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Abstract. This paper presents a new shape for ordinary elliptic curves
over fields of characteristic 2. Using the new shape, this paper presents
the first complete addition formulas for binary elliptic curves, i.e., addi-
tion formulas that work for all pairs of input points, with no exceptional
cases. If n ≥ 3 then the complete curves cover all isomorphism classes of
ordinary elliptic curves over F2n .

This paper also presents dedicated doubling formulas for these curves
using 2M + 6S + 3D, where M is the cost of a field multiplication, S is
the cost of a field squaring, and D is the cost of multiplying by a curve
parameter. These doubling formulas are also the first complete doubling
formulas in the literature, with no exceptions for the neutral element,
points of order 2, etc.

Finally, this paper presents complete formulas for differential addition,
i.e., addition of points with known difference. A differential addition and
doubling, the basic step in a Montgomery ladder, uses 5M + 4S + 2D
when the known difference is given in affine form.

Keywords: Elliptic curves, Edwards curves, binary fields, complete ad-
dition law, Montgomery ladder, countermeasures against side-channel
attacks

1 Introduction

The points on a Weierstrass-form elliptic curve

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6
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include not only the affine points (x1, y1) satisfying the curve equation but also
an extra point at infinity serving as the neutral element. The standard formulas
to compute a sum P + Q fail if P is at infinity, or if Q is at infinity, or if P + Q
is at infinity, or if P is equal to Q. Each of these possibilities needs to be tested
for and handled separately; a complete addition algorithm is produced by gluing
together several incomplete addition formulas.

This plethora of cases has caused a seemingly neverending string of problems
for implementors of elliptic-curve cryptography, especially in cryptographic hard-
ware subject to side-channel attacks. Consider, for example, computing nP+mQ.
A typical two-scalar-multiplication algorithm would double P , add P , add Q,
etc., where the exact pattern of additions and doublings depends on the values
of n and m. What happens if 3P = Q? Does the implementation take the time
to see that 3P = Q and to switch from the addition formulas to doubling formu-
las? Can the attacker detect the switch through timing analysis, power analysis,
etc.? If the implementation fails to check for 3P = Q, what does it end up
computing? What about 3P = −Q? Can an attacker trigger failure cases—and
incorrect computations—by choosing inputs cleverly? Can these failures com-
promise cryptographic security?

Some papers have presented “unified” addition formulas that can be used for
doublings. See, e.g., [27], [18], [6], [3], and [5]; for overviews see [17], [25], and
[2, Section 5]. “Strongly unified” addition formulas eliminate the need to check
for equal inputs. However, they do not eliminate the need to check for inputs
and outputs at infinity and for other exceptional cases. The exceptional-points
attack presented in [16] targets the exceptional cases in these unified formulas.

Edwards curves. In the recent paper [2], Bernstein and Lange show for fields
k with char(k) 6= 2 that if d is not a square in k then the affine points on the
“Edwards curve”

x2 + y2 = 1 + dx2y2

form a group. The affine addition law introduced by Edwards in [10] is complete
for this curve, as are the fast projective formulas introduced in [2].

“Complete” is stronger than “unified”: it means that the addition formulas
work for all pairs of input points. There are no troublesome points at infinity.
In particular, the neutral element of the curve is an affine point (0, 1).

If k is finite then approximately 1/4 of all elliptic curves over k are birationally
equivalent to complete Edwards curves, i.e., Edwards curves with non-square d.
The formulas in [2] can therefore be used for elliptic-curve computations, and in
particular for elliptic-curve cryptography.

Implementors can—although they are not forced to!—gain speed by switching
from the addition formulas to dedicated doubling formulas when the inputs are
known to be equal. Bernstein and Lange show, for typical scalar-multiplication
problems, that their addition formulas and doubling formulas for Edwards curves
use fewer multiplications than the best available formulas for previous curve
shapes.

Unfortunately, x2+y2 = 1+dx2y2 is not elliptic over fields k with char(k) = 2.
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Contributions of this paper. We introduce a new method of carrying out
computations on binary elliptic curves, i.e., elliptic curves over fields k with
char(k) = 2. In particular, we introduce “complete binary Edwards curves.”
We present explicit formulas for addition on these curves, an explicit birational
equivalence to an elliptic curve in short Weierstrass form, explicit formulas for
doubling, and explicit formulas for Montgomery-type differential addition. See
Section 2 for the curve shape and birational equivalence; Sections 3 and 5 for
the addition law; Section 6 for doubling; and Section 7 for differential addition.

Our curve equation has a surprisingly large number of terms but shares
many geometric features with non-binary Edwards curves x2 + y2 = 1 + dx2y2.
In particular, we prove that our formulas are complete. We also show that if
n ≥ 3 then every ordinary elliptic curve over F2n is birationally equivalent to a
complete binary Edwards curve. See Section 4.

Our doubling formulas and differential-addition formulas are extremely fast:
for example, 2M + 6S for projective doubling, and 5M + 4S for one step of a
Montgomery ladder, when curves are chosen to have small parameters. Here M
is a field multiplication and S is a field squaring. For comparison, state-of-the-
art formulas for small-parameter Weierstrass curves—the best formulas in the
literature, and some new speedups that we present—use 2M+ 4S for projective
doubling and 5M+4S for one step of a Montgomery ladder. There is one caveat,
namely that our general addition formulas use at best 16M+1S and are therefore
not as fast as previous (incomplete) formulas; we can nevertheless recommend
binary Edwards curves for a wide variety of applications.

2 Binary Edwards curves

In this section we introduce the new curve shape and show that the affine points
are nonsingular. The points at infinity are singular; we give details on the blowup.
To prove that the curve describes an elliptic curve we state a birational map to
an ordinary elliptic curve in Weierstrass form.

Definition 2.1 (Binary Edwards curve). Let k be a field with char(k) = 2.
Let d1, d2 be elements of k with d1 6= 0 and d2 6= d2

1 + d1. The binary Edwards
curve with coefficients d1 and d2 is the affine curve

EB,d1,d2 : d1(x + y) + d2(x2 + y2) = xy + xy(x + y) + x2y2.

This curve is symmetric in x and y and thus has the property that if (x1, y1)
is a point on the curve then so is (y1, x1). We will see in Section 3 that (y1, x1) is
the negative of (x1, y1). The only curve points invariant under this negation law
are (0, 0) and (1, 1); (0, 0) will be the neutral element of the addition law while
(1, 1) will have order 2. We will also see that (x1, y1) + (1, 1) = (x1 + 1, y1 + 1).

Theorem 2.2 (Nonsingularity). Each binary Edwards curve is nonsingular.

Proof. By definition the curve EB,d1,d2 has d1 6= 0 and d2 6= d2
1 + d1. The partial

derivatives of the curve equation are d1 + y + y2 and d1 + x + x2. A singular
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point (x1, y1) must have d1 + y1 + y2
1 = 0 and d1 + x1 + x2

1 = 0, and therefore
(x1 + y1)2 = x1 + y1, implying x1 = y1 or x1 = y1 + 1.

The case x1 = y1 implies 0 = x2
1 + x4

1 by the curve equation and therefore
d2
1 = x2

1 + x4
1 = 0, contradicting the hypothesis that d1 6= 0.

The case x1 = y1 + 1 implies d1 + d2 = y2
1 + y4

1 by the curve equation and
therefore d2

1 = y2
1 +y4

1 = d1 +d2, contradicting the hypothesis that d2 6= d2
1 +d1.

ut

Singularities of the projective closure. The projective closure of the curve
EB,d1,d2 is

d1(X + Y )Z3 + d2(X2 + Y 2)Z2 = XY Z2 + XY (X + Y )Z + X2Y 2.

