
RSA with CRT: A new cost-effective solution to

thwart fault attacks

David Vigilant

Cryptography Engineering, Gemalto Security Labs
david.vigilant@gemalto.com

Abstract. Fault attacks as introduced by Bellcore in 1996 are still a
major threat toward cryptographic products supporting RSA signatures.
Most often on embedded devices, the public exponent is unknown, turn-
ing resistance to fault attacks into an intricate problem. Over the past
few years, several techniques for secure implementations have been pub-
lished, all of which suffering from inadequacy with the constraints faced
by embedded platforms. In this paper, we introduce a novel countermea-
sure mechanism against fault attacks in RSA signature generation. In
the restricted context of security devices where execution time, mem-
ory consumption, personalization management and code size are strong
constraints, our countermeasure is simply applicable with a low compu-
tational complexity. Our method extends to all cryptosystems based on
modular exponentiation.

Key words: Bellcore attack, Chinese Remainder Theorem, Fault at-
tacks, RSA, Software countermeasure, Modular exponentiation.

1 Introduction

1.1 Restricted context

Throughout the paper, we will be considering constrained embedded architec-
tures on which one seeks to simultaneously optimize the following:

Execution time The secure RSA-CRT signature computation has to be per-
formed in reasonable time. Without giving concrete bounds, the time overhead
added by the countermeasure must remain negligible compared to the whole RSA
signature calculation. This is of prime importance for micro-controllers running
under a clock frequency of only a few megahertz.

Memory consumption Countermeasures require extra RAM memory buffers
to store security parameters. 2K RSA is now supported as a standard function-
ality and we impose that the whole memory consumption remains comprised
between 1 and 2K bytes.

Personalization management The availability of input key parameters is
very strict. Only the input message m, as well as the key elements p, q, dp, dq, iq
are known while performing the signature and no extra variable parameter can
be stored in non-volatile memory. This constraint stems from mass-production
requirements where the personalization of unusually formatted keys in the device
is costly and no customizable key container is available in EEPROM nor Flash
to store anything different from the classical RSA-CRT key sets [1].

Code Size On micro-controllers that have little ROM, the code size will be of
a great concern. The extra code size added by the countermeasure must remain
negligible compared to the whole code size of the signature. To minimize the
code, it is preferable to design a simple countermeasure based on already existing
arithmetic bricks.

1.2 The Bellcore attack and related countermeasures

Invasive attacks on a hardware device consist in disturbing its expected behav-
ior and making it work abnormally in order to infer sensitive data. They were
introduced in the late nineties. As the technological response of hardware man-
ufacturers evolves, new hardware countermeasures are being added regularly.
However it is widely believed that those can only be effective if combined with
efficient software countermeasures. Embedded devices are especially exposed to
this category of attacks since the attacker has the hardware fully available in
hands. A typical example is the original Bellcore attack [2] which allows an at-
tacker to retrieve the RSA private key given one faulty signature.

Since the discovery of the Bellcore attack, countermeasures have been pro-
posed by the research community. In 1997, Shamir proposed an elegant coun-
termeasure [3] assuming that the private exponent d is known when running an
RSA signature generation in CRT mode. In practice, however, this parameter
is hardly available. Aumüller et al. [4] in 2002, Blömer et al. [5] in 2003, Joye
and Ciet [6] and Giraud [7] in 2005, and Kim and Quisquater [8] in 2007 also
proposed CRT secure implementations of RSA. All these countermeasures have
a dramatic impact either on execution time, memory consumption or person-
alization management constraints. As an example, Aumüller et al. set out an
efficient countermeasure [4] in 2002 using a small prime on which evaluating Eu-
ler’s totient function is trivial. We will see in the sequel that, on the one hand,
this countermeasure gives good performances. On the other hand, the selection
of a random prime constitutes a real disadvantage.

This paper presents a simple alternative countermeasure thwarting fault at-
tacks on RSA with CRT. Compared to prior techniques, our countermeasure is
cost-effective regarding all considered constraints.

In Section 2, we make a brief review of the Bellcore attack and we show the
disadvantages of previous propositions in the defined context. Our secure expo-
nentiation algorithm and its application to RSA in the CRT mode is shown in
Section 3. We then analyze its security under a fault model described in Sec-
tion 4, where brief estimates in terms of time execution, memory consumption,
personalization management and code size are undertaken. Finally Section 5
concludes this paper.

2 Related Work

2.1 RSA-CRT system

RSA was introduced in 1977 by Rivest, Shamir and Adleman [9]. In the so-called
straightforward mode, (N, e) is the RSA public key and (N, d) the RSA private
key such that N = pq, where p and q are large prime integers, gcd((p − 1), e) =
gcd((q − 1), e) = 1 and d = e−1 mod (p − 1)(q − 1). The RSA signature of a
message m < N is given by S = md mod N .

