
A Real-World Attack Breaking A5/1
within Hours

Timo Gendrullis, Martin Novotný, Andy Rupp

Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany.
{gendrullis, arupp}@crypto.rub.de, novotnym@fel.cvut.cz

Abstract. In this paper we present a real-world hardware-assisted at-
tack on the well-known A5/1 stream cipher which is (still) used to secure
GSM communication in most countries all over the world. During the
last ten years A5/1 has been intensively analyzed [1,2,3,4,5,6,7]. How-
ever, most of the proposed attacks are just of theoretical interest since
they lack from practicability — due to strong preconditions, high com-
putational demands and/or huge storage requirements — or have never
been fully implemented.
In contrast to these attacks, our attack which is based on the work by
Keller and Seitz [8] is running on an existing special-purpose hardware
device, called COPACOBANA [9]. With the knowledge of only 64 bits of
keystream the machine is able to reveal the corresponding internal 64-bit
state of the cipher in about 6 hours on average. We provide a detailed
description of our attack architecture as well as implementation results.

Keywords. A5/1, GSM, special-purpose hardware, COPACOBANA.

1 Introduction

The Global System for Mobile communications (GSM) was initially developed in
Europe in the 1980s. Today it is the most widely deployed digital cellular com-
munication system all over the world. The GSM standard specifies algorithms
for data encryption and authentication. A5/1 and A5/2 are the two encryption
algorithms stipulated by this standard, where the stream cipher A5/1 is used
within Europe and most other countries. A5/2 is the intentionally weaker version
of A5/1 which has been developed — due to the export restrictions — for de-
ploying GSM outside of Europe. Though the internals of both ciphers were kept
secret, their designs were disclosed in 1999 by means of reverse engineering [10].
In this work we focus on the stronger GSM cipher A5/1.

1.1 The A5/1 Stream Cipher

A5/1 is a synchronous stream cipher accepting a 64-bit session key KS =
(k0, . . . , k63) ∈ GF (2)64 and a 22-bit initial vector IV = (v0, . . . , v21) ∈ GF (2)22

derived from the 22-bit frame number which is publicly known. It uses three

linear feedback shift registers (LFSRs) R1, R2, and R3 of lengths 19, 22, and
23 bits, respectively, as its main building blocks (see Figure 1). The taps of the
LFSRs correspond to primitive polynomials and, therefore, the registers produce
sequences of maximal periods. R1, R2, and R3 are clocked irregularly based on
the values of the clocking bits (CBs) which are bits 8, 10, and 10 of registers R1,
R2, and R3, respectively.

The A5/1 keystream generator works as follows. First, an initialization phase
is run. At the beginning of this phase all registers are set to 0. Then the key setup
and the IV setup are performed. In the initialization phase all three registers are
clocked regularly and the key bits followed by IV bits are xored with the least
significant bits of all three registers. Thus, after 64 + 22 = 86 clock-cycles the
state Si is achieved.

Based on this initial state Si the warm-up phase is performed where the
generator is clocked for 100 clock-cycles and the output is discarded. This results
directly in the state Sw producing the first output bit 101 clock-cycles after the
initialization phase. Note that already during the warm-up phase and also during
the stream generation phase which starts afterwards, the registers R1, R2, and
R3 are clocked irregularly. More precisely, the stop/go clocking is determined by
the bits R1[8], R2[10], and R3[10] in each clock-cycle as follows: the majority
of the three bits is computed, where the majority of three bits a, b, c is defined
by maj(a, b, c) = ab + ac + bc. R1 is clocked iff R1[8] agrees with the majority.
R2 is clocked iff R2[10] agrees with the majority. R3 is clocked iff R3[10] agrees
with the majority. Regarding to Table 1 in each cycle at least two of the three
registers are clocked. After these clockings, an output bit is generated from the
values of R1, R2, and R3 by xoring their most significant bits.

Table 1. Clockcontrol of A5/1

CB of R1: R1[8] 0 0 0 1 0 1 1 1
CB of R2: R2[10] 0 0 1 0 1 0 1 1
CB of R3: R3[10] 0 1 0 0 1 1 0 1

Majority 0 0 0 0 1 1 1 1

Clock R1?
√ √ √

– –
√ √ √

Clock R2?
√ √

–
√ √

–
√ √

Clock R3?
√

–
√ √ √ √

–
√

After warm-up A5/1 produces 228 output bits, one per clock-cycle. 114 of
them are used to encrypt uplink traffic, while the remaining bits are used to
decrypt downlink traffic. In the remainder of this paper we assume that we are
given at least 64 consecutive bits of such a 228 bit keystream.

19

0123456791011121415

01234567891112131415161718

19 0123456891112131415161718

13161718

2021

22 2021 7

8

10

10

Output
Keystream

Majority of
R1[8], R2[10], R3[10]

clk

XOR

XOR

XOR

XNORen

en XNOR

XNOR

clk

clk

en

XOR

Fig. 1. Design of A5/1

1.2 Related Work

During the last decade the security of A5/1 has been extensively analyzed. Pio-
neering work in this field was done by Anderson [11], Golic [5], and Babbage [12].

Anderson’s basic idea was to guess the complete content of the registers R1
and R2 and about half of the register R3. In this way the clocking of all three
registers is determined and the second half of R3 can be derived given 64 bits of
keystream. In the worst-case each of the 252 determined state candidates (i.e.,
candidates for Sw) needs to be verified against the keystream which imposes a
high workload when done in software.

