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Abstract. Multiplication is the main finite field arithmetic operation in
elliptic curve cryptography and its bit-serial hardware implementation
is attractive in resource constrained environments such as smart cards,
where the chip area is limited. In this paper, a new serial-output bit-
serial multiplier using polynomial bases over binary extension fields is
proposed. It generates a bit of the multiplication in each clock cycle
with the latency of one cycle. To the best of our knowledge, this is the
first time that such a serial-output bit-serial multiplier architecture using
polynomial bases for general irreducible polynomials is proposed.
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1 Introduction

The multiplication over finite (or Galois) field GF (2m) is the main arithmetic
operation in the elliptic curve cryptography [7, 11] and choosing a suitable basis
plays an important role in efficient implementation [6]. A field element can be
represented using different bases, such as polynomial basis (PB), normal basis,
and dual basis. Among them, representation of field elements using a polynomial
basis is simpler and has received more attention for hardware implementation.

A hardware implementation of a finite field multiplier can be categorized
either as a bit-parallel or bit-serial type. In a bit-parallel multiplier over GF (2m),
once 2m bits of two inputs are received, m bits of the product are obtained
together at the output after a propagation delay through various logic gates.
Such a parallel type multiplier (see for example [16, 10, 15, 5, 18, 13, 12]) requires
O(m2) number of gates. On the other hand, a bit-serial multiplier takes m clock
cycles for one multiplication using O(m) number of gates.

Bit-serial multipliers can be categorized into two types of either parallel or
serial output. In the parallel-output bit-serial (POBS) multipliers, all m output
bits of the product are available at the end of the m-th cycle, whereas serial-
output bit-serial (SOBS) multipliers generate one bit of the product in each
of these m cycles. Examples of the former type includes the well known LSB-
and MSB-first bit-serial polynomial basis multipliers [14, 3] and the normal basis
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multiplier due to Agnew et al. [1] while those of the latter type are Berlekamp’s
bit-serial dual basis multiplier [2] and Massey-Omura’s original bit-serial normal
basis multiplier [8]. Usually, POBS multipliers run at a much higher clock rate
than their SOBS counterparts. However, the latency to generate the first bit of
the product in the SOBS multipliers is one clock cycle as compared to m clock
cycles for the POBS ones. Therefore, in applications that require implementa-
tion on resource constrained environment such as smart cards, SOBS multipliers
result in faster overall computation than POBS multipliers since such a system
is usually running at low operating clock frequency. In this paper, we propose
a new SOBS PB multiplier for a general irreducible polynomial. To the best of
our knowledge, this is the first time that a SOBS PB multiplier is proposed for
general polynomials.

The organization of this article is as follows. In Section 2, the traditional bit-
serial architectures for PB multiplication over GF (2m) are introduced. In Section
3, the matrix formulations for the PB multiplication is revisited. Then, we derive
formulations for the proposed multiplier structure. A new serial-output bit-serial
multiplier is proposed in Section 4. Finally, conclusions are given in Section 5.

2 Traditional Bit-Serial Multipliers over GF (2m)

The finite field GF (2m) consists of 2m field elements and is constructed by the
polynomial basis {1, α, α2, · · · , αm−1}, where α is a root of the irreducible
polynomial

P (x) = xm +

ω−2∑

i=1

xti + 1. (1)

In (1), 1 ≤ t0 < t1 < · · · < tω−2, and ω is the number of non-zero terms. Then,
each field element B ∈ GF (2m) can be written with respect to this basis as

B = (bm−1, · · · , b1, b0) =

m−1∑

i=0

biα
i, bi ∈ {0, 1}, (2)

where bis are the coordinates of B. For convenience, these coordinates will be
denoted in vector notation as

b = [b0, b1, · · · , bm−1]
T , (3)

where T denotes the transposition of a vector or a matrix.