As the computing power of crypto-enabled architectures increases, RSA key
sizes inflate overtime. 2K RSA is now a standard functionality. It is a strong
constraint on embedded devices as processors have little RAM memory and run
under a clock frequency of a few megahertz. RSA is more efficient in Chinese
Remainder Theorem mode than in straightforward mode. The RSA-CRT domain
is composed of an RSA public key (N, e) and an RSA private key (p, q, dp, dq, iq)
where N = pq, p and q are large prime integers, gcd((p−1), e) = gcd((q−1), e) =
1, dp = e−1 mod (p − 1), dq = e−1 mod (q − 1) and iq = q−1 mod p. As it
handles data with half the RSA modulus size, RSA with CRT is theoretically
about four times faster and is therefore better suited to embedded devices. The
RSA signature in CRT mode is described in Figure 1.

Input: message m, key (p, q, dp, dq, iq)
Output: signature md ∈ ZN

Sp = mdp mod p

Sq = mdq mod q

S = Sq + q · (iq · (Sp − Sq) mod p)
return (S)

Fig. 1. Naive CRT implementation of RSA

2.2 The Bellcore attack against RSA with CRT

In 1996, the Bellcore Institute introduced a differential fault attack [2] which is
still weakening the RSA-CRT signature security today. On embedded platforms,

this attack is usually considered as “easy” since the attacker has full access to the
device. Disturbing the calculation of either Sp = mdp mod p or Sq = mdq mod q

can be achieved in ways such as voltage glitches, laser or temperature variation.
Once the precise disturbance is obtained the attack succeeds, and allows an
attacker to retrieve the RSA prime factors with a single gcd calculation. By
construction, S = Sq + q · (iq · (Sp −Sq) mod p) = Sp + p · (ip · (Sq −Sp) mod q).

Noting S the correct signature and S̃ the faulty signature where either Sp or Sq

(but not both) is incorrect for the same input message, gcd(S− S̃, N) is either q

or p. A standard improvement of the Bellcore attack [10] leads to retrieving the
factorization of N without the genuine signature by calculating gcd((S̃e − m)
mod N,N) ∈ {p, q}. Thus, the RSA private elements p and q are recovered and,
as a consequence, the whole RSA-CRT private key is recovered.

2.3 Previous countermeasures

Shamir’s method and generalizations One year after the discovery of the
Bellcore attack, Shamir proposed an elegant countermeasure [3] where the method
consists in computing S∗

p = md mod pr and S∗
q = md mod qr separately and in

checking the consistency of S∗
p and S∗

q by testing whether S∗
p = S∗

q mod r. A
more efficient variant suggests to choose r prime and reduce d modulo (p−1)(r−
1) and (q− 1)(r− 1). However, requiring the RSA straightforward-mode private
exponent d, while performing an RSA signature generation in CRT mode, is
unpractical since the key material is given in CRT format [1]. This parameter
is most often not known and it would be unacceptable in our context to per-
sonalize d for each device. d could be computed from p, q, dp and dq, but as
no key container would be available to store it, the computation of d would be
mandatory at each RSA signature. As described in [11], this would lead to an
unreasonable execution time overhead since we need to invert (p − 1) modulo
(q − 1). Moreover, the CRT recombination is not protected at all since injecting
a fault in iq during the recombination allows the gcd attack.

Other improvements of Shamir’s method which include the protection of the
recombination were proposed later. As an example, Aumüller et al. [4] in 2002
proposed a careful implementation that also protects the CRT recombination.
As opposed to Shamir’s method, only dp and dq (and not d) are required. The
algorithm is fully described in Figure 2. The proposal uses the efficient variant
of the method where the parameter t is prime. Therefore the solution gives good
performances. Compared to the naive CRT implementation of RSA, only two
extra exponentiations modulo t and a few modular reductions are required. This
solution presents a big disadvantage: the way the random prime is selected. Is
it fixed or picked at random in a fixed table? (If this prime is recovered, does
it make new flaws appear?). Is it different on each device? (This would impact
personalization management). Is it generated at random for each signature?
(This would lead to an unacceptable slowdown).