The hardware-assisted attack by Keller and Seitz [8] is based on Anderson’s
idea. However, they proposed a way to exclude a significant fraction of pos-
sible candidates at a very early stage of the verification process. The authors
claim that their approach reduces the attack complexity to 241 · (3

2)11 with an
expected computing time of 14 clock-cycles per guess. This results in a worst-
case complexity of 251.24 clock cycles. They implemented the attack on a Xilinx
XC4062 FPGA. The FPGA is hosting seven instances of the guessing algorithm
and operates at a frequency of 18.65 MHz leading to an attack time of about 236
days. Unfortunately, the approach given in [8] does not only immediately discard
wrong candidates but a priori restricts the search for candidates to a certain sub-
space. This fact is not explicitly mentioned in the paper. Moreover, no complete
analysis of the attack is given. Our analyses in Section 2 show that the success
probability of their attack is only about 18% and the expected computing time
for a guess is slightly higher than the stated one.

The key idea of Golic’s attack [5] is to guess the lower half of each register
(these bits determine the register clocking in the first few clock-cycles) and clock
the cipher until the guessed bits “run-out”. Each output bit immediately yields a
linear equation in terms of the internal state bits belonging to the upper halves
of three registers. Then we continue guessing the clocking sequence yielding

again other linear equations that describe the output of the majority function.
Whenever 64 linearly independent equations are obtained in this way the system
is solved using Gaussian elimination. The complexity of this attack is O(240)
steps. However, each step is fairly complex since it comprises to compute the
solution of an 64 × 64 LSE (and the verification of the corresponding state
candidate).

Pornin and Stern proposed a SW/HW tradeoff attack [7] that is based on
Golic’s approach but in contrast to Golic they are guessing the clocking se-
quence from the very first step, similarly to [13]. These guesses create a tree
with 4 branches in each node (each branch represents one clocking combina-
tion, cf. Table 1). While traversing a path down the tree, three equations are
obtained at each node (similarly to the second phase of Golic’s method), namely
two equations describing the clocking and one equation describing the output.
Hence, after n steps (in depth) one collected 3n equations. The tradeoff pa-
rameter n is chosen such that 3n < 64. Thus, each path in the tree leads to
an underdetermined LSE that is solved in software resulting in a parametric
solution on the internal state. The basis of the corresponding linear subspace
containing all solutions to such an LSE consists of (64− 3n+ 1) 64-bit vectors.
These vectors are sent to the hardware, where a brute force attack is performed,
i.e., each of the 264−3n elements of the subspace is generated and loaded to the
A5/1 instance. The instance is run after each load to verify the obtained output
keystream against the given keystream. The authors estimated an average run-
ning time of 2.5 days when using an XP-1000 Alpha station for the software part
and two Pamettes 4010E for the hardware part of the attack (where n = 18).

The authors consider to place twelve A5/1 instances into one Xilinx 4010E
FPGA, occupying 12 × 36 = 432 CLBs out of 576 (75% of the FPGA). Unfor-
tunately, any details (especially the area) of the unit generating 264−3n internal
states are missing which makes it hard to verify the stated figures. However,
these figures do not seem to be based on real measurements and we consider
them as too optimistic; we expect that the generator unit occupies a relatively
large area. For instance, when choosing n = 18 the transmitted basis consists
of 11 vectors, i.e., 11 × 64 = 704 bits. Since the deployed Xilinx 4010E FPGA
contains only 1152 flip-flops, more than 60% of them would be used just for
holding the coefficients of the basis. So there seems not to be enough space to
place twelve A5/1 units (needing further 12× 64 = 768 flip-flops) on the FPGA
as stated in the paper.

Finally, there is a whole class of time-memory-data tradeoff (TMDTO) at-
tacks on A5/1 which share the common feature that a large amount of known
keystream must be available and/or huge amounts of data must be precomputed
and stored in order to achieve reasonable success rates and workloads for the
online phase of these attacks. Simple forms of such attacks have been indepen-
dently proposed by Babbage [12] and Golic [5]. Recently, Biryukov, Shamir, and
Wagner presented an interesting (non-generic) variant of an TMDTO [3] (see
also [14]) utilizing a certain property of A5/1 (low sampling resistance). The
precomputation phase of this attack exhibits a complexity of 248 and memory

requirements of only about 300 GB, where the online phase can be executed
within minutes with a success probability of 60%. However, 2 seconds of known
keystream (i.e., about 25000 bits) are required to mount the attack making
it impractical. Another important contribution in this field is due to Barkan,
Biham, and Keller [15] (see also [16]). They exploit the fact that GSM em-
ploys error correction before encryption — which reveals the values of certain
linear combinations of stream bits by observing the ciphertext — to mount a
ciphertext-only TMDTO. However, in the precomputation phase of such an at-
tack huge amounts of data need to be computed and stored; even more than
for known-keystream TMDTOs. For instance, if we assume that 3 minutes of
ciphertext (from the GSM SACCH channel) are available in the online phase,
one needs to precompute about 50 TB of data to achieve a success probability
of about 60% (cf. [16]). There are 2800 contemporary PCs required to perform
the precomputation within one year. These are practical obstacles making actual
implementations of such attacks very difficult. In fact, to the best of our knowl-
edge no full implementation of TMDTO attack against A5/1 has been reported
yet.

