
FPGA Design of Self-Certified Signature

Verification on Koblitz Curves?

Kimmo Järvinen, Juha Forsten, and Jorma Skyttä

Helsinki University of Technology
Signal Processing Laboratory

Otakaari 5A, FIN-02150, Espoo, Finland
(kimmo.jarvinen,juha.forsten,jorma.skytta)@tkk.fi

Abstract. Elliptic curve signature schemes offer shorter signatures com-
pared to other methods and a family of curves called Koblitz curves can
be used for reducing the cost of signing and verification. This paper
presents an FPGA implementation designed specifically for rapid ver-
ification of self-certified identity based signatures using Koblitz curves.
Verification requires computation of three elliptic curve point multiplica-
tions which are computed efficiently with 3-term multiple point multipli-
cation and joint sparse form. Certain improvements to precomputations
associated with multiple point multiplications are introduced. It is shown
that, when using parallel processors, it is possible to gain considerable
increases in the number of operations per second by allowing slightly
longer computation times for single operations. It is demonstrated that
up to 166,000 verifications per second can be computed using a single
Altera Stratix II FPGA.

1 Introduction

Research on hardware realization of cryptographic algorithms has been intensive
during the past few years. Implementation of elliptic curve cryptosystems by us-
ing field programmable gate arrays (FPGAs) has been one of the most active
areas in the field, and numerous designs have been described in the literature.
This paper extends the research on the subject by describing a very efficient
implementation designed specifically for one of the most computationally de-
manding tasks of modern cryptosystems; namely, signature verification.

Elliptic curve cryptography [1, 2] is a branch of public-key cryptography
which has recently been a subject of much interest because a high level of crypto-
graphic security is achievable with shorter key lengths than with other existing
methods. The implementation computes elliptic curve operations involved in
verification of self-certified identity based signatures based on Nyberg-Rueppel
signature scheme [3]. The implementation uses one of the standardized Koblitz
curves listed in [4], henceforth referred to as the NIST curve K-163, because

? This research was conducted within the Packet Level Authentication (PLA) project
at Helsinki University of Technology (TKK). The PLA project is funded by TEKES.



computations are much faster on Koblitz curves [5]. Further improvements in
performance are achieved by computing all operations required in signature ver-
ification simultaneously by using multiple point multiplication techniques. Per-
formance is increased by introducing certain improvements to precomputations.

Signature verification is a basic operation in many cryptosystems. Applica-
tions, such as the Packet Level Authentication (PLA) scheme [6, 7] where com-
putational requirements for signature verifications are very high, directly benefit
from the results presented in this paper.

The contributions of the paper include the following:

– Unified point addition and subtraction formulae are presented which can be
used in speeding up precomputations in various methods including multiple
point multiplications and combings.

– A new algorithm for 3-term joint sparse form precomputations is presented
resulting in a major speed up compared to existing methods.

– To the authors’ knowledge, this is the first publication where computation
time vs. the number of operations per second (ops) tradeoff is being explored
when using parallel processing in elliptic curve operations. It is shown that
allowing slightly longer latencies can result in considerable increases in ops.

– A highly efficient implementation which utilizes parallel processing is pre-
sented for an Altera Stratix II FPGA. The implementation is capable of
performing up to 166,000 verifications per second which exceeds all previ-
ously presented implementations.

– It is shown that schemes, such as PLA [6, 7], could be feasible if the imple-
mentation presented in this paper is used for accelerating verifications.

The remainder of the paper is organized as follows. Sec. 2 presents the prelim-
inaries of elliptic curve cryptography and self-certified identity based signatures.
Algorithms that are used in the implementation are introduced and derived in
Sec. 3. The implementation is presented and the results are analyzed in Secs. 4
and 5, respectively. Conclusions are drawn in Sec. 6 and the paper ends with
certain suggestions of possible directions for the future research.

2 Preliminaries

2.1 Packet Level Authentication

Packet Level Authentication (PLA) is a scheme where the authenticity of packets
in IP (Internet Protocol) traffic is verified by signing and verifying them with
cryptographic signatures. The authenticity of packets is verified from node to
node instead of from point to point as in other schemes. This helps in preventing
many threats including denial-of-service (DoS) attacks but as a downside PLA
adds the length of the packet header and most importantly is computationally
very demanding. Thus, hardware acceleration is essential. [6, 7]

PLA is one of the possible applications for the implementation of the paper
as mentioned above and the rationales behind many design decisions originate
from the requirements of PLA.



The use of signatures based on elliptic curves instead of other techniques
such as RSA or ElGamal is practically mandatory because the length of signa-
tures must be kept in minimum in order to minimize the overhead caused by
PLA [6]. Koblitz curves were chosen in order to maximize the speed of the im-
plementation because operations are notably faster on Koblitz curves than on
general curves [5]. Self-certified identity based signatures were selected because
they result in shorter signatures and reduced computational complexity [8].

Preliminaries of elliptic curve cryptography and self-certified identity based
signatures are presented next in Secs. 2.2 and 2.3, respectively.