Input: message m, key (p, q, dp, dq, iq)
32-bit prime integer t
Output: signature md ∈ ZN

p′ = pt

d′p = dp + random1 · (p − 1)

S′

p = md′p mod p′

if (p′ mod p 6= 0) or (d′p mod (p − 1) 6= dp) then

return (error)
end if

q′ = qt

d′q = dq + random2 · (q − 1)

S′

q = md′q mod q′

if (q′ mod q 6= 0) or (d′q mod (q − 1) 6= dq) then

return (error)
end if

Sp = S′

p mod p

Sq = S′

q mod q

S = Sq + q · (iq · (Sp − Sq) mod p)
if (S − S′

p 6= 0 mod p) or (S − S′

q 6= 0 mod q) then

return (error)
end if

Spt = S′

p mod t

Sqt = S′

q mod t

dpt = d′p mod (t − 1)
dqt = d′q mod (t − 1)

if S
dqt

pt ≡ S
dpt

qt mod t then

return (S)
else

return (error)
end if

Fig. 2. Aumüller et al.’s secure CRT implementation of RSA

Interestingly, other solutions combining generalizations of Shamir’s method
and infective computation were proposed. The main idea of this combination
consists in infecting the signature S whenever a fault is induced, such that the
gcd attack is no more feasible on the faulty signature S′, i.e. S′ 6= S mod p

and S′ 6= S mod q. This concept was introduced in 2001 by Yen, Kim, Lim and
Moon [12]. Later, Blömer, Otto and Seifert suggested a countermeasure [5] based
on infective computation in 2003. Unfortunately, as for Shamir’s original method,
it requires the availability of d. Moreover, some parameters t1 and t2 required by
the countermeasure have to satisfy quite strong properties: amongst the required
properties, it is needed that: gcd(t1, t2) = gcd(d, ϕ(t1)) = gcd(d, ϕ(t2)) = 1,
where ϕ represents the Euler’s totient function. t1 and t2 should normally be
generated one time with the RSA key and the same values used throughout the
lifetime of the key, but t1 and t2 cannot be stored in this strong personalization
context. Therefore the generation of t1 and t2 at each signature is not negligible.
Compared to Aumüller et al.’s countermeasure, the BOS algorithm requires the
generation of t1 and t2, two evaluations of the totient function ϕ on t1 and t2
and two inversions. This constitutes a real disadvantage in terms of simplicity
and execution time.

Joye and Ciet also set out an elegant countermeasure based on infective
computation [6]. Their generalization of Shamir’s method is more efficient than
BOS since, compared to Aumüller et al.’s countermeasure, one only needs to
compute ϕ(t1) and ϕ(t2) for two random numbers t1 and t2. However, evaluations
are not negligible as they imply a full factorization of t1 and t2. As a consequence,
Joye and Ciet’s countermeasure is not satisfactory in terms of execution time.

Last year, Kim and Quisquater proposed a CRT implementation of RSA
defeating fault attacks and all known side-channel attacks [8], based on combi-
nation of Shamir’s method and infective computation too. However, their pro-
posed scheme requires either one inversion modulo N , or to update and store
three unusually formatted parameters of size |N |, at each signature. As defined
in Section 1.1, no key container is available in non-volatile memory and therefore,
this solution becomes hardly acceptable in terms of execution time.

Giraud’s method In 2005, Giraud proposed an efficient way [7] to protect RSA
with CRT against fault attacks. His countermeasure is based on the properties
of the Montgomery-ladder exponentiation algorithm [13]. Using this exponenti-
ation algorithm, we compute successively (mdp , mdp−1) and (mdq , mdq−1). The
Montgomery-Ladder algorithm infects both results whenever a fault is induced.
The two recombined values S and S′ = mdq−1 + q · (iq · (m

dp−1 −mdq−1) mod p)
are computed and the final verification S = mS′ is made. This solution is also
SPA-safe. Unfortunately, the memory consumption is clearly prohibitive since it
requires the storage of m, Sp, Sq, S′

p and S′
q in RAM during the calculation of S.

For large RSA key sizes, this countermeasure seems hardly feasible in portable
devices.

This shows that devising a CRT implementation of RSA that thwarts the
Bellcore attack and meets the strong requirements of embedded systems remains
a hard problem.

3 Our secure RSA with CRT

3.1 Mathematical view

We consider a generic exponentiation of a message m to the exponent d modulo
N . We perform the exponentiation modulo NR where R is for example a 64-bit
random integer. We impose that N and R are coprime, i.e. gcd(N,R) = 1.

Let α be such that

{

α ≡ 0 mod R

α ≡ 1 mod N
and β be such that

{

β ≡ 1 mod R

β ≡ 0 mod N

Applying the Chinese Remainder Theorem, we get the existence and the unique-
ness of α and β in ZNR. We build these integers using Garner’s algorithm:

α = R · (R−1 mod N) = 1 − [N · (N−1 mod R)] mod NR

β = N · (N−1 mod R) = 1 − [R · (R−1 mod N)] mod NR

Considering R now such that R = r2, where r is for example a 32-bit random
number, we get the following result:

Theorem 1 (Exponentiation Identity in ZNr2). Let N and r be integers

such that gcd(N, r) = 1, let β = N · (N−1 mod r2) and α = 1 − β mod Nr2.