It has the points (1 : 0 : 0) and (0 : 1 : 0) at infinity. Both are singular. We
present details on the blowup for the first point; by the symmetry of the curve
equation all considerations also hold for the second point.

To study the curve around (1 : 0 : 0) we consider the affine curve d1(1 +
y)z3 + d2(1 + y2)z2 = yz2 + y(1 + y)z + y2. The partial derivatives d1z

3 + z2 + z
and d1(1 + y)z2 + y(1 + y) both vanish in (0, 0) which shows that the point
is singular. We blow up the singularity by putting y = tz and dividing by z2,
obtaining the curve

d1(1 + tz)z + d2(1 + t2z2) = tz + t(1 + tz) + t2.

Substituting z = 0 produces the equation d2 + t+ t2 = 0, which has two distinct
roots in the algebraic closure of the base field k, corresponding to two distinct
points of the blowup. These points are nonsingular since the partial derivative
d1z

2 + z + 1 does not vanish for z = 0. These blowups are defined over the
smallest extension of k in which d2 + t + t2 = 0 has roots.

An alternate curve shape. The curve

d1(1 + x + y) + d2(1 + x2 + y2) = xy + xy(x + y) + x2y2

is isomorphic to EB,d1,d2 via the map (x, y) 7→ (x, y +1), and is another suitable
generalization of Edwards curves to the binary case. Since the addition and
doubling formulas look slightly simpler on EB,d1,d2 we picked that one but would
like to point out here that all considerations also apply to this shifted curve.

Birational equivalence. Traditionally elliptic curves are given in Weierstrass
form; see, e.g., [9]. An ordinary elliptic curve over k can be expressed in short
Weierstrass form

v2 + uv = u3 + a2u
2 + a6

with a6 6= 0. The neutral element of the addition law is the point at infinity and
negation is defined as −(u1, v1) = (u1, v1 + u1).

The map (x, y) 7→ (u, v) defined by

u = d1(d2
1 + d1 + d2)(x + y)/(xy + d1(x + y)),

v = d1(d2
1 + d1 + d2)(x/(xy + d1(x + y)) + d1 + 1)
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is a birational equivalence from EB,d1,d2 to the elliptic curve

v2 + uv = u3 + (d2
1 + d2)u2 + d4

1(d
4
1 + d2

1 + d2
2)

with j-invariant 1/(d4
1(d

4
1 + d2

1 + d2
2)). An inverse map is given as follows:

x = d1(u + d2
1 + d1 + d2)/(u + v + (d2

1 + d1)(d2
1 + d1 + d2)),

y = d1(u + d2
1 + d1 + d2)/(v + (d2

1 + d1)(d2
1 + d1 + d2)).

We define a function ϕ on all affine points of EB,d1,d2 by extending the rational
map (x, y) 7→ (u, v) given above. Specifically, the rational map is undefined at
(0, 0); we define ϕ(0, 0) = P∞. There are no other exceptional cases: if xy +
d1(x + y) = 0 then d2(x2 + y2) = xy(x + y) + x2y2 = d1(x + y)2 + d2

1(x + y)2

so (d2 + d2
1 + d1)(x2 + y2) = 0 so x2 + y2 = 0 so x = y. Use xy + d1(x + y) = 0

again to see that xy = 0 so x2 = 0 so x = 0 so (x, y) = (0, 0).

3 The addition law

This section presents an addition law for the binary Edwards curve EB,d1,d2 and
proves that the addition law corresponds to the usual addition law on an elliptic
curve in Weierstrass form. One consequence of the proof is that the addition law
on EB,d1,d2 is strongly unified: it can be used with two identical inputs, i.e., to
double.

Here is the addition law. The sum of two points (x1, y1), (x2, y2) on EB,d1,d2

is the point (x3, y3) defined as follows:

x3 =
d1(x1 + x2) + d2(x1 + y1)(x2 + y2) + (x1 + x2

1)(x2(y1 + y2 + 1) + y1y2)
d1 + (x1 + x2

1)(x2 + y2)
,

y3 =
d1(y1 + y2) + d2(x1 + y1)(x2 + y2) + (y1 + y2

1)(y2(x1 + x2 + 1) + x1x2)
d1 + (y1 + y2

1)(x2 + y2)
.

If the denominators d1+(x1+x2
1)(x2+y2) and d1+(y1+y2

1)(x2+y2) are nonzero
then the sum (x3, y3) is a point on EB,d1,d2 : i.e., d1(x3 + y3) + d2(x2

3 + y2
3) =

x3y3 + x3y3(x3 + y3) + x2
3y

2
3 . We present a script in the Sage computer-algebra

system [34] that verifies this:

R.<d1,d2,x1,y1,x2,y2>=GF(2)[]
S=R.quotient([
d1*(x1+y1)+d2*(x1^2+y1^2)+x1*y1+x1*y1*(x1+y1)+x1^2*y1^2,
d1*(x2+y2)+d2*(x2^2+y2^2)+x2*y2+x2*y2*(x2+y2)+x2^2*y2^2

])
x3 = (
d1*(x1+x2)+d2*(x1+y1)*(x2+y2)+(x1+x1^2)*(x2*(y1+y2+1)+y1*y2)

) / (d1+(x1+x1^2)*(x2+y2))
y3 = (
d1*(y1+y2)+d2*(x1+y1)*(x2+y2)+(y1+y1^2)*(y2*(x1+x2+1)+x1*x2)
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) / (d1+(y1+y1^2)*(x2+y2))
verif = d1*(x3+y3)+d2*(x3^2+y3^2)+x3*y3+x3*y3*(x3+y3)+x3^2*y3^2
0 == S(numerator(verif))

Inserting (x1, y1) = (0, 0) or (x2, y2) = (0, 0) into the addition law shows
that (0, 0) is the neutral element. Similarly (x1, y1) + (1, 1) = (x1 + 1, y1 + 1);
in particular (1, 1) + (1, 1) = (0, 0). Furthermore (x1, y1) + (y1, x1) = (0, 0), so
−(x1, y1) = (y1, x1). We emphasize that the addition law works without change
for all of these inputs.

The following lemma will be useful in Section 7 and later in this section.

Lemma 3.1. Let k be a field with char(k) = 2. Let d1, d2 be elements of k
with d1 6= 0 and d2 6= d2

1 + d1. Fix (x3, y3), (x2, y2) ∈ EB,d1,d2(k). Assume that
(x3, y3)+(x2, y2) is defined. Then (x3, y3)+(y2, x2) is also defined. Furthermore
define (x5, y5) = (x3, y3) + (x2, y2) and (x1, y1) = (x3, y3) + (y2, x2). Then d2

1 +
w2w3(d1(1 + w2 + w3) + d2w2w3) 6= 0 and

w5 =
d1(d1(w2+w3) + x2x3(x2+x3+1) + y2y3(y2+y3+1) + (x2x3+y2y3)2)

d2
1 + w2w3(d1(1 + w2 + w3) + d2w2w3)

,

w1w5 =
d2
1(w2 + w3)2

d2
1 + w2w3(d1(1 + w2 + w3) + d2w2w3)

,

where wi = xi + yi.