1.3 Our Contribution

As seen in the previous section most of the proposed attacks against A5/1 lack
from practicability and/or have never been fully implemented. In contrast to
these attacks, we present a real-world attack revealing the internal state of A5/1
in about 6 hours on average (and about 12 hours in the worst-case) using an
existing low-cost (about US$ 10,000) special-purpose hardware device. To mount
the attack only 64 consecutive bits of a known keystream are required and we
do not need any precomputed data. Also the communication requirements with
the host computer are relatively small.

On the theoretical side, we present a modification and analysis of the ap-
proach sketched in [8]. Furthermore, we propose an optimization of the attack
implementation leading to an improvement of about 13% in computation time
compared to a plain implementation. Both plain and optimized version of the
attack have been fully implemented and tested on our target platform.

1.4 Implementation Platform

The COPACOBANA (Cost-Optimized Parallel Code Breaker) machine [9] is a
high-performance, low-cost cluster consisting of 120 Xilinx Spartan3-XC3S1000
FPGAs. Currently, COPACOBANA appears to be the only such reconfigurable
parallel FPGA machine optimized for code breaking tasks reported in the open
literature. Depending on the actual algorithm, the parallel hardware architecture
can outperform conventional computers by several orders of magnitude. COPA-
COBANA has been designed under the assumptions that (i) computationally
costly operations are parallelizable, (ii) parallel instances have only a very lim-
ited need to communicate with each other, (iii) the demand for data transfers

between host and nodes is low due to the fact that computations usually dom-
inate communication requirements and (iv) typical crypto algorithms and their
corresponding hardware nodes demand very little local memory which can be
provided by the on-chip RAM modules of an FPGA. Considering these charac-
teristics COPACOBANA appeared to be perfectly tailored for simple guess-and-
determine attacks on A5/1 like the one described in the next section.

2 Analysis and Modification of Keller and Seitz’s
Approach

The approach is based on a simple guess-and-determine attack proposed by R.
Anderson in 1994 where the shorter registers R1 and R2 are guessed and the
longer register R3 is to be determined. But because Anderson neglected the
asynchronous clocking of the registers at first, only the 12 most significant bits
of R3 can be determined from the known keystream while the remaining bits
have to be guessed as well.

Keller and Seitz’s attack can be divided into two phases, into the determina-
tion phase in which a possible state candidate consisting of the three registers of
A5/1 after its warm-up phase is generated and into a subsequent postprocessing
phase in which the state candidate is checked for consistency.

2.1 Analysis

In the determination phase, Keller and Seitz try to reduce the complexity of the
simple guess-and-determine attack further by early recognizing contradictions
that can occur by guessing the clocking bit (CB) of R3 such that R3 will not
be clocked. Therefore, they first completely guess the registers R1 and R2 and
then derive register R3 in the following manner. Let Ri(t)[n] denote the n-th
bit of register Ri at a time t, where t = 0 is immediately after the warm-up
phase of A5/1 and increases by 1 every clock-cycle. Then, foremost compute
the first most significant bit (MSB) of R3, which is R3(0)[22], immediately out
of R1(0)[18] and R2(0)[21] and the first bit of the known keystream (KS). Then
inspect the clocking bits of registers R1 and R2, which are R1(0)[8] and R2(0)[10],
and guess the first clocking bit of R3, namely R3(0)[10]. If R1(0)[8] and R2(0)[10]
are not equal, R3 will be clocked in either way and so both possibilities for
R3(0)[10] have to be checked. But if the CBs of R1 and R2 are identical then
at least these two registers will be clocked. Assume now the CB of R3 is chosen
to be different from the ones of R1 and R2, i.e., R3(0)[10] 6= R1(0)[8], and as a
consequence R3 will not be clocked. Now in one half of these cases the generated
output bit of the MSBs of all three registers (which are R1(1)[18] = R1(0)[17],
R2(1)[21] = R2(0)[20], R3(1)[22] = R3(0)[22]) does not match the given keystream
bit and a contradiction occurs. As a consequence the CB of R3 has to be guessed
in a way that R3 will be clocked together with R1 and R2, i.e., the CB of R3
is to be chosen equal to the CBs of R1 and R2, so that a new MSB can be
computed.

By early recognizing this possible contradiction while guessing R3(t)[10], all
arising states of this contradictory guess neither need to be computed further on
nor checked afterwards. To further reduce the complexity of the attack they do
not only discard these described wrong possibilities for the CB of R3 in case of a
contradiction but they also limit the number of choices to the one of not-clocking
R3 if this is possible without any contradiction. After having computed the first
MSB of R3 the process of guessing a CB and computing another MSB of R3 is
repeated until R3 is completely determined which is after having clocked R3 for
11 times.

This heuristic reduces the number of possibilities for R3(t)[10] in one half
of all cases from two to one. The number of possible state candidates to be
checked decreases thus from 211 to (2 − 1

2)11 = (3
2)11 ≈ 26.43 ≈ 86 for every

fixed guess of registers R1 and R2 in general. This results in 241 · 26.43 = 247.43

possible state candidates. But because they discard some valid states as well
as states leading to a contradiction they have only a low success probability.
The number of all valid state candidates for one fixed guess of R1 and R2 is
(2− 1

4)11 = (7
4)11 ≈ 28.88 ≈ 471. Thus, the number of state candidates inspected

by Keller and Seitz in proportion to the number of valid state candidates results
in a success probability of only 86

471 ≈ 0.18 = 18%.