2.2 Elliptic Curve Cryptography

Every elliptic curve cryptosystem is based on an operation called elliptic curve

point multiplication, and it is defined as

Q = kP

where Q and P are points on an elliptic curve and k is an integer.
Koblitz curves [5] are a family of elliptic curves of the form

EK : y2 + xy = x3 + ax2 + 1

where a ∈ {0, 1} and x and y are elements of the finite field F2m . Elliptic curve
point multiplication is computed with successive point additions and point dou-

blings with the binary method so that, when k =
∑`−1

i=0 κi2
i, point doublings

are performed for all κi and point additions when κi = 1. On Koblitz curves,
however, point doublings are replaced by computationally cheap Frobenius maps

which results in significant improvement in performance. Before this feature can
be utilized, k needs to be converted into τ -adic representation. Algorithms for
finding τ-adic non-adjacent form (τNAF) were presented in [9]. When k is repre-

sented in τNAF, it has the form k =
∑`−1

i=0 κiτ
i where τ =

(
(−1)1−a +

√
−7

)
/2

and κi ∈ {0,±1} so that κiκi+1 = 0 for all i. The average number of non-zero
terms in k is `/3 [9]. Because point additions are required when κi 6= 0 and
` ≈ m, point multiplication on EK requires on average m/3 point additions and
m Frobenius maps.

A sum of integer multiples of two points, i.e. k1P1 +k2P2, can be accelerated
with Shamir’s trick [10] where the integers are represented as a matrix having
k1 and k2 as rows. First, P1 +P2 is precomputed. Point multiplication is carried
out with the binary method so that one adds the point P1 if the column is 1

0
,

the point P2 if 0

1
and the precomputed point P1 +P2 if 1

1
. When the column is 0

0
,

only point doubling or Frobenius map is performed. When k1 and k2 are in NAF,
also the point P1 −P2 is precomputed. Two integers can be represented in joint

sparse form (JSF) [11] in order to maximize the number of zero columns. JSF
was generalized for n integers in [12]. JSF can be used also for Koblitz curves
as an algorithm for finding τ -adic JSF (τJSF) for two integers was presented
in [13]. A generalization for n integers was recently proposed in [14] and it is



henceforth referred to as 3-term τJSF because its average number of non-zero
columns is equivalent to the 3-term JSF [14]. A 3-term τJSF has a probability
of 0.5897 for a non-zero column [14] which yields a Hamming weight, i.e. the
number of non-zero terms, H(k) = 0.5897m on average. This paper considers
the following 3-term multiple point multiplication:

Q = k1P1 + k2P2 + k3P3 . (1)

2.3 Self-Certified Identity Based Signatures

In the following, a self-certified identity based signature scheme [3] based on
Nyberg-Rueppel signatures [15] is outlined for groups over elliptic curves as
presented by Brumley in [8].

First, an elliptic curve E and a base point G with prime order r is chosen and
the Trusted Third Party (TTP) generates a domain private key sD and computes
and publishes a domain public key WD = sDG. Then, the TTP generates a
private key for Alice’s identity IDA by calculating

(rA, bA) = compress(uG) + hash(IDA)

sA = u − sDrA (mod r)

where u is an integer selected at random from the interval [1, r−1] and compress

compresses a point (x, y) to (x, b(y)) which requires only m + 1 bits. hash is a
hash function.

Alice generates a signature (c, d) for a message M by calculating

c = [vG]x + hash(M)

d = v − sAc (mod r)
(2)

where v is a random integer such that v ∈ [1, r−1] and [vG]x is the x-coordinate
of vG.

Bob verifies the signature on the message M by first extracting Alice’s public
key WA from (rA, bA) which are public by computing

WA = decompress(rA − hash(IDA), bA) − rAWD (3)

where decompress is the inverse operation of compress. Thus, (3) requires one
point multiplication. After extraction, the validity of the signature is verified by
checking

hash(M) = c − [dG + cWA]x (mod r) (4)

which requires two point multiplications. Verification and extraction can be sim-
plified into the following 3-term multiple-point multiplication as shown in [8]:

dG + c(uG) − crAWD

which obviously has the form of (1).



As signings, i.e. computations of (2), are computationally cheaper than ver-
ifications and they can be accelerated further with methods such as fixed-base
windowing (see [16], for example), the performance of the scheme is bounded
by verifications. 3-term multiple point multiplication dominates in the compu-
tational requirements of verification because decompression and subtraction are
fast to compute. The hash can be computed simultaneously with point multi-
plication, and many fast and compact hash modules have been presented in the
literature. Thus, the remainder of the paper focuses in accelerating (1).

3 Algorithms

This section introduces the algorithms which are used in computing (1). Point
multiplications are computed using known algorithms which are reviewed in
Sec. 3.1 but new algorithms are derived for precomputations in Sec. 3.2.