For any m ∈ ZNr2 and for any d ∈ N
∗,

(αm + β · (1 + r))d = αmd + β · (1 + dr) mod Nr2

We refer to Appendix A for a proof and related mathematical details. Theo-
rem 1 provides a way to perform a secure exponentiation in any ring (ZN ,+, ·),
N ∈ N

∗.

3.2 A Secure exponentiation algorithm

We want to perform an exponentiation md of an integer m < N over ZN . Pick
a random integer r coprime with N and compute β = N · (N−1 mod r2) and
α = 1− β mod Nr2. Applying Theorem 1, in order to exponentiate the element
m and verify that no disturbance occurred, proceed as follows:

1. Compute m̂ = αm + β · (1 + r) mod Nr2

2. Verify that m̂ = m mod N and in case of inequality return “error detected”
3. Compute Sr = m̂d mod Nr2 and S = Sr mod N (= md mod N)
4. Verify that Sr = αS + β · (1 + dr) mod Nr2 and in case of inequality return

“error detected”

By virtue of equalities β = β2 and αβ = 0 in ZNr2 (by construction of α and
β), the consistency of Sr can also be verified by any one of the following checks:

1. βSr = β · (1 + dr) mod Nr2

2. N · (Sr − β · (1 + dr)) = 0 mod Nr2

3. Sr = 1 + dr mod r2

The optimal choice will depend on the hardware architecture and the algorith-
mic context. This countermeasure may be applied to any cryptographic scheme
based on exponentiation in (ZN ,+, ·), N ∈ N

∗ (RSA [9], Diffie-Hellman key ex-
change [14], ElGamal [15], . . .). Here we underline its application to the CRT
implementation of RSA, where it appears to be particularly relevant.

3.3 Application to RSA with CRT

As p and q are prime, r is automatically coprime with p and q ,we define:
βp = p · (p−1 mod r2), αp = 1 − βp mod pr2, βq = q · (q−1 mod r2) and αq =
1− βq mod qr2. Figure 3 shows a possible application of our countermeasure to
RSA with CRT. Exponentiations Spr and Sqr are performed over Zpr2 and Zqr2 .
We verify that each exponentiation has not been disturbed by checking:

βpSpr = βp · (1 + d′pr) mod pr2 and βqSqr = βq · (1 + d′qr) mod qr2.

We pick up two 64-bit random integers R3 and R4. We then transform:

Spr into S′
p s.t.

{

S′
p ≡ Sp mod p

S′
p ≡ R3 mod r2

and Sqr into S′
q s.t.

{

S′
q ≡ Sq mod q

S′
q ≡ R4 mod r2

Next, the resulting signature is recombined over ZNr2 :

S = S′
q + q ·

[

iq · (S
′
p − S′

q) mod pr2
]

,

and, we perform the final consistency check:

S = R4 + qiq · (R3 − R4) mod r2 .

If all verifications are positive, we return the result S mod N .

3.4 Recommendations

The quality of the random number generator must be verified. We recommend to
choose r such that iq 6= 0 mod r. Indeed if r | iq, the fault detection probability
is reduced since the verification N · [S − R4 − qiq · (R3 − R4)] ≡ 0 mod Nr2 is
true even though the result of Sp − Sq mod pr2 or q has been modified. So we
recommend to renew the generation of the random r while r divides iq. r must
be as large as possible within the limits of the hardware architecture. Since we
can see r as a security parameter, the larger it is, the higher the fault detection
probability. Indeed, the highest success probability of an attack is 2−(|r|−1) ln 2
(see Section 4.1 and Appendix B for more details). So we suggest that r should
be at least a 32-bit random integer. Finally, we choose r with most significant
bit equal to one, in order to optimize the security level. We also choose r odd in
order to optimize the efficiency of the inversion.

Input: message m, key (p, q, dp, dq, iq)
32-bit random integer r

64-bit random integers R1, R2, R3 and R4

Output: signature md ∈ ZN

p′ = pr2, mp = m mod p′

ipr = p−1 mod r2, βp = pipr and αp = 1 − βp mod p′

m̂p = αpmp + βp · (1 + r) mod p′

if (m̂p 6= m mod p) then

return (error)
end if

d′p = dp + [R1 · (p − 1)]

Spr = m̂
d′p
p mod p′

if (βpSpr 6= βp · (1 + d′pr) mod p′) or (d′p 6= dp mod (p − 1)) then

return (error)
end if

S′

p = Spr − βp · (1 + d′pr − R3)

q′ = qr2, mq = m mod q′

iqr = q−1 mod r2, βq = qiqr and αq = 1 − βq mod q′

m̂q = αqmq + βq · (1 + r) mod q′

if (m̂q 6= m mod q) or (mp mod r2 6= mq mod r2) then

return (error)
end if

d′q = dq + [R2 · (q − 1)]