Immediately after the determination phase, the A5/1 is performed with the
generated state candidate in the postprocessing phase and the generated output
bits are checked against the remaining bits of the 64 bit known keystream. Keller
and Seitz just state that this consistency check in the postprocessing phase will
proceed fast and that both, determining a state candidate and checking it against
the known keystream, will take 14 ≈ 23.81 clock-cycles. This leads to a complexity
of 247.43·23.81 = 251.24 clock-cycles. But with this expected amount of clock-cycles
they underestimated the time complexity as will be shown in Section 2.2.

One instance of Keller and Seitz’s guessing algorithm occupies 313 out of
the 2304 configurable logic blocks (CLBs) of the XC4062 FPGA. It is hard to
estimate how fast the original Keller-Seitz attack would be when implemented on
COPACOBANA, since the architecture and the performance of the XC4062 [17]
and the Spartan-3 XC3S1000 [18] FPGAs are different. For example, one XC4000
CLB only roughly corresponds to one Spartan-3 slice, because it contains two
4-input look-up tables (LUT), one 3-input LUT and two flip-flops (FF), while
a Spartan-3 slice contains only two 4-input LUTs and two FFs. Because the
available number of slices on a Spartan-3 XC3S1000 FPGA is 7680 and if we
assume that one instance of the guessing algorithm would occupy 313 slices, a
maximum number of 24 instances could be implemented on one FPGA. This
leaves just 168 slices for other circuits for controlling the instances. According to
the datasheets the “internal performance of XC4000 family chips can exceed 150
MHz” while the “maximum toggle frequency of Spartan-3 chips is 630 MHz”.
That represents a performance ratio of less than 4.2. Out of these figures we
estimate that the attack would not be faster than 24

7 × 4.2 × 120 = 1728 times
when run on COPACOBANA. This yields to a minimum of 3.27 hours to perform
the search of Keller and Seitz. But if we recall again that (i) the attack searches

is R3
clocked less than

11 times?

compute R3(t)[22]
R3 is completely deter-
mined: continue with
checking against KS

NO

guess R3(t)[10]

is R3 clocked? clock registers with
applied clocking-rule

do
generated

and given KS bits
match?

discard subtree with
R3(t)[10] = not R1(t)[8]

YES

YES

NO

do
generated

and given KS bits
match?

clock registers
with applied
clocking-rule

is A5/1
clocked less than

64 times?

YES

NO

key-candidate
found

contradiction during
postprocessing:

discard derived R3

NO

NO

YES

YES

Start

Fig. 2. Flowchart of the FSM of a guessing-engine

only through 18% of the valid states, the search through all valid states would
take at least 18.19 hours, (ii) the number of guessing instances implemented in
one FPGA would be less than 24 since at least an additional control logic has
to be implemented, and (iii) Keller and Seitz underestimate the time complexity
as will be shown in Section 2.2, the computation time is expected to increase
significantly.

2.2 A Slight Modification

Our algorithm is similar to the one proposed by Keller and Seitz except that we
only discard wrong possibilities for R3(t)[10] that would immediately lead into a
contradiction. But if no contradiction appears we still check both possibilities for
R3(t)[10], which means clocking and not-clocking R3. Because of this, we take
every possible state candidate into account and therefore will find unlike Keller
and Seitz the correct state candidate in any case. This reduces only in 1

4 of all
cases the number of choices from two to one and, hence, the expected number of
possibilities for R3 that need to be checked is approximately 471 for every fixed
guess of registers R1 and R2 (cf. Section 2.1).

A flowchart of the decisions during the determination phase and the post-
processing phase shows Figure 2. A more detailed overview of how R3(t)[10] is
guessed and how certain subtrees are discarded is given in Figure 3.

R1(t)[8] = R2(t)[10] ?

R3(t)[22]
⊕ R1(t+1)[18]
⊕ R2(t+1)[21]
= KS(t+1) ?

R3(t)[10] = not R1(t)[8]:
only clock R1 & R2

R3(t)[10] = R1(t)[8]:
clock R1, R2, R3

discard subtree with
R3(t)[10] = not R1(t)[8]

subtree with
R3(t)[10] = not R1(t)[8]

already checked?

R3(t)[10] = R1(t)[8]:
only clock R1 & R3

R3(t)[10] = not R1(t)[8]:
only clock R2 & R3

YES

YES

NO

NO

YES

NO

YES NO

subtree with
R3(t)[10] = not R1(t)[8]

already checked?

Fig. 3. Guessing the clocking bit of R3 in detail

0 110 10 0

0 11101 0

010 1101
R1

R2

R3
KS = 0, 1, 1, 0, ...