3.1 Elliptic Curve Point Multiplication

When two points on EK are represented in affine coordinates, A for short, as
(x1, y1) and (x2, y2), a point addition (x3, y3) = (x1, y1) + (x2, y2) is given with
the following formulae:

λ =
y1 + y2

x1 + x2
(5a)

x3 = λ2 + λ + x1 + x2 + a (5b)

y3 = λ(x1 + x3) + x3 + y1 . (5c)

They have the cost I + 2M + S + 8A where I, M , S and A denote the costs of
inversion, multiplication, squaring and addition in F2m , respectively. A negation
of the point (x1, y1) is given by (x1, x1 + y1) and it has the cost of A. [16]

Because inversions are expensive, it is commonly preferred to represent points
with three coordinates as (X, Y, Z) because then the number of inversions in
point multiplication can be reduced to one. Coordinate system called López-

Dahab coordinates [17], or LD for short, is used in this paper and a point
(X, Y, Z) in LD represents the point (X/Z, Y/Z2) in A [17]. When points are
represented in LD, point addition P3 = P1 + P2 can be computed as presented
in [18] so that P1 is in LD and P2 in A. This is referred to as the mixed coordi-

nate point addition and it has the cost of only 8M +5S +8A on the NIST curve
K-163. Frobenius map is (X2, Y 2, Z2) in LD and it is obviously cheap to com-
pute. The A 7→ LD mapping is performed at the beginning simply as (x, y, 1)
but the LD 7→ A mapping requires I + 2M + S. However, as shown in (4), the
y-coordinate is not needed in verification and, hence, the cost reduces to only
I + M .

Finite fields F2m are typically represented with polynomial basis or normal

basis. In polynomial basis, the field is constructed by using an irreducible poly-

nomial with a degree of m. In normal basis, the set {α, α2, . . . , α2m−1}, where



α2i
are linearly independent, is used as a basis and an element is represented as

a =
∑m−1

i=0 aiα
2i

where ai ∈ {0, 1}. Multiplication is considered more efficient in
polynomial basis. However, in normal basis squaring is simply a rotation of the
bit vector and Frobenius maps are thus very cheap to compute. For this reason
normal basis was chosen. Addition is computed with a simple bitwise exclusive-or
(XOR). Inversion is computed with Itoh-Tsujii inversion [19] requiring exactly
(blog2(m− 1)c+ H(m− 1)− 1)M + (m− 1)S where H(m− 1) is the Hamming
weight of m− 1 [19]. As m = 163, the cost is I = 9M +162S. Because squarings
are cheap, multiplications dominate in I.

To summarize, the implementation computes (1) on the NIST K-163 (normal
basis) with the binary method using a 3-term τJSF. Point additions are com-
puted in mixed coordinates and, in the end, the x-coordinate is mapped to A by
computing X/Z, where the inversion is computed with an Itoh-Tsujii inversion.

3.2 Precomputation

When (1) is computed with multiple point multiplication techniques, certain
points need to be precomputed. These precomputations cannot be computed
offline similarly as, e.g., in fixed-base windowing methods because points Pi are
not fixed. Thus, precomputations are on the critical path and it is essential to
compute them as fast as possible. In order to be able to use fast mixed coordinate
point additions, precomputed points should be in A. The first step in improving
precomputations is to utilize the fact that the same inversion is computed in
both P1 +P2 and P1−P2 computations. The same fact has been previously used
at least in [20] but it is shown in the following that it is also possible to save
some additions.

Theorem 1 (Unified point addition and subtraction). Given two points

P1 = (x1, y1) and P2 = (x2, y2) on an elliptic curve E, P
(+)
3 = (x

(+)
3 , y

(+)
3 ) =

P1 + P2 and P
(−)
3 = (x

(−)
3 , y

(−)
3 ) = P1 − P2 can be computed with the following

formulae:

θ = (x1 + x2)
−1 (6a)

λ = (y1 + y2)θ and λ′ = x2θ (6b)

x
(+)
3 = λ2 + λ + x1 + x2 + a (6c)

y
(+)
3 = λ(x1 + x

(+)
3 ) + x

(+)
3 + y1 (6d)

x
(−)
3 = x

(+)
3 + λ′2 + λ′ (6e)

y
(−)
3 = (λ + λ′)(x1 + x

(−)
3 ) + x

(−)
3 + y1 . (6f)

Proof. (6c) and (6d) are simply the point addition formulae (5b) and (5c), i.e.

(x
(+)
3 , y

(+)
3 ) = P1 + P2, and it remains to show that (x

(−)
3 , y

(−)
3 ) = P1 − P2.

Substituting (6c) into (6e) results in

x
(−)
3 = λ2 + λ′2 + λ + λ′ + x1 + x2 + a

= (λ + λ′)2 + (λ + λ′) + x1 + x2 + a (7)



because 2λλ′ = 0. As −P2 = (x2, x2 + y2), (5a) yields

λ(−) =
y1 + x2 + y2

x1 + x2
=

y1 + y2

x1 + x2
+

x2

x1 + x2
= λ + λ′ . (8)

Now substituting (8) into (6f) and (7) shows that (x
(−)
3 , y

(−)
3 ) = P1 − P2. ut

Cost of computing (6a)–(6f) is only I + 4M + 2S + 14A. Thus, Theorem 1
saves I+3A compared (5a)–(5c). This is significant because inversion dominates
in the cost of point addition.