Sqr = m̂
d′q
q mod q′

if (βqSqr 6= βq · (1 + d′qr) mod q′) or (d′q 6= dq mod (q − 1)) then

return (error)
end if

S′

q = Sqr − βq · (1 + d′qr − R4)

S = S′

q + q · (iq · (S
′

p − S′

q) mod p′)
N = pq

if (N · [S −R4 − qiq · (R3 −R4)] 6= 0 mod Nr2) or (qiq 6= 1 mod p)
then

return (error)
end if

return (S mod N)

Fig. 3. Our secure CRT implementation of RSA

4 Analysis

4.1 Resistance against fault attacks

The following fault model defines what an attacker is able to do by assumption.
By disturbing the device, we mean that an attacker can:

– modify a value in memory obtaining a totally random result uncorrelated to
the original value (as known as permanent fault);

– modify a value when it is handled in local registers, without modifying the
global value in memory. The value handled obtained is fully random looking
to the attacker and uncorrelated to the original value (as known as transient
fault);

The design does not address attackers who can:

– modify the code execution. Processor instructions cannot be replaced or
removed while executing code. Such an attacker might have the power to
dump EEPROM and obtain the secret key;

– inject a permanent fault in the input elements, the message m as well as the
key (p, q, dp, dq, iq). We suppose that input elements are given along with an
integrity value that can be verified whenever during the signature;

– Change the Boolean result of a conditional check. An expression “if a =
b” has a result true or false that cannot be modified. We made here a
compromise on the level of security. Indeed, contrary to some other methods
based on infective computations, our design uses conditional checks. However
it would be possible to replace these checks by unconditional infections of
the computation.

We consider the CRT implementation of RSA described in Figure 3 and we
assume the recommendations discussed in Section 3.4 have been followed. Noting
|a| the bit size of a and a the faulty value of a, let us review some fault scenarios
and identify the associated success probabilities (probabilities are more detailed
in Appendix B):

– Modifying p or r in a transient way during the calculation of p′ or modifying
p′ in a permanent way before the check of m̂p (The same holds for q′):
Pr[m̂p = m mod p] ≈ 2−(|p|−1) ln 2
After the check of m̂p, if the permanent fault occurs only during the expo-
nentiation:
Pr[βpSpr = βp · (1 + d′pr) mod p′] ≈ 2−(|p′|−1) ln 2

– Modifying m in a transient way during the calculation of m̂p or modifying
m̂p in a permanent way before the check (The same holds for m̂q):
Pr[m̂p = m mod p] ≈ 2−(|p|−1) ln 2

– Modifying m in a permanent way after the first exponentiation (we may
also consider that m is associated with an integrity value that is verified):
Pr[mq mod r2 = mp mod r2] ≈ 2−(2|r|+1)

If the permanent fault occurs after the check of m̂p:
Pr[βpSpr = βp · (1 + d′pr) mod p′] = Pr[m̂p = 1 + r mod r2] ≈ 2−2|r|+1

– Modifying p or r2 in a transient way during the calculation of ipr, or modi-
fying ipr in a permanent way (The same holds for iqr):
Pr[(αpm+βp ·(1+r) = m mod p)∩(αpm+βp ·(1+r) = (1+r) mod r2)] = 0

– Modifying p or ipr in a transient way during the calculation of βp or modi-
fying βp in a permanent way (The same holds for βq):
Pr[(αpm+βp ·(1+r) = m mod p)∩(αpm+βp ·(1+r) = (1+r) mod r2)] = 0

– Modifying βp or p′ in a transient way during the calculation of αp or modi-
fying αp in a permanent way (The same holds for αq):
Pr[βpSpr = βp · (1 + d′pr) mod p′] = Pr[αp = 0 mod r2] ≈ 2−2|r|+1

– Modifying (p − 1) or dp in a transient way during the calculation of d′p or
modifying d′p in a permanent way (The same holds for d′q):

Pr[d′p = dp mod (p − 1)] ≈ 2−(|p|−1) ln 2

– Modifying d′p in a transient way during the computation of Spr (The same
holds for Sqr):
Pr[βpSpr = βp · (1 + d′pr) mod p′] = Pr[d′p = d′p mod r] ≈ 2−(|r|−1) ln 2

– Modifying m̂p or p′ in a transient way during the computation of Spr (The
same holds for Sqr):
Pr[βpSpr = βp · (1 + d′pr) mod p′] = Pr[m̂p = 1 + r mod r2] ≈ 2−2|r|+1

– Modifying Spr, βp · (1 + d′pr), R3 or p′ in a transient way during the compu-
tation of S′

p, or modifying S′
p in a permanent way (The same holds for S′

q):

Pr[S − R4 − qiq · (R3 − R4) = 0 mod r2] ≈ 2−2|r|+1

– Modifying S′
p, S′

q,p
′, q, iq or S′

q in a transient way during the recombination:

Pr[N · (S − R4 − qiq · (R3 − R4)) = 0 mod Nr2] ≈ 2−2|r|+1

4.2 Side-Channel Analysis

Although side-channel analysis is not studied in this paper, the design should
be combined with adapted extra countermeasures against side-channel attacks.