There are two types of bit-serial, namely LSB-first and MSB-first, multipliers
[3]. The LSB-first bit-serial multiplier is shown in Figure 1(a). In this multiplier
structure, both X = 〈xm−1, · · · , x1, x0〉 and Y = 〈ym−1, · · · , y1, y0〉 are m
bit registers. Let X(n) and Y (n) denote the contents of X and Y at the n-th,
0 ≤ n ≤ m, clock cycle, respectively. Suppose the X register in Figure 1(a) is
initialized with A, i.e., X(0) = A, then the output of this register at the n-th
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clock cycle is X(n) = X(n) ∈ GF (2m), which is calculated from the input of this
register, i.e., X(n−1), using the α module shown in Figure 1(a) as

X(n) = α · X(n−1) mod P (α), 1 ≤ n ≤ m − 1, (4)

where X(0) = A. Also, suppose that the register Y is initially cleared, i.e., Y (0) =
0. Then, one can obtain the content of Y at the first clock cycle as Y (1) = b0A

and in general at the n-th clock cycle as Y (n) = b0A+
∑n−1

i=1 biX(i), 1 < n ≤ m.
Let C denote the PB multiplication of A and B, i.e., C = AB mod P (α). Then,
using (2) and (4) recursively, one can obtain

C =

m−1∑

i=0

bi · ((Aαi) mod P (α)) (5)

=

m−1∑

i=0

bi · X
(i), (6)

and noting the fact that X(n) = X (n), one can determine that after m clock
cycles Y contains C = AB mod P (α) ∈ GF (2m), i.e., Y (m) = C. The imple-
mentation of bi · X

(i) in (6) is done using m 2-input AND gates. This is shown
with the double circle module with a dot inside in Figure 1(a). Also, the sum
operation in (6) is implemented with m 2-input XOR gates which is shown with
a double circle module with a plus inside. Since the coordinates of B enter the
multiplier from the least significant bit (LSB), i.e., b0, this multiplier is referred
to as the LSB first bit-serial multiplier.

The MSB-first bit-serial multiplier is shown in Figure 1(b). This structure
implements

C = (((bm−1Aα + bm−2A)α + bm−3A) + · · · + b1A)α + b0A, (7)

where the mod P (α) operations after multiplications by α are omitted for sim-
plicity. If the registers U and V are initialized with A = (am−1, · · · , a1, a0) and
0 = (0, · · · , 0, 0), respectively, then one can verify that after the m-th clock
cycle the register V contains the coordinates of C, i.e., V (m) = C. It is noted
that for parallel load of inputs into the registers in Figure 1, multiplexers may
be used. These are not shown in the figure for simplicity.

3 Matrix Formulations for PB Multiplication Revisited

In [10, 9], Mastrovito showed that the coordinates of C = AB mod P (α) are
obtained from the matrix-by-vector product of c = [c0, c1, · · · , cm−1]

T = M ·b,
where M is an m×m binary matrix whose entries depend on the coordinates of A
and the entries of the reduction matrix Q = [qi,j ], 0 ≤ i ≤ m−2, 0 ≤ j ≤ m−1,
defined by [9]

[αm, αm+1, · · · , α2m−2]T ≡ Q[1, α, · · · , αm−1]T (mod P (α)). (8)
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Fig. 1. (a) LSB first bit-serial multiplier. (b) MSB first bit-serial multiplier.
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The Mastrovito matrix M has been studied in [15] and [5] for irreducible tri-
nomials and arbitrary polynomials, respectively. Then, a systematic design to
obtain the Mastrovito matrix M for general irreducible polynomials is presented
in [18].

To find the PB multiplication, another approach is proposed in [17] and [12]
for irreducible trinomials and arbitrary polynomials, respectively. The multipli-
cation operation in this approach consists of two parts of the product of two
field elements A = (am−1, · · · , a1, a0), B ∈ GF (2m), i.e., AB, followed by the
modular reduction, i.e., C = AB mod P (α). Let us denote the result of the
product of two polynomials

AB =
m−1∑

j=0

bjα
jA = D + αmE, (9)

where D = (dm−1, · · · , d1, d0) and E = (0 , em−2, · · · , e1, e0) are the field
elements in GF (2m). It is shown in [12] that the coordinates of E and D can be
obtained from the following:

d =








d0

d1

...
dm−1








= Lb =








a0 0 · · · 0
a1 a0 · · · 0
...

...
. . .

...
am−1 am−2 · · · a0















b0

b1

...
bm−1








, (10)

e =








e0

e1

...
em−2








= Ub =








0 am−1 · · · a2 a1

0 0 · · · a3 a2

...
...

. . .
...