Precomputations in 3-term (τ)JSF require 10 point additions or subtrac-
tions because points presented in Table 1 need to be available. Obviously, pairs
(R4, R5), (R6, R7), (R8, R9), (R10, R11) and (R12, R13) can be computed us-
ing (6). Thus, the precomputations require only 5 unified point additions and
subtractions. It should be noted that the use of unified point additions and sub-
tractions does not restrict to JSF precomputations because similar pairs can be
found, e.g., in precomputations involved in combings when integers are in NAF.

Table 1. Precomputed points and the corresponding columns in 3-term (τ )JSF

k3k2k1 Point k3k2k1 Point k3k2k1 Point k3k2k1 Point

000 R0 = O 101̄ R7 = R3 −R1 n/a 1̄01 −R7

001 R1 = P1 110 R8 = R3 + R2 001̄ −R1 1̄1̄0 −R8

010 R2 = P2 11̄0 R9 = R3 −R2 01̄0 −R2 1̄10 −R9

100 R3 = P3 111 R10 = R8 + R1 1̄00 −R3 1̄1̄1̄ −R10

011 R4 = R2 + R1 111̄ R11 = R8 −R1 01̄1̄ −R4 1̄1̄1 −R11

011̄ R5 = R2 −R1 11̄1 R12 = R9 + R1 01̄1 −R5 1̄11̄ −R12

101 R6 = R3 + R1 11̄1̄ R13 = R9 −R1 1̄01̄ −R6 1̄11 −R13

Computational cost of precomputations can be reduced even further by using
Montgomery’s trick (see [16], for example) for computing the five inversions.
Montgomery’s trick is based on the observation that 1/θ1 = θ2(1/θ1θ2) and
1/θ2 = θ1(1/θ1θ2) and it operates as follows. Let θ1, θ2, . . . , θn be the elements
to be inverted. First, set γ1 = θ1 and, for i = 2, . . . , n, compute γi = γi−1θi.
Then invert γ−1

n and compute θ−1
n = γn−1γ

−1
n . For i = n − 1, . . . , 2, compute

γ−1
i = θi+1γ

−1
i+1 and θ−1

i = γi−1γ
−1
i . Finally, θ−1

1 = θ2γ
−1
2 . Montgomery’s trick

inverts n elements with the cost of 3(n − 1)M + I. [16]
However, Montgomery’s trick is not directly applicable in 3-term JSF pre-

computations because it requires that all θi are known in advance. Let Ri =
(x̂i, ŷi) as defined in Table 1. The following inverses are needed in computing
Ri: θ−1

1 = (x̂1 + x̂2)
−1, θ−1

2 = (x̂1 + x̂3)
−1, θ−1

3 = (x̂2 + x̂3)
−1, θ−1

4 = (x̂8 + x̂1)
−1

and θ−1
5 = (x̂9 + x̂1)

−1 in which only x̂1 = x1, x̂2 = x2 and x̂3 = x3 are known
beforehand. In order to be able to use Montgomery’s trick, x̂8 and x̂9 need to
be presented by using x1, y1, x2, y2, x3 and y3.



Because R8 = (x̂8, ŷ8) = P3 + P2, it follows directly from (5a) and (5b) that

θ−1
4 =

(x2 + x3)
2

(y2 + y3)2 + (x2 + x3)(y2 + y3) + (x2 + x3)2(x1 + x2 + x3 + a)
. (9)

Let θ′4 denote the denominator of (9). Similarly as above,

θ−1
5 =

(x2 + x3)
2

θ′4 + x2x3
(10)

and, again, let θ′5 denote the denominator of (10).
Now, Montgomery’s trick can be used for computing inverses for the elements

θ1 = x1 + x2, θ2 = x1 + x2, θ3 = x2 + x3, θ′4 and θ′5. In order to get θ−1
4 and

θ−1
5 , θ′−1

4 and θ′−1
5 are multiplied with θ2

3 = (x2 +x3)
2 as shown in (9) and (10).

Finally, Ri can be computed with (6b)–(6f), i.e. by skipping the inversion of (6a).
An algorithm is presented in Alg. 1.

Algorithm 1 Precomputation in 3-term (τ)JSF

Input: P1 = (x1, y1), P2 = (x2, y2), P3 = (x3, y3)
Output: Precomputed points Ri as described in Table 1

θ1 ← x1 + x2; θ2 ← x1 + x3; θ3 ← x2 + x3

θ4 ← (y2 + y3)
2 + θ3 × (y2 + y3) + θ2

3 × (x1 + θ3 + a)
θ5 ← θ4 + x2 × x3

Compute inverses θ−1

i with Montgomery’s trick
θ−1

4
← θ2

3 × θ−1

4
; θ−1

5
← θ2

3 × θ−1

5

R1 ← P1; R2 ← P2; R3 ← P3;
R4,5 ← R2 ±R1; R6,7 ← R3 ±R1; R8,9 ← R3 ±R2

R10,11 ← R8 ±R1; R12,13 ← R9 ±R1

Table 2 lists the costs of 3-term (τ)JSF precomputations with the three
techniques considered above, i.e. with 10 point additions (näıve) or 5 unified
point additions and subtractions without (unified) or with (unified + Mont-
gomery) Montgomery’s trick. The methods presented above reduce the number
of multiplications required in precomputations by 58 % in the case of F2163 and
Itoh-Tsujii inversion.

