation criteria such as
[11], as in this case the on-line testing reduces to statistically testing the bias of
the bits generated. Instead of testing the bias, one may only apply an adaptive
method for producing unbiased bits, such as the well-known von Neumann ex-
tractor, possibly in a faster generalized form [9]. So, if something goes wrong with
the internal randomness, but not with the independence of repeated runs, then
the output speed is thus automatically reduced, while keeping a true random
output.

For this independence, however, it must be assumed that the starting state
of the oscillator is independent of the bit generated previously. To achieve this
independence for all the logic gates in the oscillator circuit, one has to wait a
sufficiently long time after having stopped the oscillator, before restarting it.
In this time, the oscillator can return to its static initial state. We discuss this
waiting time in more detail in Section 7.

So, the independence is achieved at a cost of reducing the speed, because this
waiting time has to be added to the running time guaranteeing a sufficiently large
standard deviation of the output voltage (e.g., 25-50 ns), in order to obtain a
lower bound on the sampling period. If the waiting time is sufficiently large,
but the running time is too short, then the standard deviation of the output
voltage becomes relatively low and, as a result, the output random bits have an
increased bias, while remaining statistically independent.

If a D-type flip-flop is used for sampling, then the output bits produced may
be biased, i.e., may have a deviation of the probability of zeros from 1/2. To get
more balanced output bits, one may toggle the state of an intermediate flip-flop
at each 0-1 transition in the oscillator signal and then sample the state when a
random bit is needed. This is equivalent to counting the number of 0-1 transitions
in the oscillating signal and using the count reduced modulo 2 as the output bit.
The edge-triggered toggle flip-flop also has to be reset during the restart.

In our experiments, we managed to generate statistically independent random
bits at a speed of 7.14 (6.25) Mbits/s, with a small bias of zeros of about 0.0162
(0.0056), by the sampling method with toggling and the FIRO used to generate
Figure 3. In the implementation, the FIRO runs after the restart for 60 ns. Then
it is stopped and the resulting bit is sent to and kept on an output line for 40 ns.
The waiting time before restarting is 40 (60) ns. The independence is measured



by the chi-square statistical test comparing the empirical distribution of 142858
(125000) 4-bit blocks of successive bits with the theoretical distribution, with
respect to a given bias, and in both cases the test was satisfied with a significance
level of more than 10%.

6.2 Continuous Mode of Operation

One may run a FIRO, GARO, or FIGARO continuously and sample them when
random bits are needed. Alternatively, one may restart them from a fixed state,
as in the restart mode, each time a sequence of random bits is needed and then
run them only as long as needed. The latter approach consumes less power and
may imply statistical independence of successive runs if implemented properly.
The two sampling methods described above for the restart mode of operation,
namely, with or without an intermediate toggle flip-flop, are also applicable in
this case. An XOR combination of a FIRO and GARO, FIGARO, together with
an appropriately chosen sequential circuit for postprocessing are thus proposed
in [8] for generating random bits at a high speed. A drawback of the continuous
mode of operation relates to high-security applications where it is required to
control the entropy rate by on-line testing, e.g., according to [11]. Namely, this
appears to be a non-trivial task due to mixing true with pseudo randomness.

Another problem is determining the maximum sampling rate. To this end, one
may refer to the restart method from a fixed initial state, but the corresponding
results regarding the standard deviation of the output voltage should be taken
with some caution, because the space of achievable (analog) internal states is
larger than the space of the restart states. If the sampling period is chosen to
be too short, then the successive samples produced may become statistically de-
pendent. Namely, at each time, the statistical dependence of a current sample on
the previous state, at a time when the preceding sample was produced, increases
if the sample period decreases, whereas this previous state is clearly statistically
dependent on the preceding sample. A statistical dependence among successive
samples may then result as a consequence. Of course, by increasing the sampling
period, such a statistical dependence diminishes. However, as statistical depen-
dences may also result from a sampling D-type flip-flop, it may be prudent to
always restart this flip-flop from the same state, for any sample produced.

The FIRO used to generate Figure 3 was allowed to run for 100 µs and its
analog output was recorded. The autocorrelation function computed from this
record is shown in Figure 13. It drops to about zero surprisingly quickly, that
is, after about 20 ns, but this may also be due to a combined effect of true and
pseudo randomness. We implemented this FIRO in the continuous mode and
observed that at the speed of 25 Mbits/s, the statistics of the 4-tuples did not
pass the chi-square independence test with respect to the significance level of
0.01%, but at 12.5 Mbits/s, the test was satisfied with a significance level of
more than 10% and the bias of zeros was about 0.0192.
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Fig. 13. Autocorrelation function of the analog output voltage for a continuously run-
ning FIRO with feedback polynomial x15 + x14 + x7 + x6 + x5 + x4 + x2 + 1.