...
0 0 · · · 0 am−1















b0

b1

...
bm−1








. (11)

Then, one can calculate the coordinates of C = (cm−1, · · · , c1, c0) from the
following reduction equation [12]

c = [c0, c1, · · · , cm−1]
T = d + QT e. (12)

Let us define the down shift of the matrix S by j rows as S[↓ j] and the right
shift of S by i columns as S[→ i], where the emptied positions after the shifts
are filled by zeros. Then, it is shown in [4] that the QT matrix in (12) can be
represented as

QT =
∑

i∈N

∑

j∈T

Im×(m−1) [↓ j][→ i], (13)

where the sets N ⊂ {0, 1, · · · , m − 1}, T = {0, t1, · · · , tω−2} (see P (x) in (1))
and

Im×(m−1) =





Im−1×m−1

01×m−1



 . (14)



6 A. Reyhani-Masoleh

In (14), Im−1×m−1 is an m− 1×m− 1 unity matrix and 01×m−1 is a zero row
vector with m− 1 zero entries. Then, using (13), the matrix reduction equation
of (12) is simplified in [4] to

c = d +
∑

j∈T

e′[↓ j], (15)

where
e′[↓ j] = [0, · · · , 0

︸ ︷︷ ︸
, e′0, · · · , e′m−1−j ]

j

T
for j > 0, (16)

and
e′ = e′[↓ 0] = [e′0, · · · , e′m−2, 0]T =

∑

i∈N

Im×(m−1) [→ i]e. (17)

It is noted that to obtain the set N ⊂ {0, 1, · · · , m − 1} in (17), one can
use the algorithm proposed in [18]. For the irreducible polynomial P (x) with the
second highest degree tω−2 ≤ (m + 1)/2, it is proved in [4] that N = {0, m −
tω−2, · · · , m − t1}. In the following, we show another approach to find this set
for arbitrary irreducible polynomial.

For a given irreducible polynomial P (x) stated in (1), the reduction matrix
defined in (8) is fixed. Thus, the entries of Q are constant, i.e., qi,j ∈ {0, 1},
and can be found from (8) for the underlying polynomial P (x). Let us assume
the entries of column 0 of Q, i.e., qi,0, 0 ≤ i ≤ m − 2, are given. Let n and rj

(0 ≤ j ≤ n− 1) be the number of nonzero entries and their row positions of the
column 0 in this matrix, respectively, i.e.,

qi,0 = 1, for i ∈ R, (18)

where
R = {r0, r1, · · · , rn−1}.

This column is equal to the row 0 of QT and is obtained from (13) for j = 0.
Then, one can easily see that R = N, i.e., the elements of N are the locations
of non-zero entries of column 0 of the reduction matrix.

Remark 1. Using (8) and xm =
∑ω−2

i=1 xti + 1 which is obtained from (1), one
can easily see that r0 = 0 for any irreducible polynomial [4].

Remark 2. It is noted that for the irreducible trinomial P (x) = xm + x + 1, i.e.,
tω−2 = 1, ω = 3, the column 0 of Q has only one nonzero entry, i.e., n = 1,
which is in the row r0 = 0.

Remark 3. If tω−2 > 1, then the second nonzero entry in the column 0 of Q is
r1 = m − tω−2.

In the following, we slightly simplify e′ in (17) to present the key formulation
for the proposed SOBS multiplier. Since

Im×(m−1)[→ i] =



0m×i

Im−1−i×m−1−i

0i+1×m−1−i



 , (19)
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one can see that I m×(m−1) [→ i]e is equal to the up shift of the vector [e0, · · · , em−2, 0]T

by i rows, i.e.,

e[↑ i] = [ei, · · · , em−2, 0, · · · , 0
︸ ︷︷ ︸

]T .

i + 1

(20)

Therefore, we conclude the above discussion to state the following.

Lemma 1. Let the finite field GF (2m) be constructed by the general irreducible

polynomial P (x) = xm +
∑ω−2

i=1 xti + 1, then the coordinates of the PB multipli-
cation of C = AB mod P (α) can be obtained from two steps of

e′ = [e′0, · · · , e′m−2, 0]T =
∑

i∈R

e[↑ i] (21)

followed by

c = d +
∑

j∈T

e′[↓ j], (22)

where d, e, e[↑ i] and e′[↓ j] are obtained from (10), (11), (20) and (16), re-
spectively.