Proof. The denominators of the coordinates of (x3, y3) + (x2, y2) are d1 + (x3 +
x2

3)(x2 + y2) and d1 + (y3 + y2
3)(x2 + y2); these formulas are symmetric in x2, y2,

so they are the same as the denominators of (x3, y3) + (y2, x2). Furthermore,
their product is

(d1 + (x3 + x2
3)(x2 + y2))(d1 + (y3 + y2

3)(x2 + y2))

= d2
1 + d1(x3 + x2

3 + y3 + y2
3)(x2 + y2) + (x3 + x2

3)(y3 + y2
3)(x2 + y2)2

= d2
1 + d1(w3 + w2

3)w2 + (d1w3 + d2w
2
3)w

2
2

= d2
1 + w2w3(d1(1 + w2 + w3) + d2w2w3),

so d2
1 +w2w3(d1(1+w2 +w3)+d2w2w3) is nonzero. Note that we used the curve

equation in the second-to-last equality.
Cross-multiplying and using the curve equation again gives the stated nu-

merator of w5; we omit the details. Similarly we obtain the numerator of w1.
Multiplying, using the curve equation again, and cancelling d2

1 + w2w3(d1(1 +
w2 + w3) + d2w2w3) produces the stated formula for w1w5. ut

The rest of this section is devoted to the proof that this addition law corre-
sponds to the addition law on the elliptic curve v2 + uv = u3 + (d2

1 + d2)u2 +
d4
1(d

4
1 + d2

1 + d2
2) under the function ϕ defined in the previous section: i.e., that

ϕ(x3, y3) = ϕ(x1, y1) + ϕ(x2, y2).



Binary Edwards Curves 7

Lemma 3.2. Let k be a field with char(k) = 2. Let d1, d2 be elements of k with
d1 6= 0 and d2 6= d2

1+d1. Fix (x2, y2), (x3, y3) ∈ EB,d1,d2(k). If (x3, y3)+(x2, y2) =
(0, 0) then (x3, y3) = (y2, x2).

Proof. Define wi as in Lemma 3.1. Then w5 = 0 so

d2
1(w2 + w3)2 = w1w5(d2

1 + w2w3(d1(1 + w2 + w3) + d2w2w3)) = 0

so w2 + w3 = 0; i.e., x2 + y2 + x3 + y3 = 0. Similarly

d1(d1(w2 + w3) + x2x3(x2 + x3 + 1) + y2y3(y2 + y3 + 1) + (x2x3 + y2y3)2) = 0

so x2x3(x2 + x3 + 1) + y2y3(y2 + y3 + 1) + (x2x3 + y2y3)2 = 0. Substitute
y3 = x2 + y2 + x3 to see that x2x3(x2 + x3 + 1) + y2(x2 + y2 + x3)(y2 + (x2 +
y2 + x3) + 1) + (x2x3 + y2(x2 + y2 + x3))2 = 0, and simplify to see that (x2 +
y2)(x2 + y2 + 1)(x3 + y2)(x3 + y2 + 1) = 0. We now separately consider the four
factors.

Case 1: x2 + y2 = 0. Then (x2, y2) is either (0, 0) or (1, 1). Furthermore
x3 + y3 = 0 so (x3, y3) is either (0, 0) or (1, 1). We must have (x3, y3) = (x2, y2)
since (0, 0) + (1, 1) 6= (0, 0). Thus also (x3, y3) = (y2, x2).

Case 2: x2 + y2 = 1. Then x4
2 + x2

2 = d1 + d2 from the curve equation.
Furthermore x3 + y3 = 1 so x4

3 + x2
3 = d1 + d2 so x3 = x2 or x3 = x2 + 1.

If x3 = x2 then (x3, y3) + (x2, y2) = (1, 1) 6= (0, 0). Thus x3 = x2 + 1 so
(x3, y3) = (x2 + 1, x2) = (y2, x2).

Case 3: x3 + y2 = 0. Then x2 + y3 = 0. Hence (x3, y3) = (y2, x2).
Case 4: x3 + y2 = 1. Then x2 + y3 = 1. Hence (x3, y3) + (x2, y2) = (y2 +

1, x2 + 1) + (x2, y2) = (1, 1), contradiction. ut

Lemma 3.3. Let k be a field with char(k) = 2. Let d1, d2 be elements of k with
d1 6= 0 and d2 6= d2

1 + d1. Fix (x1, y1), (x2, y2) ∈ EB,d1,d2(k). If ϕ(x1, y1) =
ϕ(x2, y2) then (x1, y1) = (x2, y2).

Proof. If (x1, y1) = (0, 0) then ϕ(x1, y1) = P∞ so ϕ(x2, y2) = P∞ so (x2, y2) =
(0, 0) = (x1, y1) as claimed. Similar comments apply if (x2, y2) = (0, 0). Assume
from now on that (x1, y1) 6= (0, 0) and (x2, y2) 6= (0, 0).

By definition of ϕ we have

y1(x2y2 + d1(x2 + y2)) = y2(x1y1 + d1(x1 + y1)),
x1(x2y2 + d1(x2 + y2)) = x2(x1y1 + d1(x1 + y1)).

Note for future reference that this system of equations is symmetric between 1
and 2, and between x and y. Multiply the first equation by x1 and the second
by y1 and add to obtain (x1y2 + x2y1)(x1y1 + d1(x1 + y1)) = 0. Recall that
x1y1 + d1(x1 + y1) 6= 0 so x1y2 + x2y1 = 0. Now replace x1y2 with x2y1 in the
second equation and simplify to obtain x2(x1 + x2)y1 = 0.

If y1 = 0 then x1 6= 0. The curve equation now says d1x1 + d2x
2
1 = 0 so x1 =

d1/d2. Furthermore y2 = x2y1/x1 = 0 so also x2 = d1/d2 so (x1, y1) = (x2, y2).
Assume from now on that y1 6= 0. Apply symmetry between 1 and 2, and

between x and y, to obtain also x2 6= 0. Then x1 + x2 = 0. Apply symmetry
between x and y to see that y1 + y2 = 0. Thus (x1, y1) = (x2, y2). ut
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Lemma 3.4. Let k be a field with char(k) = 2. Let d1, d2 be elements of k with
d1 6= 0 and d2 6= d2

1+d1. Fix (x1, y1) ∈ EB,d1,d2(k). Then ϕ(y1, x1) = −ϕ(x1, y1).

Proof. If (x1, y1) = (0, 0) then ϕ(y1, x1) = P∞ = ϕ(x1, y1). Assume from now
on that (x1, y1) 6= (0, 0). Write (u1, v1) = ϕ(x1, y1) and (u2, v2) = ϕ(y1, x1).
Then u1 = u2 and v1 + v2 = u1 from the definition of ϕ. Hence (u2, v2) =
(u1, v1 + u1) = −(u1, v1). ut

Theorem 3.5. Let k be a field with char(k) = 2. Let d1, d2 be elements of k with
d1 6= 0 and d2 6= d2

1 + d1. Fix (x1, y1), (x2, y2), (x3, y3) ∈ EB,d1,d2(k). Assume
that (x1, y1) + (x2, y2) = (x3, y3). Then ϕ(x1, y1) + ϕ(x2, y2) = ϕ(x3, y3).

Proof. Write a2 = d2
1 + d2 and a6 = d4

1(d
4
1 + d2

1 + d2
2). There are two cases in the

definition of ϕ and several cases in the definition of addition on the Weierstrass
curve v2+uv = u3+a2u

2+a6; the proof splits into several cases correspondingly.
If (x1, y1) = (0, 0) then (x2, y2) = (x3, y3). Now ϕ(x2, y2) = ϕ(x3, y3) and

ϕ(x1, y1) = P∞, so ϕ(x1, y1) + ϕ(x2, y2) = P∞ + ϕ(x2, y2) = ϕ(x2, y2) =
ϕ(x3, y3). Similar comments apply if (x2, y2) = (0, 0).