4 Implementation

This section presents the design in detail. The design is implemented on an
Altera Stratix II EP2S180 DSP development board, professional edition [21],
which includes an Altera Stratix II EP2S180F1020C3 FPGA [22].

The goal of the implementation is in maximizing the number of operations per
second (ops) rather than in minimizing computation time of a single operation.
The implementation is designed to be modular so that it can be easily parallelized



Table 2. Costs of 3-term (τ )JSF precomputations with different techiques. The values
in the rightmost column present the number of multiplications when using an elliptic
curve over F2163 and Itoh-Tsujii inversion.

Method Cost I = 9M

Näıve 10 (I + 2M + S + 8A) + 5A 110M
Unified 5 (I + 4M + 2S + 14A) 65M
Unified + Montgomery I + 17M + 2S + 9A + 5 (4M + 2S + 14A) 46M

in order to increase ops. It consists of two main modules; namely, converters for
finding 3-term τJSF for integers and field arithmetic processors (FAPs) with
control logic for computing point multiplications. These modules are considered
in Secs. 4.1 and 4.2, respectively.

There are certain parameters which define the performance and area re-
quirements of an implementation. It is not obvious how these design parameters
should be chosen and, thus, parameter space exploration is performed in Sec. 4.3
in order to find optimal parameters.

It should be noticed that, while side-channel attacks are a serious threat for
many security applications in FPGAs [23], they are insignificant in this case
because all information is public anyhow.

4.1 τNAF and 3-term τJSF Conversions

As mentioned in Sec. 2.2, integer k needs to be converted into a τ -adic expansion
before point multiplication. Conversions to τNAF are performed as presented by
the authors in [24]. Because three conversions are required in 3-term multiple
point multiplication, there are basically two alternatives: either required conver-
sions are computed with one τNAF converter resulting in a critical path of three
conversions or with three τNAF converters and a critical path of one conversion.
The latter alternative was chosen mainly for two reasons:

1. Latency is shorter, and

2. no storage for converted values is needed before τJSF conversions.

Once the integers are converted into τNAF, a 3-term τJSF is build up as pre-
sented in [14]. The algorithm of [14] was implemented so that the four most
recent signed bits from the τNAF converters, which output their results in se-
rial, are stored into three shift registers, each of which contains 4 signed bits.
The values of the shift registers are input into a circuit that determines whether
the values of all three registers are reducible or not. If they are reducible and
there are no all-zero columns, then the values of the registers are updated with
reduced values. In the 3-term case the value 1001 of a shift register is replaced
by 001̄1̄, 1̄001̄ by 0011, 1010 by 011̄0, and 1̄01̄0 by 01̄10.



4.2 Point Multiplication

Point multiplication is computed with an architecture comprising an FAP and
logic controlling it.

Field arithmetic processor. The FAP consists of adder, squarer, multiplier,
storage RAM and instruction decoder.

The adder computes a bitwise XOR of two m-bit operands, and it has a
latency of one clock cycle, i.e. A = 1. The squarer supports computation of

multiple successive squarings, i.e. x2d

where x ∈ F2m and d is an integer in the
interval [0, dmax] with dmax = 25 − 1. In normal basis, squaring is a rotation

of the bit vector, and the squarer is a shifter which computes x2d

in one clock
cycle. The cost of d squarings is Sd = 1. This has serious implications because d
successive Frobenius maps in LD can be computed with the cost of only 3Sd if
d ≤ 31 and Itoh-Tsujii inversion costs only 9M + 14Sd instead of 9M + 162S.

Field multiplication is critical for the overall performance. Multiplication in
normal basis is performed with a multiplier which is a digit-serial implementation
of the Massey-Omura multiplier [25]. In a bit-serial Massey-Omura multiplier,
one bit of the output is calculated in one clock cycle and, hence, m cycles are
required in total. One bit zi of the result z = x × y where x, y, z ∈ F2m is
computed from x and y by using an F -function. The F -function is field specific,
and the same F is used for all output bits zi as follows: zi = F (x≪i, y≪i), where
≪ i denotes cyclical left shift by i bits. Hence, a bit-serial implementation of the
Massey-Omura multiplier requires three m-bit shift registers and one F -block. A
bit-parallel implementation, where all bits zi are computed in parallel, requires
m F -blocks and an m-bit register for storing the result. [4, 25]

In practice, the bit-serial implementation requiring at least m+1 clock cycles
is too slow and the bit-parallel implementation requires too much area. A good
tradeoff is a digit-serial multiplier, where v bits are computed in parallel with
v F -blocks. The F -block forms the critical path of an FAP and determines the
maximum clock frequency. Thus, the maximum clock frequency can be increased
by pipelining the F -blocks. As one clock cycle is required in loading the operands
into the shift registers and each pipeline stage increases latency by one clock
cycle, the latency becomes

M =
⌈m

v

⌉

+ c + 1 (11)

where c is the number of pipeline stages inside the F -blocks, i.e. c ≥ 0. In this
paper, c = 1. It follows directly from (11) that, when m = 163, the number of
F -blocks, v, should be chosen from the following set of integers:

F : {1 − 15, 17, 19, 21, 24, 28, 33, 41, 55, 82, 163} .