Proposition 1. The reduction matrix method stated by (21) and (22) in Lemma
1 requires

(m − 1)(n + ω − 2) −
n−1∑

i=1

ri −
ω−2∑

j=1

tj (23)

number of two-input XOR gates with the critical path delay of at most

(dlog2 ne + dlog2 ωe) TX , (24)

where TX is the time delay of an XOR gate.

Proof. The number of bit-wise addition (XOR gates) required for (21) is

n−1∑

i=1

(m − 1 − ri) = (m − 1)(n − 1) −

n−1∑

i=1

ri. (25)

Similarly, implementation of (22) requires

m − 1 +

ω−2∑

j=1

(m − 1− tj) = (m − 1)(ω − 1) −

ω−2∑

j=1

tj . (26)

Thus, by adding (25) and (26), the proof of (23) is complete. The time delay of
(24) is obtained if we add the delay of (21), i.e., dlog2 neTX , with the delay of
(22), i.e., dlog2 ωeTX .
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4 New Serial-Output Bit-Serial Multiplier

Unlike the bit-serial multipliers presented in Section 2, this multiplier generates
one bit of the multiplication in each clock cycle with the latency of one clock
cycle.

4.1 Architecture

In order to develop a bit-serial multiplier, Lemma 1 is used to generate the
coordinates of C in the order of c0, followed by c1, · · · , and cm−1. The new
architecture, which is referred to as serial-output bit-serial (SOBS) multiplier, is
shown in Figure 2(a). It consists of one register B = 〈b0, b1, · · · , bm−1〉 which
contains the coordinates of the field element B = (bm−1, · · · , b1, b0) as well as
three shift registers L = 〈lm−1, · · · , l1〉 , U = 〈um−1, · · · , u1, u0〉 , and X =
〈
x1, x2, · · · , xtω−2

〉
.

As seen in this figure, the output of shift register L are connected to n−1 right
shift (RS) blocks as well as the BTX array. The RS(ri), 1 ≤ i ≤ n−1, block shifts
the m− 1− ri left most input lines to the right by ri positions. Let the input of
the re-wiring RS(ri) block be L = 〈lm−1, · · · , l1〉 , the output of the RS(ri) block
is L→ri

= 〈−, · · · , −
︸ ︷︷ ︸

, lm−1, · · · , lri+1〉,

ri

where − denotes nothing is connected

to those ri left-most coordinates. The outputs of RS(r1) and RS(rn−1) blocks,
i.e., L→r1

and L→rn−1
, respectively, are shown in Figure 2(b). This figure also

shows how the outputs of the BTX array, i.e., 〈vm−1, · · · , v1〉 , are obtained. As
seen in Figure 2(b), the BTX array requires m − 1 − r1 BTXs whose number
of inputs vary from 2 to n. Specifically, it consists of m − 1 − rn−1 BTXs with
n inputs, rn−1 − rn−2 BTXs with n − 1 inputs, · · · , and r2 − r1 BTXs with 2
inputs, i.e., 2-input XOR gates. In general, the BTX array includes ri+1 − ri

BTXs with i + 1 inputs for 1 ≤ i ≤ n − 1 (assume rn = m − 1). Therefore, as
seen in Figure 2(b), the outputs of the BTX array, i.e., vis, are obtain as follows:

vi =







li, if m − r1 ≤ i ≤ m − 1
li + li+r1

, if m − r2 ≤ i ≤ m − 1 − r1

li + li+r1
+ li+r2

, if m − r3 ≤ i ≤ m − 1 − r2

...
...

li +
∑n−1

j=1 li+rj
, if 1 ≤ i ≤ m − 1 − rn−1.

(27)

Using Figure 2(b) or (27), one can obtain the number of XOR gates required
for realizing the BTX array in Figure 2(a) as

# XORBTX array =

n−1∑

i=1

(m − 1 − ri) = (n − 1)(m − 1) −

n−1∑

i=1

ri. (28)

Also, the time delay of the longest path between the inputs and outputs of the
BTX array is dlog2 neTX .
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Fig. 2. (a) The architecture of serial output bit-serial (SOBS) PB multiplier over
GF (2m). (b) The details of binary tree of XOR (BTX) gates. (c) The architecture
of IP(m − 1), i.e., inner product with m − 1 AND gates. (d) The BTX array output
which requires m − 1 − r1 BTXs.
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Figure 2(a) also consists of two inner product (IP) blocks as denoted by
IP(m) and IP(m − 1). Figure 2(c) shows the architecture of IP(m − 1) which
implements

x0 =

m−1∑

i=1

bivm−i = [vm−1, · · · , v1][b1, · · · , bm−1]
T (29)

using m− 1 AND gates and m− 2 XOR gates with TA + dlog2(m − 1)eTX time
delay. Similarly, the output of IP(m) generates

d =
m−1∑

i=0

bium−i−1, (30)

which requires m AND gates and m− 1 XOR gates with TA + dlog2 meTX time
delay.