If (x3, y3) = (0, 0) then (x2, y2) = (y1, x1) by Lemma 3.2. Now ϕ(x3, y3) =
ϕ(0, 0) = P∞ and ϕ(x2, y2) = ϕ(y1, x1) = −ϕ(x1, y1) by Lemma 3.4. Thus
ϕ(x1, y1) + ϕ(x2, y2) = ϕ(x1, y1)− ϕ(x1, y1) = P∞ = ϕ(x3, y3).

Assume from now on that (x1, y1) 6= (0, 0), (x2, y2) 6= (0, 0), and (x3, y3) 6=
(0, 0). Write (ui, vi) = ϕ(xi, yi).

Case 1: (u1, v1) = (u2, v2). Then (x1, y1) = (x2, y2) by Lemma 3.3. If u1 = 0
then x1 = y1 from the definition of ϕ so either (x1, y1) = (0, 0) or (x1, y1) = (1, 1);
in either case (x1, y1) + (x2, y2) = (x1, y1) + (x1, y1) = (0, 0), already handled
above. Assume from now on that u1 6= 0. The usual doubling formulas for
Weierstrass coordinates say that 2(u1, v1) = (u4, v4) where u4 = λ2 +λ+d2

1 +d2,
v4 = v1 + λ(u1 + u4) + u4, and λ = (u2

1 + v1)/u1. A lengthy but straightforward
calculation then shows that (u3, v3) = (u4, v4); here is the corresponding Sage
script:

R.<d1,d2,x1,y1>=GF(2)[]
S=R.quotient([
d1*(x1+y1)+d2*(x1^2+y1^2)+x1*y1+x1*y1*(x1+y1)+x1^2*y1^2

])
x2 = x1
y2 = y1
x3 = (
d1*(x1+x2)+d2*(x1+y1)*(x2+y2)+(x1+x1^2)*(x2*(y1+y2+1)+y1*y2)

) / (d1+(x1+x1^2)*(x2+y2))
y3 = (
d1*(y1+y2)+d2*(x1+y1)*(x2+y2)+(y1+y1^2)*(y2*(x1+x2+1)+x1*x2)

) / (d1+(y1+y1^2)*(x2+y2))
u1 = d1*(d1^2+d1+d2)*(x1+y1)/(x1*y1+d1*(x1+y1))
v1 = d1*(d1^2+d1+d2)*(x1/(x1*y1+d1*(x1+y1))+d1+1)
u3 = d1*(d1^2+d1+d2)*(x3+y3)/(x3*y3+d1*(x3+y3))
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v3 = d1*(d1^2+d1+d2)*(x3/(x3*y3+d1*(x3+y3))+d1+1)
lam = (u1^2+v1)/u1
u4 = lam^2+lam+d1^2+d2
v4 = v1+lam*(u1+u4)+u4
0 == S(numerator(u3-u4))
0 == S(numerator(v3-v4))

Hence ϕ(x1, y1) + ϕ(x2, y2) = ϕ(x3, y3).
Case 2: (u1, v1) 6= (u2, v2). If u1 = u2 then (u1, v1) = −(u2, v2) so ϕ(x1, y1) =

−ϕ(x2, y2) = ϕ(y2, x2) by Lemma 3.4 so (x1, y1) = (y2, x2) by Lemma 3.3 so
(x1, y1)+(x2, y2) = (0, 0), already handled above. Assume from now on that u1 6=
u2. The usual addition formulas for Weierstrass coordinates say that (u1, v1) +
(u2, v2) = (u4, v4) where u4 = λ2+λ+u1+u2+d2

1+d2, v4 = v1+λ(u1+u4)+u4,
and λ = (v1 + v2)/(u1 + u2). Another lengthy but straightforward calculation
then shows that (u3, v3) = (u4, v4); here is the corresponding Sage script:

R.<d1,d2,x1,y1,x2,y2>=GF(2)[]
S=R.quotient([
d1*(x1+y1)+d2*(x1^2+y1^2)+x1*y1+x1*y1*(x1+y1)+x1^2*y1^2,
d1*(x2+y2)+d2*(x2^2+y2^2)+x2*y2+x2*y2*(x2+y2)+x2^2*y2^2

])
x3 = (
d1*(x1+x2)+d2*(x1+y1)*(x2+y2)+(x1+x1^2)*(x2*(y1+y2+1)+y1*y2)

) / (d1+(x1+x1^2)*(x2+y2))
y3 = (
d1*(y1+y2)+d2*(x1+y1)*(x2+y2)+(y1+y1^2)*(y2*(x1+x2+1)+x1*x2)

) / (d1+(y1+y1^2)*(x2+y2))
u1 = d1*(d1^2+d1+d2)*(x1+y1)/(x1*y1+d1*(x1+y1))
v1 = d1*(d1^2+d1+d2)*(x1/(x1*y1+d1*(x1+y1))+d1+1)
u2 = d1*(d1^2+d1+d2)*(x2+y2)/(x2*y2+d1*(x2+y2))
v2 = d1*(d1^2+d1+d2)*(x2/(x2*y2+d1*(x2+y2))+d1+1)
u3 = d1*(d1^2+d1+d2)*(x3+y3)/(x3*y3+d1*(x3+y3))
v3 = d1*(d1^2+d1+d2)*(x3/(x3*y3+d1*(x3+y3))+d1+1)
lam = (v2+v1)/(u2+u1)
u4 = lam^2+lam+u1+u2+d1^2+d2
v4 = v1+lam*(u1+u4)+u4
0 == S(numerator(u3-u4))
0 == S(numerator(v3-v4))

Hence ϕ(x1, y1) + ϕ(x2, y2) = ϕ(x3, y3). ut

4 Complete binary Edwards curves

If d2 does not have the form t2 + t then the addition law on the binary Edwards
curve EB,d1,d2 has the very nice feature of completeness. This means that there
are no exceptions to the addition law: the denominators d1 + (x1 + x2

1)(x2 + y2)
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and d1 + (y1 + y2
1)(x2 + y2) never vanish. The addition law always produces a

point on EB,d1,d2 corresponding to the usual sum of points on elliptic curves in
Weierstrass form.

In this section we prove completeness for these d2’s. We also prove that over
finite fields F2n with n ≥ 3 all ordinary curves are birationally equivalent to
complete binary Edwards curves.

Theorem 4.1 (Completeness of the addition law). Let k be a field with
char(k) = 2. Let d1, d2 be elements of k with d1 6= 0. Assume that no element
t ∈ k satisfies t2 + t + d2 = 0. Then the addition law on the binary Edwards
curve EB,d1,d2(k) is complete.

Proof. We show for all (x1, y1), (x2, y2) ∈ EB,d1,d2(k) that the denominators
d1 + (x1 + x2

1)(x2 + y2) and d1 + (y1 + y2
1)(x2 + y2) are nonzero.

If x2 + y2 = 0 then the denominators are d1, which is nonzero by hypothesis.
Assume from now on that x2 +y2 6= 0, and suppose that d1/(x2 +y2) = x1 +x2

1.
Use the curve equation to see that

d1

x2 + y2
=

d1(x2 + y2)
x2

2 + y2
2

=
d2(x2

2 + y2
2) + x2y2 + x2y2(x2 + y2) + x2

2y
2
2

x2
2 + y2

2

= d2 +
x2y2 + x2y2(x2 + y2) + y2

2

x2
2 + y2

2

+
y2
2 + x2

2y
2
2

x2
2 + y2

2

= d2 +
y2 + x2y2

x2 + y2
+

y2
2 + x2

2y
2
2

x2
2 + y2

2

and hence that t2 + t + d2 = 0 where t = x1 + (y2 + x2y2)/(x2 + y2) ∈ k.
Contradiction. Hence d1+(x1+x2

1)(x2+y2) 6= 0. Similarly d1+(y1+y2
1)(x2+y2) 6=

0. ut

Definition 4.2 (Complete binary Edwards curve). Let k be a field with
char(k) = 2. Let d1, d2 be elements of k with d1 6= 0. Assume that no element
t ∈ k satisfies t2+t+d2 = 0. The complete binary Edwards curve with coefficients
d1 and d2 is the affine curve

EB,d1,d2 : d1(x + y) + d2(x2 + y2) = xy + xy(x + y) + x2y2.