6.3 Almost Doubling the Entropy Rate

Instead of extracting one random bit at a time, by sampling with a D-type
flip-flop, either with or without an intermediate toggle flip-flop, one may also
extract two random bits at a time, by sampling with a D-type flip-flop, both
with and without an intermediate toggle flip-flop. As these two bits result from
two different, a sort of complementary properties of the oscillating signal, it is
reasonable to expect that the statistical dependence between them is relatively
weak. Namely, the bit sampled without toggling depends only on the signal value
at the sampling time, while the bit sampled with toggling essentially depends on
the number of transitions in the signal since the last restart, for the restart mode,
or since the preceding sampling time, for the continuous mode. If their biases are
both small or, more generally, comparable in magnitude, then the entropy rate
could thus be almost doubled, which, of course, would be practically significant.

We checked experimentally how much the entropy rate can be increased by
this approach. For example, with the same FIRO as above, running in the restart
mode of operation, the speed is thus increased from 7.14 to 14.28 Mbits/s, for
raw random data. The Shannon entropy estimates obtained on 571432 2-bit
samples are about 0.987 and 0.961 for individual bits, where the higher entropy
corresponds to the sampling method with toggling, and about 1.933 for both
bits jointly. The mutual information measuring their statistical independence is
thus quite low, i.e., about 0.015.

Thus, we get a theoretical output rate of 13.8 Mbits/s of unbiased and sta-
tistically independent random bits. In practice, this rate can approximately be
achieved by postprocessing algorithms, which should take into account the sta-
tistical dependence, albeit weak, between the two bits obtained by sampling.
For example, by using the algorithm from [9], the theoretical output rate can
be approached at the cost of increased processing complexity, by increasing the
number of 2-bit samples processed simultaneously. The restart mode of opera-
tion is especially suitable for this algorithm since the processed 2-bit samples
are then statistically independent.



7 FPGA Implementation

In this section, we give more details on how the experimental results presented
in previous sections are achieved. The FIROs and GAROs were experimentally
tested by using a Xilinx Spartan-3 Starter Kit board based on the Xilinx FPGA
XC3S200-4FT256C.

In our experiments, we observed a considerable cross-talk between different
signals on the FPGA. In principle, this is a problem for the restart method since
the random oscillating signals generated by a FIRO or GARO are intrinsically
analog, as is clear from Figures 3 and 6. These analog signals can be disturbed
very easily by analog cross-talk from other signals on the board.

We implemented the circuit on the FPGA very carefully in such a way that
the oscillations of the FIROs and GAROs were not disturbed by other signals.
The cleanest approach would be to have no other signals on the FPGA. However,
there has to be some mechanism for timing when the oscillators have to be
restarted periodically. We used a quartz clock available on the board and a
counter implemented on the FPGA. There may have been analog cross-talk from
the counter to a FIRO or GARO, but this does not invalidate our experimental
proof that true randomness was really generated. The counter was designed in
such a way that it followed the same sequence of states for each restart and run
of a FIRO or GARO. So, if the counter influences a FIRO or GARO, then it
does it in an identical way at each run of the FIRO or GARO. Therefore, the
occurrence of a varying behavior of the oscillators cannot be attributed to pseudo
random disturbances from the counter, but is caused by true randomness.

The FIROs and GAROs may not only be influenced by different signals on
the FPGA, but also by their own state from the previous run. The only way
to solve this problem is to keep the oscillators, after having stopped them, for
a sufficiently long time in a constant state so that all the transitory voltages
can settle down to a constant value. Of course, we would theoretically have to
wait infinitely long, because of an exponential decay. Since the timing analysis
of FPGA implementations can be very complex, it is difficult to give precise
estimates for the waiting times required. The signal stopping the oscillators may
ripple through several logic gates, especially in the implementation of the many-
input XOR needed for FIROs. Since the gate delay for logic functions on the
FPGA is about 1 ns, about 10 ns are sufficient to account for the gate delay. From
our observations of FPGA transitory voltages on the oscilloscope, we concluded
that additional 20 ns were sufficient for residual voltages to settle down to such
a low value that they do not have noticeable influence on subsequent restarts of
the oscillators. For the experiments reported in Sections 3 and 4, to be on the
safe side, we chose a waiting time of 4960 ns.