4.2 Initialization and Multiplication Operation

In this section we show that by properly initialization of the shift registers, the
bit-serial multiplier generates the coordinates of C in such a way that c0 and
cm−1 are the first and last bits output from c, respectively.

Let us initialize the shift register L and U with the coordinates of A as

L(0) = 〈am−1, · · · , a1〉 , U(0) = 〈a0, 0, · · · , 0〉 . (31)

In fact, only one bit of U, i.e., um−1, is initialized with a0 and other bits
are cleared. Also, the register B is initialized with the coordinates of B as
B(0) = 〈b0, b1, · · · , bm−1〉 and its contents remains unchanged during each clock
cycle until the end of multiplication process. Thus, we can state that B(τ) =
〈b0, b1, · · · , bm−1〉 for 0 ≤ τ ≤ m−1, where τ denotes the number of clock cycles
applied after initialization (τ = 0). Also, we assume that the contents of the shift
register X are cleared initially, i.e., X(0) =

〈
x1, x2, · · · , xtω−2

〉
= 〈0, 0, · · · , 0

︸ ︷︷ ︸
〉.

tω−2

It is noted that for parallel load of A and B into the registers L and B and the
last bit of U, multiplexers may be used. Those are not shown in the figure for
simplicity. However, for serial load such multiplexers are not needed.

Let x0(τ) denote the output of IP(m− 1) in Figure 2(a) after the τ -th clock
cycle. Then, by substituting (31) into (27) and using (29), one can obtain the
initial value of the output of IP(m − 1) in Figure 2(a) as

x0(0) =







∑

i∈R

[0, · · · , 0
︸ ︷︷ ︸

, am−1, · · · , ai+1]

i







[b1, · · · , bm−1]
T . (32)

Using (11) and (21), one can simplify (32) to x0(0) =
∑

i∈R ei = e′0. Similarly,
let U(τ) and d(τ) be the contents of the shift register U and signal d in Figure
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2(a) after the τ -th, 0 ≤ τ ≤ m − 1, clock cycle. Then, by using (10) and (30),
one can see that

d(τ) =

m−1∑

i=0

bium−i−1(τ) = [aτ , · · · , a0, 0, · · · , 0][b0, b1, · · · , bm−1]
T = dτ . (33)

Thus, noting that the contents of register X are initially cleared, i.e., xj = 0,
j 6= 0, one can find that c in Figure 2(a) outputs c0 after initialization, i.e.,

c(0) =
∑

j∈T

xj(0) + d(0) = 0 + e′0 + d0 = c0.

In the following, we show that the output c in Figure 2(a) generates cτ after
the τ -th clock cycle. At this time, the coordinates of register L is changed from
the initial value of L(0) = 〈am−1, · · · , a1〉 to

L(τ) =

〈

0, · · · , 0
︸ ︷︷ ︸

, am−1, · · · , aτ+1

τ

〉

. (34)

Then, using (32) with the new value of L, the output of IP(m − 1) generates

x0(τ) =







∑

i∈R

[0, · · · , 0
︸ ︷︷ ︸

, am−1, · · · , ai+τ+1]

i + τ







[b1, · · · , bm−1]
T ,

which simplifies to

x0(τ) =
∑

i∈R

ei+τ = e′τ (35)

if (11) and (21) are used.