There is no conflict in notation or terminology here: the complete binary
Edwards curve EB,d1,d2 is the same as the binary Edwards curve EB,d1,d2 . The
complete case has the extra requirement that t2 + t + d2 6= 0 for all t ∈ k, not
just for t = d1. If k is a finite field F2n then an equivalent requirement is that
Tr(d2) = 1, where Tr is the absolute trace of F2n over F2.

Generality of EB,d1,d2 . We now study which isomorphism classes of elliptic
curves over a finite field F2n are birationally equivalent to complete binary Ed-
wards curves EB,d1,d2 .

Theorem 4.3. Let n be an integer with n ≥ 3. Each ordinary elliptic curve over
F2n is birationally equivalent over F2n to a complete binary Edwards curve.
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Proof. Each ordinary elliptic curve over F2n is isomorphic to v2 + uv = u3 +
a2u

2 + a6 for some a2 ∈ F2n and a6 ∈ F∗2n . Note that if Tr(a2) = Tr(a′2) then
the two curves v2 + uv = u3 + a2u

2 + a6 and v2 + uv = u3 + a′2u
2 + a6 are

isomorphic: there exists b such that a′2 = a2 + b + b2, and the map v 7→ v + bu is
an isomorphism from v2+uv = u3+a2u

2+a6 to v2+uv = u3+(a2+b+b2)u2+a6.
Fix a2, a6 for the rest of the proof. For each δ, ε ∈ F2 define

Dδ,ε =
{
d1 ∈ F∗2n : Tr(d1) = δ, Tr(

√
a6/d2

1) = ε
}
.

If d1 ∈ DTr(a2)+1,1 then the pair (d1, d2) with d2 = d2
1 + d1 +

√
a6/d2

1 has
Tr(d2) = Tr(

√
a6/d2

1) = 1 and therefore defines a complete binary Edwards curve
EB,d1,d2 . This curve is birationally equivalent to v2 +uv = u3 +(d2

1 +d2)u2 +a6,
since d4

1(d
4
1 + d2

1 + d2
2) = a6, and therefore birationally equivalent to v2 + uv =

u3 + a2u
2 + a6, since Tr(d2

1 + d2) = Tr(d1) + Tr(d2) = Tr(a2).
Our goal is to show that DTr(a2)+1,1 is nonempty. We will do this by counting

the number of elements in both D01 and D11.
Observe first that #D00 + #D01 = 2n−1 − 1. Indeed, #D00 + #D01 is the

number of d1 ∈ F∗2n with Tr(d1) = 0.
Observe next that #D01+#D11 = 2n−1. Indeed, #D01+#D11 is the number

of d1 ∈ F∗2n with Tr(
√

a6/d2
1) = 1. As d1 runs through F∗2n , the quotient

√
a6/d2

1

also runs through F∗2n , so it has trace 1 exactly 2n−1 times.
The heart of the proof is a bound on #D00 + #D11, the number of d1 ∈ F∗2n

with Tr(d1 +
√

a6/d2
1) = 0. For each such d1 there are exactly two choices of

s ∈ F2n such that s2+s = d1+
√

a6/d2
1, producing two choices of point (U1, V1) =

(d1, d1s) on the elliptic curve V 2 + UV = U3 +
√

a6. All points on this elliptic
curve appear uniquely in this way, except that the point at infinity and the
point (0, 0) do not appear. By Hasse’s theorem, this curve has 2n + 1 + t points
for some integer t in the interval [−2

√
2n, 2

√
2n]. Therefore #D00 + #D11 =

2n−1 + (t− 1)/2.
Now 2#D01 = (#D00 + #D01) + (#D01 + #D11) − (#D00 + #D11) =

2n−1 − 1 + 2n−1 − 2n−1 − (t − 1)/2 = 2n−1 − (t + 1)/2 and 2#D11 = 2n −
2#D01 = 2n−1 +(t+1)/2. The crude bound (

√
2n−1)2 ≥ (

√
8−1)2 > 2 implies

2n > 2
√

2n + 1 ≥ |t|+ 1, so both D01 and D11 are nonempty. ut

Given a2, a6 defining a Weierstrass curve, one can choose a random d1 with
Tr(d1) = Tr(a2) + 1, check whether Tr(

√
a6/d2

1) = 1, and if so compute d2 =
d2
1+d1+

√
a6/d2

1, obtaining a complete binary Edwards curve EB,d1,d2 birationally
equivalent to the original curve. The theorem says that this procedure succeeds
for at least one d1, but the proof actually shows more: the procedure succeeds
for approximately 50% of all d1 with Tr(d1) = Tr(a2)+1. Computer experiments
show that it suffices to search a few small field elements d1, where “small” means
“allowing very fast multiplications.”

5 Explicit addition formulas

This section presents explicit formulas for affine addition, projective addition,
and mixed addition on binary Edwards curves. The formulas are not as fast as
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known formulas for Weierstrass curves but have the advantage of being strongly
unified and, for suitable d2, the advantage of completeness. We are continu-
ing to investigate addition speed; we have already found several speedups and
incorporated those speedups into the formulas here.

See Section 6 for much faster doubling formulas, and Section 7 for much
faster differential-addition formulas. We intend to incorporate all new formulas
into the Explicit-Formulas Database, http://hyperelliptic.org/EFD.

Affine addition. The following formulas, given (x1, y1) and (x2, y2) on the
binary Edwards curve EB,d1,d2 , compute the sum (x3, y3) = (x1, y1) + (x2, y2) if
it is defined:

w1 = x1 + y1, w2 = x2 + y2, A = x2
1 + x1, B = y2

1 + y1, C = d2w1 · w2,

D = x2 · y2, x3 = y1 + (C + d1(w1 + x2) + A · (D + x2))/(d1 + A · w2),
y3 = x1 + (C + d1(w1 + y2) + B · (D + y2))/(d1 + B · w2).

These formulas use 2I + 8M + 2S + 3D, where I is the cost of a field inversion,
M is the cost of a field multiplication, S is the cost of a field squaring, and
D is the cost of a multiplication by a curve parameter. The 3D here are two
multiplications by d1 and one multiplication by d2. One can replace 2I with
1I + 3M using Montgomery’s inversion trick.

For complete binary Edwards curves the denominators d1 + A · w2 = d1 +
(x2

1 + x1)(x2 + y2) and d1 + B ·w2 = d1 + (y2
1 + y1)(x2 + y2) cannot be zero. See

Theorem 4.1.

Mixed addition. The following formulas, given (X1 : Y1 : Z1) and (x2, y2) on
the binary Edwards curve EB,d1,d2 , compute the sum (X3 : Y3 : Z3) = (X1 : Y1 :
Z1) + (x2, y2) if it is defined:

W1 = X1 + Y1, w2 = x2 + y2, A = x2
2 + x2, B = y2

2 + y2,

D = W1 · Z1, E = d1Z
2
1 , H = (E + d2D) · w2,

I = d1Z1, U = E + A ·D, V = E + B ·D, Z3 = U · V,

X3 = Z3 · y2 + (H + X1 · (I + A · (Y1 + Z1))) · V,

Y3 = Z3 · x2 + (H + Y1 · (I + B · (X1 + Z1))) · U.