All other values only increase area without decreasing latency.
The storage RAM is used for storing elements of F2m . Stratix II devices

include M512, M4K and M-RAM memory blocks and they contain 575, 4,608,



and 589,824 bits of RAM, respectively [22]. Using embedded memory blocks is
advantageous because more logic resources are saved for the actual computation.
The storage RAM is implemented with M4Ks as a dual-port RAM and it is
capable of storing W elements. A logical choice is W = 256 because, while in
true dual-port mode, the widest mode that an M4K block can be configured
to is 256 × 18-bits [22]. Thus, the storage RAM requires d163/18e = 10 M4Ks
resulting in a storage capacity of 256 × 163-bits. This much storage space is
rarely needed but it can be used for example for storing precomputed points.
Moreover, selecting a smaller depth than 256 would not reduce the number of
required M4Ks. Both writing and reading to and from the storage RAM require
one clock cycle. However, the dual-port RAM can be configured into the read-
during-write mode [22] which saves certain clock cycles as will be discussed in
the following.

Control logic. The logic controlling the FAP consists of finite state machine
(FSM) and ROM containing instruction sequences.

The instruction sequences are carefully hand-optimized and certain tricks are
used in order to minimize latencies of point operations. The read-during-write
mode can be used for reducing latencies. In order to maximize the advantages in
this case, operations are ordered so that the result of the previous operation is
used as an operand for the next operation whenever possible. This saves one clock
cycle because the operands of the next operation can be read simultaneously
while the result of the previous operation is being written.

Latency of computing k1P1 + k2P2 + k3P3 with a 3-term τJSF becomes

46M + 306
︸ ︷︷ ︸

Precomputation

+ (H(k) − 1)(8M + 47)
︸ ︷︷ ︸

Point additions and Frobenius maps

+ 10M + 68
︸ ︷︷ ︸

X/Z and interfacing

(12)

clock cycles where H(k) is the number of non-zero columns in the 3-term τJSF.
Fig. 1 presents an example operation schedule of an implementation with

one converter and two FAPs. The implementation computes five point multipli-
cations in the example so that when the first integers and points arrive (data
#1), it immediately starts computing a 3-term τJSF for the integers in the
converter and precomputed points in the first FAP. Because a precomputation
requires more time than a conversion, the computation time only consists of
precomputation time and point multiplication time if there are resources avail-
able immediately at the arrival of data. This is the case for datas #1, #2 and
#5. However, when data #4 arrives, conversion can be started instantaneously
but precomputation can be started when the second FAP becomes available.
The situation is even worse for data #3 because, when it arrives, there are no
converters or FAPs available, and thus even longer delay occurs.

4.3 Parameter Exploration

Free parameters in the design are the numbers of F -blocks, v, and the number
of parallel FAPs, p, of which only v ∈ F determines the latency of a single point



#2FAP 2 #2 #4#4

#1 arrives

#2 arrives

#3 arrives

#4 arrives

#2 ready

#3 ready#1 ready

#5 arrives

#4 ready #5 ready

time #1

time #2

time #3

time #4

time #5

#1 #1FAP 1 #3#3 #5#5

Converter #1 #2 #3 #5#4

Conversion Precomputation Point multiplication

Fig. 1. Computation schedule example in the case of two FAPs and one converter

multiplication, and p only increases ops. If the objective is in minimizing compu-
tation time, it is obvious how the parameters effect to the result. That is, when
v grows, computation time decreases. However, if the objective is in maximizing
ops with parallel FAPs, the situation is more complicated. The reason for this
is that, when an area constraint is set, v determines the maximum number of
FAPs, pmax, that can be included under the constraint. That is, the larger v is
the smaller is pmax. Thus, there is a need for an analysis on v and pmax setups.

Estimates of area consumption are needed in order to analyze v and p setups.
These estimates were received by synthesizing an FAP with Quartus II 6.0 SP1
design software, and an approximation of the area is given by

A(p, v) = p(Ac + vAF )

where AF = 147ALMs (Adaptive Logic Modules) is the size of an F -block and
Ac = 1202ALMs is the size of other blocks in the FAP, i.e. adder, squarer,
control logic, etc.

Field multiplication determines point multiplication latency together with
H(k) as shown in (12). It is assumed in the following analysis that JSFs have an
average number of non-zero columns, and such JSFs are henceforth referred to as
average JSFs. Thus, latency depends only on the latency of field multiplication.
The critical path determining the maximum clock frequency does not depend
on v and, thus, it is assumed that all FAPs operate at the same clock frequency;
see Sec. 4.2. Based on the results obtained from Quartus II, it is assumed that
the clock frequency is 160MHz.