4.3 Performance analysis

Execution time The most expensive steps are the two inversions. They are per-
formed on parameters with length twice the length of r. Noting ipr0 = p−1 mod r

and iqr0 = q−1 mod r, we make use of tricks to compute ipr and iqr from ipr0 and
iqr0. Indeed let p = p0 + p1r mod r2 and ipr1 = [−i0p1 − (i0p0 − 1)] · i0 mod r.
Then ipr = ripr1 + ipr0 (The same holds for iqr). Thus, only two inversions
modulo r are needed to compute ipr and iqr. If r is for example a 32-bit value
and implementation is carried out on a 32-bit chip architecture, an SPA-safe
extended binary gcd algorithm can be implemented very efficiently since loops
of the algorithm would be composed of comparisons, shifts, subtractions and
additions on 32-bit single precision data. In this context, the execution time
added by our countermeasure would be clearly less costly than Aumüller et al.’s
countermeasure [4]. On smaller micro-controllers, execution time will depend on
the hardware architecture, but a good approximate being that the two inver-
sions can be considered at most as costly as two exponentiations modulo t (if

|t| = |r|). Our proposal is therefore more efficient than Joye and Ciet’s solu-
tion [6] where two extra totient calculations are needed. We can also consider
that our algorithm is about as efficient as Giraud’s countermeasure [7], if our ex-
ponentiation algorithm only has the property that an attacker cannot distinguish
squarings from multiplications. In the case of RSA with CRT where the expo-
nents are masked, the exponentiation algorithm could be unbalanced contrary to
Montgomery-Ladder algorithm [13]. If we suppose that the modulus and the ex-

ponent are randomized by a 64-bit random integer, we perform about
⌊

|p|
2

⌋

−96

and
⌊

|q|
2

⌋

− 96 fewer modular multiplications for each exponentiation, but with

larger operands. As an example, if the implementation is carried out on a 32-
bit architecture, one Montgomery modular multiplication with two operands of
length k 32-bit words, theoretically requires 2k(k+1) single-precision multiplica-
tions. Thus, one Montgomery-Ladder exponentiation requires about 128k2(k+1)
single-precision multiplications with clear data, versus 96(k + 2)2(k + 3) for a
classical exponentiation with randomized data. As a consequence, for p and q

greater than about 640 bits, our algorithm would be slightly more efficient than
Giraud’s one. Under this size, it would be the opposite.

Memory consumption Our countermeasure requires about as much memory
as Aumüller et al.’s [4] and Joye and Ciet’s implementation [6]. Obviously, it
requires far less memory than Giraud’s proposal [7] where memory consumption
is a real disadvantage. We can consider in Figure 3 that βp, βq are not kept in
RAM during the calculations of S′

p and S′
q since ipr and iqr can be stored on

the stack. βp and βq can be calculated “on-the-fly” when needed. In the same
way for the value mp, only mp mod r2 can be stored on the stack. The instant
when memory consumption is the highest occurs during the recombination (as
in a classical RSA-CRT signature), except that S′

p, respectively S′
q, have length

|p| + 2|r|, and |q| + 2|r|. The final result has length |N | + 2|r|. Some crypto-
processors are not able to perform the final verification (S − R4 − qiq · (R3 −
R4)) · N ≡ 0 mod Nr2 if N is a 2K integer, since the co-processor register size
may be limited to 2K. In this case, the final verification can be replaced with
S − R4 − qiq · (R3 − R4) ≡ 0 mod r2.

Personalization management The proposed implementation only requires
the usual parameters needed for the computation, the input message m and the
classical RSA-CRT key set (p, q, dp, dq, iq).

Code Size The countermeasure is mainly based on arithmetic operations al-
ready developed for the RSA-CRT signature. Only the modular inversion, which
is also based on classical arithmetic operations, should be implemented. The
code of the modular inversion is often contained in products that supply the
RSA signature as they supply the RSA key generation too. Even if the code of
modular inversion must be added, this leads to an acceptable code size overhead.