These formulas use 13M + 3S + 3D. As above the 3D are two multiplications
by d1 and one multiplication by d2. For complete binary Edwards curves the
product Z3 = Z4

1 (d1 + (x2
2 + x2)(x1 + y1))(d1 + (y2

2 + y2)(x1 + y1)) cannot be
zero.

Projective addition. The following formulas, given (X1 : Y1 : Z1) and (X2 :
Y2 : Z2) on the binary Edwards curve EB,d1,d2 , compute the sum (X3 : Y3 :
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Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2) if it is defined:

W1 = X1 + Y1, W2 = X2 + Y2, A = X1 · (X1 + Z1), B = Y1 · (Y1 + Z1),

C = Z1 · Z2, D = W2 · Z2, E = d1C
2, H = (d1Z2 + d2W2) ·W1 · C,

I = d1C · Z1, U = E + A ·D, V = E + B ·D, S = U · V,

X3 = S · Y1 + (H + X2 · (I + A · (Y2 + Z2))) · V · Z1,

Y3 = S ·X1 + (H + Y2 · (I + B · (X2 + Z2))) · U · Z1, Z3 = S · Z1.

These formulas use 21M + 1S + 4D. The 4D are three multiplications by d1

and one multiplication by d2. For complete binary Edwards curves the product
Z3 = Z5

1Z4
2 (d1 + (x2

2 + x2)(x1 + y1))(d1 + (y2
2 + y2)(x1 + y1)) cannot be zero.

The following formulas are considerably better than the previous formulas
when d1 and d2 are small:

A = X1 ·X2, B = Y1 · Y2, C = Z1 · Z2, D = d1C, E = C2, F = d2
1E,

G = (X1 + Z1) · (X2 + Z2), H = (Y1 + Z1) · (Y2 + Z2),
I = A + G, J = B + H, K = (X1 + Y1) · (X2 + Y2),
U = C · (F + d1K · (K + I + J + C)),
V = U + D · F + K · (d2(d1E + G ·H + A ·B) + (d2 + d1)I · J),

X3 = V + D · (A + D) · (G + D), Y3 = V + D · (B + D) · (H + D),
Z3 = U + (d2 + d1)C ·K2.

These formulas use 18M+2S+7D. The 7D are three multiplications by d1, two
multiplications by d2 + d1, one multiplication by d2

1, and one multiplication by
d2. One can alternatively compute F as D2, replacing 1D with 1S. For complete
binary Edwards curves the denominator Z3 cannot be zero.

These formulas become simpler in the case d1 = d2:

A = X1 ·X2, B = Y1 · Y2, C = Z1 · Z2, D = d1C, E = C2, F = d2
1E,

G = (X1 + Z1) · (X2 + Z2), H = (Y1 + Z1) · (Y2 + Z2),
I = A + G, J = B + H, K = (X1 + Y1) · (X2 + Y2), L = d1K,

U = C · (F + L · (K + I + J + C)),
V = U + D · F + L · (d1E + G ·H + A ·B),

X3 = V + D · (A + D) · (G + D), Y3 = V + D · (B + D) · (H + D),
Z3 = U.

These formulas use 16M+1S+4D. The 4D are three multiplications by d1 and
one multiplication by d2

1. As above one can replace 1D with 1S. For complete
binary Edwards curves the denominator Z3 cannot be zero.

6 Doubling

This section presents extremely fast doubling formulas on the binary Edwards
curve EB,d1,d2 , first in affine coordinates and then in inversion-free projective
coordinates. The formulas are complete if the curve is complete.
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Since the addition formulas on the curve are strongly unified, they can be
used to double. This is an interesting option when doublings occur “by accident”
or when side-channel uniformity is an issue. This section shows the relation of
the doubling formulas to the general addition formulas.

This section also reviews the literature on doubling formulas for binary ellip-
tic curves, presents two improvements to the best previous formulas for Weier-
strass form, and compares the doubling speeds of binary Edwards curves and
Weierstrass curves.

Affine doubling. Let (x1, y1) be a point on EB,d1,d2 , and assume that the sum
(x1, y1) + (x1, y1) is defined. Computing (x3, y3) = (x1, y1) + (x1, y1) we obtain

x3 =
d2(x1 + y1)2 + (x1 + x2

1)(x1 + y2
1)

d1 + (x1 + y1)(x1 + x2
1)

=
d1(x1 + y1) + x1y1 + x2

1(1 + x1 + y1)
d1 + x1y1 + x2

1(1 + x1 + y1)

= 1 +
d1(1 + x1 + y1)

d1 + x1y1 + x2
1(1 + x1 + y1)

,

where the second line uses that d2(x1 +y1)2 +x2
1y

2
1 +x1y

2
1 = d1(x1 +y1)+x1y1 +

x2
1y1 for all points on EB,d1,d2 . Likewise we have

y3 = 1 +
d1(1 + x1 + y1)

d1 + x1y1 + y2
1(1 + x1 + y1)

.

To compute the affine formulas with one inversion we note that the product
of the denominators of x3 and y3 is

(d1 + x1y1 + x2
1(1 + x1 + y1))(d1 + x1y1 + y2

1(1 + x1 + y1))

= d2
1 + (x2

1 + y2
1)(d1(1 + x1 + y1) + x1y1(1 + x1 + y1) + x2

1y
2
1)

= d2
1 + (x2

1 + y2
1)(d1 + d2(x2

1 + y2
1)) = d1(d1 + x2

1 + y2
1 + (d2/d1)(x4

1 + y4
1)),

where we used the curve equation again. This leads to the doubling formulas

x3 = 1 +
d1 + d2(x2

1 + y2
1) + y2

1 + y4
1

d1 + x2
1 + y2

1 + (d2/d1)(x4
1 + y4

1)
,

y3 = 1 +
d1 + d2(x2

1 + y2
1) + x2

1 + x4
1

d1 + x2
1 + y2

1 + (d2/d1)(x4
1 + y4

1)

needing 1I + 2M + 4S + 2D. The 2D are one multiplication by d2 and one
multiplication by d2/d1. For complete binary Edwards curves all denominators
here are nonzero.

If d1 = d2 some multiplications can be grouped as follows:

A = x2
1, B = A2, C = y2

1 , D = C2, E = A + C,

F = 1/(d1 + E + B + D), x3 = (d1E + A + B) · F, y3 = x3 + 1 + d1F.
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These formulas use only 1I+1M+4S+2D. The 2D are two multiplications by
d1.

Projective doubling. Here are explicit formulas to compute 2(X1 : Y1 : Z1) =
(X3 : Y3 : Z3) if it is defined:

A = X2
1 , B = A2, C = Y 2

1 , D = C2, E = Z2
1 , F = d1E

2,

G = (d2/d1)(B + D), H = A · E, I = C · E, J = H + I, K = G + d2J,

Z3 = F + J + G, X3 = K + H + D, Y3 = K + I + B.

These formulas use 2M + 6S + 3D. The 3D are multiplications by d1, d2/d1,
and d2. For complete binary Edwards curves the denominator Z3 is nonzero.

Comparison with previous work. All of the doubling formulas for binary
elliptic curves presented in the literature have exceptional cases, such as doubling
a point of order 2. Our doubling formulas for complete Edwards curves are the
first complete doubling formulas in the literature. The following comparison
shows that our doubling formulas also provide quite attractive speeds.