22 21 20 19 18 17 16 ... 10 9 8 7 615

Fig. 4. An example for a generated state can-
didate after 3 times guessing R3(t)[10]

b(t): R3(t)[10] = R1(t)[8]
a(t): R3(t)[10] ≠ R1(t)[8]

a(0)

a(1)

a(2)

b(0)

b(1)

b(2)b(2)b(2)

b(1)

Fig. 5. An example for a reduced binary
decision tree of R3(t)[10]

Example. An example for the first steps of the reduction of possibilities per-
formed by the algorithm is given in Figure 4. It shows next to the first 4 bits of
a known keystream the first 4 MSBs and the first 3 CBs of the guessed registers
R1 and R2 and of the derived register R3. The algorithm proceeds as follows.

1. Compute R3(0)[22] = R1(0)[18]⊕R2(0)[21]⊕KS[0] = 0.
2. R1(0)[8] 6= R2(0)[10]: ChooseR3(0)[10] = 0 6= R1(0)[8] first and clock registers
R2 and R3.

3. Compute R3(1)[22] = R3(0)[21] = R1(0)[18]⊕R2(0)[20]⊕KS[1] = 0.
4. R1(0)[8] = R2(0)[9]: Not clocking register R3 would result in a contradiction

because R1(0)[17]⊕R2(0)[19]⊕R3(0)[21] 6= KS[2].
Hence, discard the possibility R3(1)[10] = 0 = R3(0)[9] 6= R1(1)[8], instead
choose R3(1)[10] = 1 = R3(0)[9] = R1(0)[8], and clock all registers R1, R2,
R3.

5. Compute R3(2)[22] = R3(0)[20] = R1(0)[17]⊕R2(0)[19]⊕KS[2] = 1.

6. ...

The example ends here because it is apparent from Figure 5, which shows the
binary decision tree for R3(t)[10] up to a depth of 3, that discarding possibilities
for R3(t)[10] results in cutting whole subtrees. In the example above we chose
edge a(0) = R3(0)[10] = 0 6= R1(1)[8] at the root node first and then discarded
the possibility a(1) = R3(1)[10] = 0 6= R1(1)[8] at the corresponding node of
depth 1.

Time Complexity of the Attack. Generating one possible state candidate
during determination phase takes one clock-cycle for deriving R3(0)[22] and then
eleven times clocking register R3 to determine the remaining MSBs of the reg-
ister. With a probability of Pclk = 3

4 for clocking a register of A5/1 it takes
an expected number of 1 + 4

3 · 11 = 15 2
3 clock-cycles to generate the state can-

didate for fixed registers R1 and R2 and the known keystream. Because every
clock-cycle one bit of the known keystream is inspected, the expected number of
needed known keystream bits to generate a state candidate corresponds to the
number of clock-cycles needed for this process.

After having generated one state candidate it needs to be checked in the post-
processing phase further on against the remaining bits of the known keystream.
To be able to perform this check immediately after the determination phase
we additionally compute the feedback bits of register R3 with its linear feed-
back function. We start with this computation from the time when R3(3)[10] =
R3(0)[7] is guessed. So we already computed 8 of the 11 feedback bits of R3 when
the state candidate is generated. The remaining 3 feedback bits are computed
in parallel and we continue with performing A5/1. Now, the produced output is
compared to the known keystream. A contradiction between the generated out-
put and a known keystream bit is expected to occur with a probability of α = 1

2
in the first clock-cycle of postprocessing. Every cycle the algorithm is clocked
further on, the probability of a contradiction is again 1

2 . Generally speaking, it is
αn = 1

2n for the n-th cycle after the determination phase and the algorithm will
clock on with an expected value of 1

α = 2 further needed clock-cycles to inspect
the output. If it is clocked without any contradiction up to the 64-th bit of the
known keystream we found a valid state candidate for reconstructing the session
key. Although there might be more than just one state candidate generating the
same 64 bit of output, the probability for this event is negligible.

So, we get an expected number of T = 15 2
3+2 = 17 2

3 clock-cycles to determine
a state candidate and check it for consistency with the given keystream instead
of just 14 clock-cycles as stated by Keller and Seitz. Thus, the time complexity
of our whole attack is C ≈ 241 · (7

4)11 · 17 2
3 ≈ 254.02.

3 Breaking A5/1 on COPACOBANA

3.1 Our Hardware Architecture

This section presents an efficient implementation of a guessing-engine in hard-
ware which performs the determination phase and the postprocessing phase

of the attack. On every FPGA, several instances of this guessing-engine will
be implemented. Therefore, we will additionally introduce a hardware-software-
interface controlling these instances and providing intercommunication.

The Guessing-Engine. Figure 6 shows an overview of the guessing-engine with
its different components. A large part of the architecture for implementing this
guessing-engine consists of flip-flops (FFs) for storing the content of different
registers. This is in detail the state candidate register, storing the computed
register R3 and the fixed guess of registers R1 and R2 in 64 bits. Additionally,
we need FFs to store the 64 bits of known keystream and an additional simple
shift register to evaluate a different known keystream bit every clock-cycle. To
perform the consistency check in the postprocessing phase, all three A5/1 LFSRs
have to be implemented, too. But the most important part of this architecture
is the finite state machine (FSM) performing the determination phase and the
postprocessing phase. Its functionality was already presented in Figures 2 and 3.
The shown process is repeated until all possible state candidates, i.e., the whole
binary decision tree of R3(t)[10], for one fixed guess of registers R1 and R2 have
been checked. The fact, that the guess R3(t)[10] 6= R1(t)[8] is always checked
first corresponds to the binary decision tree of Figure 5. This binary decision
tree storing the discarded or already checked possibilities is mapped into the
branching state register.