Fig. 2 plots point multiplication time and ops as functions of v (and pmax)
when an area constraint of 75% of ALMs is given for FAPs. The remaining 25%



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 19 21 24 28 33 41 55 82 163
0

20

40

60

80

100

120

140

160

180
39 35 32 30 27 25 24 22 21 20 19 18 17 16 15 14 13 12 11 10 8 7 5 4 2

0

100

200

300

400

500

600

700

800

900

T
h
ro

u
g
h
p
u
t

(k
o
p
s)

T
im

e
(µ

s)

F -blocks, v

FAPs, pmax

Fig. 2. Computation time and ops estimates with different v and pmax setups. The
black line indicates throughput (ops) and its value is read from the vertical axis on the
left. The grey line is the computation time and its value is in the vertical axis on the
right. The number of F -blocks, v, determines the maximum number of FAPs, pmax,
which fit into the device under the given constraint of 75% of ALMs, and pmax can be
found on the upper horizontal axis.

are reserved for the converters, interfacing, etc. Stratix II S180 includes 71,760
ALMs in total [22]. The maximum ops is received when v = 11. In that case, an
FAP can compute 3-term multiple point multiplication in 117µs and 19 FAPs
fit into Stratix II S180 resulting in the maximum throughput of 162,000ops.

Fig. 2 leads to a conclusion that tolerating slightly longer computation laten-
cies can lead to major increases in ops. Furthermore, it can be seen that v < 11
should be never selected because higher ops can be achieved with shorter com-
putation time. However, all v ≥ 11 with v ∈ F are justified. If v > 11 is selected
resulting in shorter computation time, then one must tolerate fewer ops. The
design implemented in this paper uses the setup p = 19 and v = 11 in order to
maximize ops.

The number of converters must be selected so that they do not become a
bottleneck. If only a few converters are implemented, the average end-to-end
computation time grows because data needs to wait for free converters longer;
see Sec. 4.2. However, if many converters are implemented, the area constraint
for FAPs needs to be lowered resulting in a decrease in performance.



5 Results

The design presented in Sec. 4 was written in VHDL and synthesized for the
Stratix II FPGA by using Quartus II 6.0 SP1. Simulations were performed with
ModelSim SE 6.1b. The design comprising 4 τJSF converters, 19 FAPs (v = 11)
and FIFO buffers separating blocks requires in total 67,467 ALMs which is 94%
of the device resources and 240 M512 (26%) and 305 M4K (40%) memory
blocks. The converters and the FAPs are separated into different clock domains
and they have the maximum clock frequencies of 82.38MHz and 167.50MHz,
respectively.

A phase-locked loop (PLL) in Stratix II was used for creating 82MHz and
164MHz clocks for the converters and FAPs. The converters compute a τJSF
for three integers on average in 499 clock cycles which equals to 6.9µs. The av-
erage latency of 18,733 clock cycles for a 3-term multiple point multiplication
including precomputations is given by (12) which equals to 114.2µs. This is also
the minimum time in which the implementation computes a 3-term multiple
point multiplication with an average JSF because conversions and precomputa-
tions are computed in parallel. Theoretically, the implementation is capable of
performing up to 166,000 verifications per second.

To the authors’ knowledge, the fastest published FPGA implementation for
the NIST curve K-163 was presented by Dimitrov et al. in [26] where a 1-term
point multiplication requires 35.75µs on Xilinx Virtex-II which would result in
approximately 9,300 verifications per second. This was achieved by representing
k with multiple-base expansions [26]. The implementation was optimized for low
latency but, naturally, it could be parallelized in order to increase ops and rough
estimates are given next. Because the FAP used in [26] requires 6,494 slices,
a parallel implementation outperforming 166,000 verifications per second would
need 18 FAPs resulting in approximately 117,000 slices without converters. Thus,
the implementation would be too large to fit any FPGA available at the moment.
However, the FAP with v = 24 [26] is probably larger than the one optimizing
ops. Thus, the idea presented in this paper could be used, most probably resulting
in more ops with fewer resources.

The results have shown that using parallel FAPs and 3-term τJSF enables
considerable performance increases and the implementation presented here out-
performs all previously published implementations if ops are considered.

6 Conclusions

This paper presented an efficient implementation designed specifically for rapid
verification of self-certified identity based signatures. It was shown that it is
possible to compute up to 166,000 verifications per second with a single Altera
Stratix II FPGA. The results have significance in many cryptosystems whose
performance is bounded by demanding signature verifications. One example is
PLA where packets are verified by using cryptographic signatures.

The high performance was achieved by using parallel processors which were
carefully optimized. Instead of concentrating in minimizing computation time of



a single processor, the objective was shifted to maximizing the number of veri-
fications per second computed by the parallel processors. It was concluded that
major increases in ops can be achieved by tolerating slightly longer computation
times, i.e. by using multiple smaller processors instead of only a few large pro-
cessors. The idea can be easily generalized to other elliptic curve cryptosystems
and implementation platforms.

Future work. Because field multiplication dominates in the performance and
area requirements, it is of interest to optimize the multiplier architecture. One
possibility is to use polynomial basis instead of normal basis. Polynomial bases
are commonly preferred in implementing elliptic curve cryptosystems in hard-
ware and they could offer some performance improvements. Another option is
to use a more efficient architecture for normal basis multiplication.

A counterpart implementation which produces self-certified signatures will be
designed. As mentioned, high performance is easier to achieve in signing because
fewer point multiplications are needed and it is possible to use such methods
as fixed-base windowing. Thus, performance should not be a problem. However,
countermeasures against side-channel attacks are needed in signing acceleration
in order to ensure confidentiality of private keys.