5 Conclusion

This paper presents an original algorithm which computes secure exponentia-
tions in an arbitrary integer ring (ZN ,+, ·) where N ∈ N

∗. Our countermeasure
mechanism can be applied to secure any cryptosystem requiring exponentiations
in rings or finite fields of integers, such as Diffie-Hellman key exchange [14], El
Gamal decryption [15], RSA in straightforward mode [9], Schnorr [16], DSA [17],
KCDSA [18] and so forth. However, it is especially relevant in the case of RSA
with CRT where it constitutes an efficient defense line against Bellcore attack.

Reviewing related work on CRT implementation of RSA and considering
simultaneously all practical constraints faced by cryptographic devices, our so-
lution matches all desirable requirements.

Although here side-channel attacks have not been studied, our CRT imple-
mentation of RSA can be simply associated with appropriate countermeasures
against simple and differential side-channel attacks.

Acknowledgments The author wishes to thank Pascal Paillier, Mathieu Chartier
and the CHES2008 reviewers for helpful remarks on the preliminary version of
this paper.

References

1. Sun Microsystems Inc.: Javacard 2.2.2 - application programming interface. Tech-
nical report (2006)

2. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. Lecture Notes in Computer Science 1233 (1997)
37–51

3. Shamir, A.: Method and apparatus for protecting public key schemes from timing
and fault attacks, U.S. Patent Number 5,991,415. (November 1999 (also presented
at the rump session of EUROCRYPT ’97))

4. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.P.: Fault attacks on
rsa with crt: Concrete results and practical countermeasures. In B.S. Kaliski Jr.,
c.K., Paar, C., eds.: Cryptographic Hardware and Embedded Systems — CHES
2002. Volume 2523 of Lecture Notes in Computer Science. (2002) 260–275

5. Blömer, J., Otto, M., Seifert, J.P.: A new crt-rsa algorithm secure against bellcore
attacks. In: CCS ’03: Proceedings of the 10th ACM conference on Computer and
communications security, New York, NY, USA, ACM (2003) 311–320

6. Joye, M., Ciet, M.: Practical fault countermeasures for chinese remaindering based
rsa. In Breveglieri, L., Koren, I., eds.: 2nd Workshop on Fault Diagnosis and
Tolerance in Cryptography - FDTC 2005. (2005)

7. Giraud, C.: Fault resistant rsa implementation. In Breveglieri, L., Koren, I., eds.:
2nd Workshop on Fault Diagnosis and Tolerance in Cryptography — FDTC 2005.
(2005) 142–151

8. Kim, C.H., Quisquater, J.J.: How can we overcome both side channel analysis and
fault attacks on rsa-crt? In Breveglieri, L., Gueron, S., Koren, I., Naccache, D.,
Seifert, J.P., eds.: FDTC. (2007) 21–29

9. Rivest, R.L., Shamir, A., Adelman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Technical Report MIT/LCS/TM-82 (1977)

10. Joye, M., Lenstra, A.K., Quisquater, J.J.: Chinese remaindering based cryptosys-
tems in the presence of faults. Journal of Cryptology: the journal of the Interna-
tional Association for Cryptologic Research 12(4) (1999) 241–245

11. Joye, M., Paillier, P.: Gcd-free algorithms for computing modular inverses. In B.S.
Kaliski Jr., c.K., Paar, C., eds.: CHES. (2003) 243–253

12. Yen, S.M., Kim, S., Lim, S., Moon, S.: Rsa speedup with residue number system
immune against hardware fault cryptanalysis. In: ICISC ’01: Proceedings of the 4th
International Conference Seoul on Information Security and Cryptology, London,
UK, Springer-Verlag (2002) 397–413

13. Joye, M., Yen, S.: The montgomery powering ladder. In B.S. Kaliski Jr., c.K.,
Paar, C., eds.: Cryptographic Hardware and Embedded Systems — CHES 2002.
Volume 2523 of Lecture Notes in Computer Science. (2002) 291–302

14. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory IT-22(6) (1976) 644–654

15. ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete
logarithms. In: CRYPTO. (1984) 10–18

16. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology
4(3) (1991) 161–174

17. National Institute of Standards and Technology: Digital Standard Signature. Fed-
eral Information Processing Standards Publications 186 (1994)

18. Lim, Lee: A study on the proposed korean digital signature algorithm. In: ASI-
ACRYPT: Advances in Cryptology – ASIACRYPT: International Conference on
the Theory and Application of Cryptology, LNCS, Springer-Verlag (1998) 175–186

A Proof of Theorem 1

Claim. Let N and R be integers such that gcd(N,R) = 1, let β = (N ·(N−1 mod R))
and α = 1 − β mod NR. Then α and β are non zero elements verifying the fol-
lowing properties:

1. α2 = α mod NR

2. β2 = β mod NR

3. αβ = 0 mod NR (α and β are zero divisors in (ZNR, + , ·))

Proof. This trivially comes from the definition of α and β.