The most straightforward way of mapping such a binary decision tree with
a certain height h into hardware, is to use an h-bit wide binary counter. In our
case all leaves are at a depth of d = h = 11. Turning left at a node of the tree,
i.e., R3(t)[10] 6= R1(t)[8], is represented by 0 in the corresponding counter bit
and turning right at a node, i.e., R3(t)[10] = R1(t)[8], is represented by 1. Now,
to reach all leaves from the leftmost unto the rightmost one by one, we initialize
the 11-bit wide counter to all 0 and read it in 11 clock-cycles bit by bit from
the most significant bit (MSB) to the least significant bit (LSB). When having
reached the leftmost leaf in such a manner, we increase the register by one and
restart reading bit by bit at the MSB again. This will lead us to the second
leaf from the left. To reach the rest of the leaves we count through this 11-bit
wide register up to all bits being 1. Now it is claimed by the attack that certain
subtrees of the binary decision tree are discarded (cf. Section 2.2). To be able
to do that while passing through the tree, we have to set the corresponding bits
of the 11-bit wide counter manually to 1 with an 1-to-11 bit demultiplexer. The
FSM does this with bit number b every time a contradiction is detected at a
node of depth d = b+1 and a possibility of R3(t)[10] is discarded. This results in
the reduced number of leaves of the binary decision tree of (7

4)11 ≈ 471 meaning
the amount of possible state candidates for a fixed guess of R1 and R2.

The Control-Interface. Because several instances of the guessing-engine are
implemented on one FPGA they need to be controlled continuously. This is done
by the control-interface and there is exactly one instance of it implemented on
each FPGA of COPACOBANA. It accepts the 64 bit known keystream and a

FSM

State
Transition

Logic
State Memory

Register
Output
Logic

Branching State
Register

State Candidate
Registers:
R1, R2, R3

A5/1 LFSRs:
R1, R2, R3

Fig. 6. An overview of the guessing-engine

sub-searchspace which has to be searched by the FPGA. By sub-searchspace we
mean a certain amount of fixed guesses for registers R1 and R2. Therefore, a
software divides the searchspace consisting of the 241 possibilities into these sub-
searchspaces and transmits to each FPGA another one of them together with the
known keystream. The control-interface of the FPGA then counts through this
sub-searchspace and provides each guessing-engine with a fixed guess of registers
R1 and R2 to be searched. Every time a guessing-engine finishes its search it
sends a report to the control-interface whether it was successful or not on finding
a state candidate and requests for another fixed guess of registers R1 and R2
out of the current sub-searchspace. In case of success the valid state candidate
is propagated to the software. This is repeated until the whole sub-searchspace
is searched by the FPGA. During the search, the software retrieves regularly
at reasonable intervals the status information of each FPGA and assigns a new
sub-searchspace to an FPGA if requested. The search is finished when all state
candidates that can be generated with the 241 possibilities for guessing R1 and
R2, i.e., the whole searchspace, are checked for consistency.

3.2 Optimization: Storing Intermediate States

When completely passing through a binary decision tree, edges near the root
node are traversed much more often than edges near the leaf nodes. The number
of cycles R3 needs to be clocked to reach any leaf of the tree is 11 (cf. Section 3.1).
For example, when inspecting the two leftmost leaves we have to go bit by bit
through the states 00000000000 and 00000000001 of the 11-bit wide counter
corresponding to the tree. Apparently, the first ten edges up to the node of depth
10 for both leaves are identical. Therefore, we can create recovery points at some
depth in the search tree. More precisely, it is possible to store the intermediate
state (i.e., the content of all A5/1 registers) at such a point (node of tree) and
search the subtree starting at this recovery point instead of starting at the root
node. This apparently demands a larger area, but saves a certain amount of
clock-cycles.

Let us assume that reloading takes exactly one clock-cycle. If we store and
reload the intermediate states at depth d = 10, then the number of clock-cycles
for R3 reduces from 11 to 11+1+1

2 = 6.5 on average: 11 times clocking R3 to
reach the first leaf, one clock-cycle reloading the intermediate state, and one
time clocking R3 to reach the next leaf from the reloaded state. If we store the
intermediate states at depth d = 9, the corresponding subtree has 4 leaves. To
reach the leftmost one takes 11 clock-cycles, but to reach the other 3 leaves will
take just 1 + 2 = 3 clock-cycles each. Therefore, the average number of times R3
needs to be clocked is in this case only 11+3+3+3

4 = 8+3·4
4 = 5.