The fastest inversion-free doubling formulas mentioned in [9, Table 13.4]
are in López-Dahab coordinates and take 4M + 4S + 1D; these formulas were
introduced by Lange in [26]. The 1D is a multiplication by a2 and is eliminated by
typical curve choices. Formulas in [9, page 294], introduced by López and Dahab
in [28], take 3M+ 5S+ 1D when a2 ∈ {0, 1}; here the 1D is a multiplication by
the curve parameter

√
a6.

For random curves, experiments show that we can always choose d1 to be
small, so our new 2M+6S+3D becomes at worst 4M+6S, slightly slower than
4M + 4S. By choosing curves where d1 and d2/d1 are both small we achieve
2M + 6S, which is significantly faster than 3M + 5S and 4M + 4S.

In [21] Kim and Kim present doubling formulas for curves of the form v2 +
uv = u3 + u2 + a6 needing 2M + 5S + 2D, where the 2D are both by a6. Our
2M + 6S + 3D formulas are slightly slower but have the advantages of extra
generality and completeness.

Our improvements of previous work. We present here two improvements to
doubling formulas in López-Dahab coordinates for binary curves in Weierstrass
form. Of course, this makes the speed competition more challenging for Edwards
curves! ;–)

The first improvement is an easy speedup of the Kim–Kim formulas. Kim and
Kim represent an affine point (u1, v1) as (U1 : V1 : W1 : T1), where u1 = U1/W1,
v1 = V1/W 2

1 , and T1 = W 2
1 . Our improved formulas compute 2(U1 : V1 : W1 :

T1) = (U3 : V3 : W3 : T3) as

A = U2
1 , B = V 2

1 , W3 = T1 ·A, T3 = W 2
3 ,

U3 = (A +
√

a6 T1)2, V3 = B · (B + U3 + W3) + a6T3 + T3.

These improved formulas use only 2M + 4S + 2D, where the 2D are one multi-
plication by a6 and one multiplication by

√
a6.
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The second improvement achieves 2M + 5S + 2D for curves of the shape
v2 + uv = u3 + a6. We represent a point by (U1 : V1 : W1 : T1 : S1), where
additionally S1 = U1W1. The idea used by Kim and Kim does not carry over
to these curves but we have developed the following formulas to compute 2(U1 :
V1 : W1 : T1 : S1) = (U3 : V3 : W3 : T3 : S3):

A = U2
1 , B = V 2

1 , W3 = S2
1 , U3 = (A +

√
a6 T1)2,

T3 = W 2
3 , S3 = U3 ·W3, V3 = B · (B + U3 + W3) + a6T3 + S3.

We caution the reader that these formulas are not complete.

7 Differential addition

This section presents fast explicit formulas for w-coordinate differential addition
on binary Edwards curves. Here w = x + y. Note that w(−P ) = w(P ), since
−(x, y) = (y, x).

“Differential addition” means computing Q+P given Q,P,Q−P : e.g., com-
puting (2m+1)P given (m+1)P,mP,P , or computing 2mP given mP,mP, 0P .
In particular, “w-coordinate differential addition” means computing w(Q + P )
given w(Q), w(P ), w(Q−P ). This section also discusses “w-coordinate differen-
tial addition and doubling”: computing both w(2P ) and w(Q + P ), again given
w(Q), w(P ), w(Q− P ).

More concretely, write (x1, y1) = Q−P , (x2, y2) = P , (x3, y3) = Q, (x4, y4) =
2P , and (x5, y5) = Q+P . This section presents fast explicit formulas to compute
x5 +y5 given x1 +y1, x2 +y2, and x3 +y3. This section also presents fast explicit
formulas to compute x4 + y4 and x5 + y5 given x1 + y1, x2 + y2, and x3 + y3. As
in previous sections, the formulas are complete if the curve is complete.

We analyze the costs of our formulas in several situations. The simplest
situation is that inputs x1 + y1, x2 + y2, x3 + y3 and outputs x4 + y4, x5 + y5 are
represented in affine form, i.e., as field elements. If inversions are expensive—as
they usually are—and storage is available then it is better for each input and
output to be represented in projective form, i.e., as a ratio of two field elements.
Some applications use mixed differential additions, where x1 + y1 is given in
affine form while everything else is projective. We achieve the following speeds:

general case d2 = d1

affine diff addition 1I + 3M + 1S + 1D 1I + 1M + 1S + 1D
affine diff addition+doubling 2I + 4M + 3S + 2D 2I + 1M + 3S + 2D
mixed diff addition 6M + 1S + 2D 5M + 1S + 1D
mixed diff addition+doubling 6M + 4S + 2D 5M + 4S + 2D
projective diff addition 8M + 1S + 2D 7M + 1S + 1D
projective diff addition+doubling 8M + 4S + 2D 7M + 4S + 2D

Why differential addition is interesting. Montgomery in [30] presented
fast formulas for u-coordinate differential addition on non-binary elliptic curves
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v2 = u3 +a2u
2 +u. As an application, Montgomery suggested what is now called

the “Montgomery ladder” to compute u(mP ), u((m+1)P ) given u(P ). The idea
is to recursively compute u(bm/2cP ), u((bm/2c + 1)P ), and then to compute
u(mP ), u((m + 1)P ) with a differential addition and doubling.

The Montgomery ladder is one of the most popular scalar-multiplication
methods. It has several attractive features: it is fast; it fits into extremely small
hardware; and its uniform double-and-add structure adds a natural layer of pro-
tection against simple side-channel attacks. See [29], [6], [15], [11], and [19]. The
input u(P ) is normally given in affine form, creating affine differential additions
if inversions are inexpensive and mixed differential additions otherwise.

Montgomery also suggested a more complicated “PRAC” chain of differential
additions to compute u(mP ) from u(P ). This chain uses more memory than the
Montgomery ladder and does not have the same simple structure, but it is faster
in some situations. This chain rarely reuses the input u(P ); it relies mainly on
projective differential additions if inversions are expensive.

Differential-addition formulas for binary elliptic curves. Several authors
have given formulas for u-coordinate differential additions on binary elliptic
curves v2 + a1uv = u3 + a2u

2 + a6. The resulting Montgomery ladders for
binary elliptic-curve scalar-multiplication fit into even smaller hardware than
the ladders for the non-binary case, and they have similar resistance to simple
side-channel attacks.

Specifically, u-coordinate differential-addition formulas for the case a1 = 1
were presented by Agnew, Mullin, and Vanstone in [1, page 808]; by Lopez and
Dahab in [29, Lemma 2 and Section 4.2]; by Vanstone, Mullin, Antipa, and
Gallant, according to [33]; by Stam in [33, Section 3.1], and by Gaudry in [13,
page 33]. Lopez and Dahab say that their formulas use 6M + 5S for a mixed
differential addition and doubling; see [29, Lemma 5]. Stam, after pointing out
various speedups, says that projective differential addition takes 6M + 1S; that
mixed differential addition takes 4M + 1S; and that a doubling takes 1M +
3S + 1D. Stam also presents differential-addition formulas for the case a6 =
1/a2

1, using only 5M and an unspecified number of S for projective differential
addition. Gaudry states a cost of 5M + 5S + 1D for mixed differential addition
and doubling; Gaudry and Lubicz state the same cost in [14, page 16].

All of the formulas in [1], [29], [33], and [13] fail if the neutral element on
the curve appears. Our new formulas have no trouble with the neutral element,
and have the advantage of completeness for suitable d2. Our formulas are also
competitive in speed with previous formulas—slightly slower in some situations
but slightly faster in others.