Lemma 1. Let N and r be integers such that gcd(N, r) = 1, let β = N ·
(N−1 mod r2) and α = 1 − β mod Nr2. Then, for any d ∈ N

∗ and any pair

(A,B) ∈ (ZNr2 × ZNr2):

(αA + βB)d = αAd + βBd mod Nr2 (1)

Proof. Let us take R = r2. Since αβ = 0 mod Nr2, for any d ∈ N
∗ and for any

(A,B) ∈ (ZNr2)2, we get:

(αA + βB)d = (αA)d + (βB)d mod Nr2 = αAd + βBd mod Nr2 ,

as αd = α and βd = β modulo Nr2.

Lemma 2. Let N and r be coprime integers and β = N · (N−1 mod r2). For

any d ∈ N
∗, we have:

β · (1 + r)d = β · (1 + dr) mod Nr2 (2)

Proof. Since β = 0 mod N , the equation holds modulo N . It also holds modulo
r2 since β = 1 mod r2 and for any d ∈ N

∗, (1+ r)d = 1+dr mod r2. By Chinese
remaindering, the equation therefore holds modulo Nr2.

⊓⊔
Finally, combining Equations (1) and (2), we get the exponentiation identity

of Theorem 1, for any m ∈ ZNr2 and for any d ∈ N
∗:

(αm + β · (1 + r))d = αmd + β · (1 + dr) mod Nr2

B Details concerning success probabilities of fault attacks

Let us consider the fault model defined in 4.1. Assume that the attacker modifies
a value A (A = B mod C) and obtains a random value A uncorrelated to A.
We give here a generic expression of a success probability for passing the test
A = B mod C where C is a t-bit integer. We force 2t−1 < C < 2t, C = 1 mod 2.
According to our recommendations in Section 3.4, r is odd, its most significant
bit is one and we can deduce the same property for p. We suppose that C

is uniform. We note E the event that the fault is undetected, Pr[E] the total
probability of E, Pr[E | C] the probability of E assuming C, Pr[c = C] the
probability of taking an element c in the considered set S such that c = C. Since
the random result obtained is uniformly distributed, we know that:

Pr[E | C] =
1

C
(3)

We want to compute Pr[E]. Let S =
{

C s.t. 2t−1 < C < 2t and C = 1 mod 2
}

.
From the total probability Theorem, we have:

Pr[E] =
∑

C∈S

(Pr[E | C] · Pr[c = C]) (4)

Since C is uniform:

Pr[c = C] =
1

|S|
(5)

Replacing Identities (3) and (5) in Equation (4), we get:

Pr[E] =
1

|S|
·
∑

C∈S

1

C

Let S̄ =
{

C s.t. 2t−1 < C < 2t and C = 0 mod 2
}

, then:

∑

C∈S∪S̄

1

C
= [lnC]

2t

2t−1 = ln(2t) − ln(2t−1) = t ln 2 − (t − 1) ln 2 = ln 2

Since, |S| = |S̄|, we may approximate:

Pr[E] =
1

|S|
·
∑

C∈S

1

C
≈

1

|S|
·
1

2

∑

C∈∪S̄

1

C
=

1

|S|
·
ln 2

2

Hence:

Pr[E] ≈
1

|S|
·
ln2

2
=

1

2t−2
·
ln2

2
= 2−(t−1) ln 2

This explains the probability values 2−(|p|−1) ln 2, 2−(|p′|−1) ln 2 and 2−(|r|−1) ln 2.

Given the same C, we now assume that the attacker modifies a value A

(A = B mod C2) and obtains a random value A uncorrelated to A. We apply
the same argument, we compute the success probability for passing the test
A = B mod C2. In this case:

Pr[E | C] =
1

C2
(6)

The Identity (5) still applies here. Hence, replacing Identities (5) and (6) in
Equation (4):

Pr[E] =
1

|S|
·
∑

C∈S

1

C2

∑

C∈S∪S̄

1

C2
=

[

−
1

C

]2t

2t−1

= −
1

2t
+

1

2t−1
= −

1

2t
+

2

2t
= 2−t

In the same way, we may approximate:

Pr[E] =
1

|S|
·
∑

C∈S

1

C2
≈

1

|S|
·
1

2

∑

C∈S∪S̄

1

C2
=

1

|S|
·

1

2t+1

And therefore:

Pr[E] ≈
1

|S|
· 2−(t+1) = 2−(t−2) · 2−(t+1) = 2−2t+1

This leads to the probability value 2−(2|r|+1).