Generalizing this approach of storing and reloading intermediate states at a
depth of d = 10 or d = 9 to a depth of d = b + 1, where b denotes the number
of the bit in the 11-bit wide counter consecutively numbered from 0 to 10, we
need to clock R3

f(b) =
b+ (11− b) · 2(10−b)

2(10−b) (1)

times on average to reach one leaf. The function has a minimum of 4.875 times
clocking R3 on average to reach a leaf for storing and reloading intermediate
states at a depth of bmin = 7 for b ∈ N.

f(b)
g(b)

b
0 2 4 6 8 10

4

5

6

7

8

9

10

11

Fig. 7. Functions f(b), g(b): The average number of cycles clocking R3 to generate a
state candidate with reloading intermediate states at recovery position b

Taking also into account that some subtrees are discarded while passing
through the tree (cf. Section 2.2) and the number of possibilities is reduced from
2 to 7

4 for every guess, the function needs to be adapted:

g(b) =
b+ (11− b) · (7

4)(10−b)

(7
4)(10−b)

. (2)

Both functions f(b) and g(b) are shown in Figure 7. The value for the min-
imum of the function g(b) now changes to approximately 5.31 at bmin = 7 for
b ∈ N. Therefore, the expected number of clock-cycles for generating and check-
ing one state candidate is now

Topt = 1 +
4
3
· 5.31 + 2 ≈ 10.10 ≈ 23.33

instead of T = 17 2
3 (cf. Section 2.2). This results in an optimized time complexity

of

Copt ≈ 241 · 28.88 · 23.33 ≈ 253.21

and reduces the previous complexity of C ≈ 254.02 by 0.81 bit. But when compar-
ing the time complexities of the standard and the optimized guessing-engine we
additionally have to take the required area into account. The optimized guessing-
engine is expected to occupy a larger area because of the storing elements for
intermediate states of several registers. Hence, we will be able to place less in-
stances on one FPGA. This comparison of time-area products is done after the
implementation process and will be discussed in Section 3.3.

3.3 Implementation Results for COPACOBANA

We used Xilinx ISE Foundation 9.2i to synthesize and implement all components
for a Xilinx Spartan3-XC3S1000-FT256 FPGA used in COPACOBANA. The
simulation of the hardware model was done in MentorGraphics ModelSim SE
6.3d.

First, we implemented and tested one single instance of the standard and
optimized guessing engine together with the control-interface for one instance.
Therefore, Table 2 shows the post place & route results of the implementation
process for a single instance of the control-interface and both guessing-engines.

Table 2. Implementation results for the control-interface and the guessing-engines

slices flip-flops look-up tables fmax [MHz]

control-interface 371 304 254 123.19

standard guessing-engine 202 179 256 112.84

optimized guessing-engine 311 312 412 115.01

To decide whether it is worth or not implementing the optimized guessing-
engine in spite of the increased area consumption we calculated the time-area
product. Table 3 shows a comparison of the computing time T and Topt in clock-
cycles (cf. Sections 2.2 and 3.2), the number of slices needed, and the time-area

product in clock-cycles·slices for our standard and optimized implementation
of the guessing-engine. The last row shows the quotient of the values of both
designs. The quotient of the time-area products shows an overall improvement
of about 12% for one single optimized guessing-engine compared to the standard
one. We omitted considering the operating frequencies in the time-area product
because both implementations run at nearly the same speed.

Table 3. Comparison of the implementation results of both guessing-engines

computing-time slices time-area product
[clock-cycles] [clock-cycles · slices]

optimized 10.10 311 3,141.10

standard 17.67 202 3,568.73
optimized
standard

0.57 1.54 0.88

After having tested a single instance of each guessing-engine together with
the control-interface on one of the Spartan3-XC3S1000 FPGAs we attempted
to maximize the utilization ratio of the available hardware resources. For this
purpose, we implemented as many instances as possible of both types of guessing-
engines with one instance of the control-interface. We were able to place & route
36 instances of the standard engine on one of the target FPGAs. However, the
complexity of the control-interface grows with the number of guessing-engines.
For 36 such engines the critical path was transfered to the control-interface cre-
ating the bottle-neck of the design. Therefore, the achieved maximum frequency
of 81.13 MHz was relatively low. So we decided to implement less engines at a
higher frequency instead. The best trade-off for the standard guessing-engine
was to implement 32 instances at a maximum frequency of 102.42 MHz. In case
of the optimized guessing-engine we were able to implement 23 instances running
at 104.65 MHz. The implementation results of both complete designs are shown
in Table 4. Additionally, the available resources of one FPGA are listed, too.

Table 4. Implementation results of the maximally utilized designs

slices FFs LUTs fmax [MHz] ftest [MHz]

1 control-engine &
◦ 36 standard 6,953 (91 %) 10,730 10,576 81.85 72.00
◦ 32 standard 6,614 (86 %) 9,636 9,417 102.42 92.00
◦ 23 optimized 7,494 (98 %) 10,141 10,562 104.65 92.00
guessing-engines

Spartan3-XC3S1000 7,680 (100 %) 15,360 15,360 300.00 —

Table 4 also shows the frequencies the designs were tested with. Thus, we
can calculate a preliminary estimation of the computation time to determine
and check all possible state candidates. For the slow design with the standard
guessing-engine and a time complexity of C = 254.02 (cf. Section 2.2) we expect
a computation time of

test =
254.02

120 · 36 · 72 · 106
· 1

3600
h ≈ 16.31 h.

This is an estimation for a fully equipped COPACOBANA with 120 FPGAs. In
accordance to the previous calculation, the preliminary estimation of the compu-
tation time for the smaller but faster standard design (32 instances @ 92 MHz)
is t′est ≈ 14.36 h. For the optimized guessing-engine (23 optimized instances
@ 92 MHz) with a time complexity of Copt = 253.21 we expect a computation
time of t′′est ≈ 11.40 h.