To obtain the output of c after the τ -th clock cycle, i.e., c(τ), we need to
obtain the content of the shift register X, which are found as

xi(τ) = xi−1(τ − 1), 1 ≤ i ≤ tω−2. (36)

By recursive using (36), one can find xi(τ) = x0(τ − i) for τ ≥ i, which can be
written to

xi(τ) =

{
e′τ−i, if τ ≥ i,
0 otherwise,

(37)

if we use (35). Thus, the output of Figure 2(a) after the τ -th clock cycle is
c(τ) =

∑

j∈T xj(τ) + d(τ). Therefore, by using (33), (35), (37) and Lemma 1,
one can find c(τ) = cτ .
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4.3 An Example

We consider the field GF (27) defined by the irreducible polynomial P (x) =
x7 + x5 + x3 + x + 1 for which the reduction matrix can be obtained as

Q =











1 1 0 1 0 1 0
0 1 1 0 1 0 1
1 1 1 0 0 0 0
0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0











. (38)

It is seen from the column 0 of (38) that n = 2, r0 = 0, and r1 = 2. For
this example, R = {0, 2} and T = {0, 1, 3, 5}. Table 1 shows how Figure 2(a)
generates the coordinates of C at each clock cycle τ .

τ v6, v5, v4, v3, v2, v1 x0 x1, x2, x3, x4, x5 d c = x0 + x1 + x3 + x5 + d

0 a6, a5, a6 + a4, a5 + a3, a4 + a2, a3 + a1 e′0 0, 0, 0, 0, 0 d0 e′0 + d0 = c0

1 0, a6, a5, a6 + a4, a5 + a3, a4 + a2 e′1 e′0, 0, 0, 0, 0 d1 e′1 + e′0 + d1 = c1

2 0, 0, a6, a5, a6 + a4, a5 + a3 e′2 e′1, e
′

0, 0, 0, 0 d2 e′2 + e′1 + d2 = c2

3 0, 0, 0, a6, a5, a6 + a4 e′3 e′2, e
′

1, e
′

0, 0, 0 d3 e′3 + e′2 + e′0 + d3 = c3

4 0, 0, 0, 0, a6, a5 e′4 e′3, e
′

2, e
′

1, e
′

0, 0 d4 e′4 + e′3 + e′1 + d4 = c4

5 0, 0, 0, 0, 0, a6 e′5 e′4, e
′

3, e
′

2, e
′

1, e
′

0 d5 e′5 + e′4 + e′2 + e′0 + d5 = c5

6 0, 0, 0, 0, 0, 0 0 e′5, e
′

4, e
′

3, e
′

2, e
′

1 d6 e′5 + e′3 + e′1 + d6 = c6

Table 1. The multiplication operation for GF (27) generated by x7 + x5 + x3 + x + 1.

4.4 Complexity Analysis

In this section, we obtain the space and time complexities of the proposed serial-
output bit-serial (SOBS) multiplier.

Proposition 2. For the finite field GF (2m) generated by the general irreducible

ω-nomial P (x) = xm +
∑ω−2

i=1 xti + 1, the SOBS PB multiplier (Figure 2(a))
requires 3m+ tω−2−1 1-bit register, 2m−1 2-input AND gates, and (n+1)(m−

1) + ω − 2 −
∑n−1

i=1 ri 2-input XOR gates.

Proof. The number of 1-bit registers includes the ones in the L and U shift
registers, i.e., 2m − 1, the register B, i.e., m, and the shift register X, i.e.,
tω−2, Thus, the multiplier requires 3m + tω−2 − 1 1-bit registers. The IP(m)
and IP(m − 1) blocks require m and m − 1 AND gates, respectively. Therefore,
the multiplier requires 2m− 1 2-input AND gates. The number of XOR gates is
obtained by adding those for the BTX array, the IP(m) and IP(m − 1) as well
as the BTX blocks, which are (28), m − 1, m − 2, and ω − 1, respectively. As a
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result, the number of XOR gates required in the multiplier is (n − 1)(m − 1) −
∑n−1

i=1 ri. + m − 1 + m− 2 + ω − 1 = (n + 1)(m− 1) + ω − 2−
∑n−1

i=1 ri and the
proof is complete.

The time complexities of the multiplier are determined by three factors: la-
tency, the number of clock cycles required for whole multiplication, and the crit-
ical path delay. Let us define the latency as the number of clock cycles needed
that the first bit of the output be available. Based on this definition, one can
see that the latency of the SOBS multiplier is one and the entire multiplication
requires m clock cycles. The critical path delay, which is the longest path from
the registers to the output c, determines the maximum operating frequency. By
properly implementation of the BTX block in Figure 2(a), one can minimize this
delay to obtain it as follows.