Although point multiplications are the most expensive operations in signing
and verification, also other operations, such as hash functions, are needed and
they will be included into the implementations in the future.

Acknowledgments. The authors thank Billy Brumley from the Laboratory
for Theoretical Computer Science at TKK for many valuable discussions. The
authors also express their gratitude to the anonymous reviewers who gave a
number of excellent comments and improvement suggestions.

References

1. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48 (1987)
203–209

2. Miller, V.: Use of elliptic curves in cryptography. In: Advances in Cryptology —
CRYPTO ’85. LNCS 218, Springer (1985) 417–426

3. Ateniese, G., de Medeiros, B.: A provably secure Nyberg-Rueppel signature variant
with applications. Cryptology ePrint Archive, Report 2004/093 (2004)

4. National Institute of Standards and Technology (NIST): Digital signature standard
(DSS). Federal Information Processing Standard (2000) FIPS PUB 186-2.

5. Koblitz, N.: CM-curves with good cryptographic properties. In: Advances in
Cryptology — CRYPTO ’91. LNCS 576, Springer (1991) 279–287

6. Candolin, C., Lundberg, J., Kari, H.: Packet level authentication in military net-
works. In: Proceedings of the 6th Australian Information Warfare & IT Security
Conference. (2005)

7. Candolin, C.: Securing military decision making in a network-centric environment.
PhD thesis, Helsinki University of Technology (2005)



8. Brumley, B.B.: Efficient three-term simultaneous elliptic scalar multiplication with
applications. In: Proceedings of the 11th Nordic Workshop on Secure IT Systems,
NordSec 2006. (2006) 105–116

9. Solinas, J.A.: Efficient arithmetic on Koblitz curves. Designs, Codes and Cryptog-
raphy 19(2–3) (2000) 195–249

10. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4) (1985) 469–472

11. Solinas, J.A.: Low-weight binary representations for pairs of integers. Technical
Report CORR 2001-41, University of Waterloo, Centre for Applied Cryptographic
Research (2001)

12. Proos, J.: Joint sparse forms and generating zero columns when combing. Technical
Report CORR 2003-23, University of Waterloo, Centre for Applied Cryptographic
Research (2003)

13. Ciet, M., Lange, T., Sica, F., Quisquater, J.J.: Improved algorithms for efficient
arithmetic on elliptic curves using fast endomorphisms. In: Advances in Cryptology
— EUROCRYPT 2003. LNCS 2656, Springer (2003) 388–400

14. Brumley, B.B.: Left-to-right signed-bit τ -adic representations of n integers. In:
Proceedings of the 8th International Conference on Information and Communica-
tions Security, ICICS 2006. LNCS 4307, Springer (2006) 469–478

15. Nyberg, K., Rueppel, R.A.: A new signature scheme based on the DSA giving
message recovery. In: Proceedings of the 1st ACM conference on Computer and
Communications Security, ACM Press (1993) 58–61

16. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer (2004)

17. López, J., Dahab, R.: Improved algorithms for elliptic curve arithmetic in GF (2n).
In: Selected Areas in Cryptography, SAC’98. LNCS 1556, Springer (1998) 201–212

18. Al-Daoud, E., Mahmod, R., Rushdan, M., Kilicman, A.: A new addition formula
for elliptic curves over GF (2n). IEEE Transactions in Computers 51(8) (2002)
972–975

19. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in
GF (2m) using normal bases. Information and Computation 78(3) (1988) 171–177

20. Okeya, K., Takagi, T., Vuillaume, C.: Efficient representations on Koblitz curves
with resistance to side channel attacks. In: Proceedings of the 10th Aus-
tralasian Conference on Information Security and Privacy, ACISP 2005. LNCS
3574, Springer (2005) 218–229

21. Altera: Stratix II EP2S180 DSP Development Board, Reference Manual. (2005)
22. Altera: Stratix II Device Handbook. (2006)
23. Standaert, F.X., Peeters, E., Rouvroy, G., Quisquater, J.J.: An overview of power

analysis attacks against field programmable gate arrays. Proceedings of the IEEE
94(2) (2006) 383–394

24. Järvinen, K., Forsten, J., Skyttä, J.: Efficient circuitry for computing τ -adic non-
adjacent form. In: Proceedings of the IEEE International Conference on Electron-
ics, Circuits and Systems, ICECS 2006, IEEE (2006) 232–235

25. Wang, C.C., Troung, T.K., Shao, H.M., Deutsch, L.J., Omura, J.K., Reed, I.S.:
VLSI architectures for computing multiplications and inverses in GF (2m). IEEE
Transactions in Computers 34(8) (1985) 709–717

26. Dimitrov, V.S., Järvinen, K.U., Jacobson, M.J., Chan, W.F., Huang, Z.: FPGA
implementation of point multiplication on Koblitz curves using Kleinian integers.
In: Proceedings of the Workshop on Cryptographic Hardware and Embedded Sys-
tems, CHES 2006. LNCS 4249, Springer (2006) 445–459