The new formulas. Let (x2, y2) be a point on the binary Edwards curve
EB,d1,d2 . Assume that the sum (x2, y2) + (x2, y2) is defined (as it always is on
complete binary Edwards curves). Write (x4, y4) = (x2, y2) + (x2, y2), and write
wi = xi + yi. Then d2

1 + d1w
2
2 + d2w

4
2 6= 0 and

w4 =
d1w

2
2 + d1w

4
2

d2
1 + d1w2

2 + d2w4
2

=
w2

2 + w4
2

d1 + w2
2 + (d2/d1)w4

2
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by Lemma 3.1. In particular, if d2 = d1, then d1 + w2
2 + w4

2 6= 0 and

w4 = 1 +
d1

d1 + w2
2 + w4

2

.

More generally, assume that (x1, y1), (x2, y2), (x3, y3), (x5, y5) are points on
EB,d1,d2 satisfying (x1, y1) = (x3, y3)− (x2, y2) and (x5, y5) = (x2, y2) + (x3, y3),
and write wi = xi + yi as before. Then, by Lemma 3.1,

d2
1 + w2w3(d1(1 + w2 + w3) + d2w2w3) 6= 0

and

w1 + w5 =
d1w2w3(1 + w2)(1 + w3)

d2
1 + w2w3(d1(1 + w2 + w3) + d2w2w3)

,

w1w5 =
d2
1(w2 + w3)2

d2
1 + w2w3(d1(1 + w2 + w3) + d2w2w3)

.

In particular, if d2 = d1, then d1 + w2w3(1 + w2)(1 + w3) 6= 0 and

w1 + w5 = 1 +
d1

d1 + w2w3(1 + w2)(1 + w3)
,

w1w5 =
d1(w2 + w3)2

d1 + w2w3(1 + w2)(1 + w3)
.

Cost of affine w-coordinate differential addition and doubling. The
explicit formulas

R = w2 · w3, S = R2, T = R · (1 + w2 + w3) + S,

w5 = T · 1
d1 + T + (d2/d1 + 1)S

+ w1

use 1I+3M+1S+1D, where the 1D is a multiplication by the curve parameter
d2/d1 + 1. For complete binary Edwards curves the denominator is never zero.

If d2 = d1 then the explicit formulas

A = w2
2, B = A + w2, C = w2

3, D = C + w3, w5 = 1 + d1
1

d1 + B ·D
+ w1

use just 1I+1M+2S+1D. For complete binary Edwards curves the denominator
is never zero.

Doubling: The explicit formulas

A = w2
2, J = A2, K = A + J, w4 = K · 1

d1 + K + (d2/d1 + 1)J

use 1I+1M+2S+1D, where the 1D is a multiplication by the curve parameter
d2/d1 + 1. For complete binary Edwards curves the denominator is never zero.
The total cost of a differential addition and doubling is 2I + 4M + 3S + 2D, or
1I + 7M + 3S + 2D with Montgomery’s inversion trick.
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If d2 = d1 then the explicit formulas

A = w2
2, B = A + w2, w4 = 1 + d1

1
d1 + B2

use just 1I + 2S + 1D. For complete binary Edwards curves the denominator is
never zero. These formulas can share the computations of A and B with differ-
ential addition, reducing the total cost of a differential addition and doubling to
2I + 1M + 3S + 2D, or 1I + 4M + 3S + 2D with Montgomery’s inversion trick.

Cost of mixed w-coordinate differential addition and doubling. As-
sume that w1 is given as a field element, that w2, w3 are given as fractions
W2/Z2,W3/Z3, and that w4, w5 are to be output as fractions W4/Z4,W5/Z5.

The explicit formulas

C = W2 · (Z2 + W2), D = W3 · (Z3 + W3), E = Z2 · Z3, F = W2 ·W3,

V = C ·D, U = V + (
√

d1 E +
√

d2/d1 + 1 F )2, W5 = V + w1 · U, Z5 = U

use 6M + 1S + 2D, where the 2D are multiplications by the curve parameters√
d1 and

√
d2/d1 + 1. For complete binary Edwards curves Z5 cannot be zero.

If d2 = d1 then the explicit formulas

C = W2 · (Z2 + W2), D = W3 · (Z3 + W3), E = Z2 · Z3,

V = C ·D, U = V + d1E
2, W5 = V + w1 · U, Z5 = U

use only 5M + 1S + 1D.
Doubling: The explicit formulas

C = W2 · (Z2 + W2), W4 = C2, Z4 = W4 + (( 4
√

d1 Z2 + 4
√

d2/d1 + 1 W2)2)2

use 1M+3S+2D, where the 2D are multiplications by the curve parameters 4
√

d1

and 4
√

d2/d1 + 1. For complete binary Edwards curves Z4 cannot be zero. These
formulas can share the computation of C with differential addition, reducing the
total cost of differential addition and doubling to 6M + 4S + 4D.

If d2 = d1 then the explicit formulas

C = W2 · (Z2 + W2), W4 = C2, Z4 = d1(Z2
2 )2 + W4

use 1M+3S+1D and can share the computation of C with differential addition,
reducing the total cost of differential addition and doubling to 5M + 4S + 2D.

Cost of projective w-coordinate differential addition and doubling.
Assume that w1, w2, w3 are given as fractions W1/Z1,W2/Z2,W3/Z3, and that
w4, w5 are to be output as fractions W4/Z4,W5/Z5.

Replacing “W5 = V + w1 · U, Z5 = U” in any of the mixed formulas with
“W5 = V · Z1 + U · W1, Z5 = U · Z1” produces projective formulas costing
2M extra. For example, starting from the 5M + 4S + 2D formulas for mixed
differential addition and doubling with d2 = d1, one obtains 7M + 4S + 2D
formulas for projective differential addition and doubling with d2 = d1.
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Our w1w5 formulas offer an interesting alternative. For example, the explicit
formulas

A = W2 ·W3, B = Z2 · Z3, C = (W2 + Z2) · (W3 + Z3),

W5 = Z1 · (d1(C + A + B)2), Z5 = W1 · (A · C + (
√

d1 B +
√

d2/d1 + 1 A)2)

use only 6M + 2S + 3D for differential addition. These formulas assume that
w1 is known, or checked, to be nonzero—if w1 = 0 then one must resort to the
previous formulas for w5—but they still have the virtue of handling arbitrary
w2, w3, w4, w5. Note that w1 is fixed throughout the Montgomery ladder, and is
0 only if the starting point is (0, 0) or (1, 1).

Recovering 2P from Q − P, w(P ), w(Q). If w2
1 + w1 6= 0 then

x2
2+x2 =

w3

(
d1+w1w2(1+w1+w2)+

d2

d1
w2

1w
2
2

)
+d1(w1+w2)+(y2

1+y1)(w2
2+w2)

w2
1+w1

.

One can use this formula to compute 2(x2, y2) given x1, y1, w2, w3; i.e., to recover
2P given Q−P,w(P ), w(Q). The formula produces x2

2+x2; a “half-trace” compu-
tation reveals either x2 or x2 +1, and therefore either (x2, y2) or (x2, y2)+(1, 1).
The failure case w2

1 + w1 = 0 occurs only if 4(Q− P ) = (0, 0).
In particular, one can recover 2mP given P,w(mP ), w((m + 1)P ), except in

the easily recognizable case 4P = (0, 0). The Montgomery ladder can therefore
be used not just to compute w(mP ) given w(P ), but also to compute 2mP given
P . If P has odd order `, as it does in typical cryptographic applications, then
one can replace m by (m/2) mod `, obtaining mP = 2((m/2) mod `)P from P
via w(((m/2) mod `)P ).
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