Proposition 3. Let TA and TX be the delay of an AND gate and an XOR gate,
respectively. Then, the critical path delay of the SOBS PB multiplier (Figure
2(a)) is at most TA+max(T1, T2), where T1 = (1 + dlog2(ω − 1)e + dlog2 me) TX

and T2 = (1 + dlog2(m − 1)e + dlog2 ne) TX .

Proof. The critical path delay of the multiplier is determined by the maximum
delay between the two paths from the shift registers of L and U to the output c.
In order to minimize this delay, one can implement c in Figure 2(a) as c = c′+x0,
where

c′ =
∑

j∈T −{0}

xj + d. (39)

Since the path delay from the shift register U to the output d is TA+dlog2 meTX

and (39) requires dlog2(ω − 1)eTX using a BTX, one can see that the delay to
generate c′ is at most T ′ = TA +(dlog2(ω − 1)e+dlog2 me)TX . Also, the delay to
generate x0 from the shift register L is T ′′ = TA +(dlog2(m − 1)e + dlog2 ne) TX .
Therefore, the total delay to generate c is TX + max(T ′, T ′′) which is equal to
TA + max(T1, T2) and the proof is complete.

4.5 Comparison

Table 2 shows the comparison of the proposed SOBS PB multiplier with the
traditional LSB-first and MSB-first ones presented in Section 2 in terms of time
and space complexities for irreducible ω-nominal and trinomial. To illustrate the
differences between the complexities of the proposed multiplier with the ones of
other multipliers, the complexities for irreducible trinomials are also tabulated
in this table. The number of XOR gates γ in this table is obtained for the
irreducible trinomial P (x) = xm + xk + 1, 1 ≤ k < m

2 . For the GF (2233) field
recommended by NIST, one can use m = 233, k = 74, and T3 = TA + 10TX in
this table. As seen from this table, the proposed SOBS multiplier has the lowest
latency at the expense of longer critical path and more area requirement.
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Multiplier Latency Critical path # AND # XOR # 1-bit Register

P (x) = xm +
�

ω−2

i=1
xti + 1, 1 ≤ t0 < t1 < · · · < tω−2

LSB-first m TA + TX m m + ω − 2 3m

MSB-first m TA + TX m m + ω − 2 3m

SOBS 1 TA + max(T1, T2) 2m − 1 γ 3m + tω−2 − 1

P (x) = xm + xk + 1, 1 ≤ k < m

2

LSB-first m TA + TX m m + 1 3m

MSB-first m TA + TX m m + 1 3m

SOBS 1 T3 2m − 1 2m + k − 2 3m + k − 1
Table 2. Comparison of multipliers in terms of time and space complexities for ir-
reducible ω-nomial and trinomial, where γ = (n + 1)(m − 1) + ω − 2 −

�
n−1

i=1
ri,

T1 = (1 + dlog
2
(ω − 1)e + dlog

2
me) TX , T2 = (1 + dlog

2
(m − 1)e + dlog

2
ne) TX , and

T3 = TA + (2 + dlog
2
me)TX .

5 Conclusions

A new serial-output bit-serial multiplier structure for general irreducible polyno-
mials has been proposed. The proposed multiplier can be used for applications,
such as, RFID tags, where the field size and irreducible polynomial are fixed.
We have obtained the complexities of the proposed multiplier and compared
them with the ones of the LSB-first and the MSB-first multipliers. Unlike the
parallel-output multipliers which require m clock cycles for the latency, the pro-
posed serial-output bit-serial multiplier has the latency of one clock cycle. This is
achieved at the expense of longer critical path delay and more area requirement.

It is interesting to note that by connecting the output of the proposed mul-
tiplier to the serial-input of the LSB-first multiplier, one can obtain a hybrid
structure which performs two multiplications together. The results of such a hy-
brid structure are available in parallel after m clock cycles and it has practical
applications for fast cryptographic computations.

The proposed bit-serial multiplier can be extended to obtain a new serial-
output digit-serial multiplier by replicating the BTX, IP(m), and IP(m − 1)
blocks in Figure 2(a). The latency of such a digit-serial multiplier is one and it
generates K bits of the multiplication in each clock cycles with the total

⌈
m
K

⌉

clock cycles for the entire multiplication.
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