8 A Theoretical Rationale for Improved Randomness

Why do FIROs and GAROs perform so much better than classical ROs? Here
we provide a number of theoretical reasons for this phenomenon. Of course, it



remains to be further investigated if a more precise theoretical analysis would
be possible.

The primary source of randomness are random delays and transition times
of the logic gates in the circuit, which are due to various internal and external
noise factors such as thermal noise and unpredictable short-term or long-term
fluctuations in voltage and temperature. The amount of primary randomness
generated per time unit can thus be measured by the product of the total num-
ber of logic gates and their average switching frequency, and this product is
roughly proportional to the power consumption. In a classical RO, this product
is independent of the number of inverters used, as the average switching fre-
quency is inversely proportional to this number. On the other hand, in a FIRO
or GARO, this product increases as the number of inverters, r, or the number of
feedback logic gates increases. This is because the average switching frequency
does not decrease with r, due to a more complex feedback. Accordingly, a FIRO
or GARO generates more primary randomness than a RO. Equivalently, one
may say that the amount of phase jitter is thus effectively increased.

During the oscillations in a FIRO or GARO, additional true randomness may
be generated due to internal metastability events resulting from the feedback
loops involving chains of inverters, but the frequency of these events is difficult
to estimate and the resulting impact on entropy rate is hence difficult to quantify.

Another and, perhaps, the main advantage of FIROs and GAROs over clas-
sical ROs, which is evident from the oscillating waveforms shown in Figures 3,
6, and 9, is also a consequence of a more complex feedback signal. Namely, each
random variation of a delay or a transition time gets transformed and propa-
gated through feedback logic gates in a pseudo random or chaotic manner, and
all such random variations combined hence result in a high-frequency noise-like
oscillating signal, which inherently possesses both analog and binary properties.
So, the more complex feedback cannot introduce new randomness as such, but
can and does transform the primary randomness produced by individual logic
gates, including those in the feedback, into a form more suitable for extraction
by sampling. Equivalently, one may say that the sensitivity to phase jitter is thus
effectively increased.

In a classical RO, the random delay variations of inverters just add up to-
gether in a regular manner so that it is much more difficult to extract each new
bit of true randomness by sampling. A theoretical model of entropy build-up in
ROs is given in [12]. Note that the oscillating nature of the standard deviation
curves in Figures 10 and 12 means that it is in principle easier to extract ran-
domness by sampling near the edges of the oscillating signal. However, this is
difficult to implement in practice, and [1] is as a step in this direction.

In conclusion, the sampling frequency can be made much higher without
essentially reducing the entropy per bit in the sampled sequence, and this results
in a much higher entropy rate achievable by FIROs, GAROs, and FIGAROs, in
comparison with classical ROs.

In addition, in a FIRO or GARO, the irregularity of a high-frequency os-
cillating signal, which is random, pseudo random, and chaotic on the binary as



well as analog level, reduces the mutual coupling effect between the oscillating
and sampling signals, which is the main weakness of classical ring oscillators.
This irregularity may also increase the frequency of metastability events in the
sampling circuit such as an edge-triggered D-type flip-flop. The two phonemena
and the resulting impact on true randomness are interesting topics for future
experimental investigations.

9 Conclusions

We demonstrated that a carefully implemented restart method is useful not
only for designing TRNGs with testable true randomness properties, but also
for distinguishing between true and pseudo randomness in TRNGs using logic
gates only, such as those based on classical ring oscillators and on the so-called
Fibonacci or Galois ring oscillators. The experimental evaluation and analysis
based on the restart method clearly show that the latter are capable of producing
orders of magnitude higher entropy rates than the former. This is mainly because
a more complex feedback, on one hand, maintains a high switching frequency
while increasing the number of inverters and, on the other hand, transforms the
original randomness into a form more suitable for extraction by sampling.

Consequently, TRNGs based on Fibonacci or Galois ring oscillators are thus
very convenient for high-speed applications, in both FPGA and ASIC technolo-
gies. The restart mode of operation is recommended for high-security applica-
tions, with an on-line testing of true randomness properties. The continuous
mode of operation can achieve higher speeds, but the true randomness proper-
ties do not seem to be directly testable. A new sampling method almost doubling
the entropy rate is also proposed.
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