Time measurements of several extended test runs on COPACOBANA showed
an average computation time of t′ = 13.58 h for the small and fast standard de-
sign to perform a complete search for a given 64 bit known keystream. Comparing
this result to the estimation of the computing time t′est shows that the complex-
ity differs only by 0.08 bit from our measurements. The optimized design took
an average computation time of t′′ = 11.78 h for a full search. This equals a
variation of only 0.05 bit between the estimated and the measured computation
time. Because these were the computation times for a full search (i.e., the worst
case) the expected average time for finding the valid state candidate is 6.79 h for
the standard design and 5.89 h for the optimized design, respectively.

4 Conclusion

In this paper we presented a guess-and-determine attack on the A5/1 stream
cipher running on the special-purpose hardware device COPACOBANA. It re-
veals the internal state of the cipher in less than 6 hours on average needing
only 64 bits of known keystream. We like to stress that our attack is also very
attractive with regard to monetary costs which is a significant factor for the
practicability of an attack: The acquisition costs for COPACOBANA are about
US$ 10,000. Since COPACOBANA has a maximum power consumption of only
600 W, the attack also features very low operational costs. For instance, assum-
ing 10 cent per kWh the operational costs of an attack are only 36 cents.

We like to note that we just provided a machine efficiently solving the problem
of recovering a state of A5/1 after warm-up given 64 bits of known keystream.
There is still some work to do in order to obtain a full-fledged practical GSM
cracker: To finally recover the session key used for encryption, the cipher still
needs to be tracked back from the revealed state to its initial state. Albeit,
this backtracking and the extraction of the key can be done efficiently and in
a fraction of time on almost any platform. Further technical difficulties will
certainly appear when it actually comes to eavesdropping GSM calls. This is
due to the frequency hopping method applied by GSM which makes it difficult

to synchronize a receiver to the desired signal. Also the problem of obtaining
known plaintext is still under discussion in pertinent news groups and does not
seem to be fully solved. However, these are just some technical difficulties that
certainly cannot be considered serious barriers for breaking GSM.

References

1. Barkan, E., Biham, E.: Conditional Estimators: An Effective Attack on A5/1. In:
Proc. of SAC’05. Volume 3897 of LNCS., Springer-Verlag (2006) 1–19

2. Biham, E., Dunkelman, O.: Cryptanalysis of the A5/1 GSM Stream Cipher. In:
Proc. of Indocrypt’00. Volume 1977 of LNCS., Springer-Verlag (2000)

3. Biryukov, A., Shamir, A., Wagner, D.: Real Time Cryptanalysis of A5/1 on a PC.
In: Proc. of FSE’00. Volume 1978 of LNCS., Springer-Verlag (2001) 1–18

4. Ekdahl, P., Johansson, T.: Another Attack on A5/1. IEEE Transactions on Infor-
mation Theory 49(1) (2003) 284–289

5. Golic, J.: Cryptanalysis of Alleged A5 Stream Cipher. In: Proc. of Eurocrypt’97.
Volume 1233 of LNCS., Springer-Verlag (1997) 239–255

6. Maximov, A., Johansson, T., Babbage, S.: An Improved Correlation Attack on
A5/1. In: Proc. of SAC’04. Volume 3357 of LNCS., Springer-Verlag (2005) 239–
255

7. Pornin, T., Stern, J.: Software-hardware Trade-offs: Application to A5/1 Crypt-
analysis. In: Proc. of CHES’00. Volume 1965 of LNCS., Springer-Verlag (2000)
318–327

8. Keller, J., Seitz, B.: A Hardware-Based Attack on the A5/1 Stream Cipher.
http://pv.fernuni-hagen.de/docs/apc2001-final.pdf (2001)

9. Kumar, S., Paar, C., Pelzl, J., Pfeiffer, G., Schimmler, M.: Breaking Ciphers
with COPACOBANA - A Cost-Optimized Parallel Code Breaker. In: In Proc. of
CHES’06. Volume 4249 of LNCS., Springer-Verlag (2006) 101–118

10. Briceno, M., Goldberg, I., Wagner, D.: A Pedagogical Implementation of the GSM
A5/1 and A5/2 “voice privacy” Encryption Algorithms. http://cryptome.org/gsm-
a512.html (1999)

11. Anderson, R.: A5 (was: Hacking digital phones). sci.crypt (17 June 1994)
12. Babbage, S.: A Space/Time Tradeoff in Exhaustive Search Attacks on Stream

Ciphers. In: European Convention on Security and Detection. (May 1995)
13. Golic, J.: Cryptanalysis of three mutually clock-controlled stop/go shift registers.

IEEE Transactions on Information Theory 46 (May 2000) 1081–1090
14. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream

ciphers. In: Proc. of Asiacrypt’00. Volume 1976 of LNCS., Springer (2000) 1–13
15. Barkan, E., Biham, E., Keller, N.: Instant Ciphertext-Only Cryptanalysis of GSM

Encrypted Communications. In: Proc. of Crypto’03. Volume 2729 of LNCS.,
Springer-Verlag (2003)

16. Barkan, E., Biham, E., Keller, N.: Instant Ciphertext-only Cryptanalysis of GSM
Encrypted Communication (full-version). Technical Report CS-2006-07, Technion
(2006)

17. Xilinx: XC4000E and XC4000X Series Field Programmable Gate Arrays (May
1999)

18. Xilinx: Spartan-3 FPGA Family: Complete Data Sheet, DS099 (November 2007)

