
An Exploration of Mechanisms for Dynamic
Cryptographic Instruction Set Extension

Philipp Grabher1, Johann Großschädl2, Simon Hoerder1, Kimmo Järvinen3,
Dan Page1, Stefan Tillich1, and Marcin Wójcik1

1 University of Bristol, Department of Computer Science,
Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, UK

{grabher,hoerder,page,tillich,wojcik}@cs.bris.ac.uk
2 University of Luxembourg, FSTC, CSC Research Unit, LACS,

6, rue Richard Coudenhove-Kalergi, L–1359 Luxembourg, Luxembourg
johann.groszschaedl@uni.lu

3 Aalto University, Department of Information and Computer Science,
P.O. Box 15400, FI–00076 Aalto, Finland

kimmo.jarvinen@aalto.fi

Abstract. Instruction Set Extensions (ISEs) supplement a host proces-
sor with special-purpose, typically fixed-function hardware components
and instructions to utilize them. For cryptographic use-cases, this can be
very effective due to the demand for non-standard or niche operations
that are not supported by general-purpose architectures. However, one
disadvantage of fixed-function ISEs is inflexibility, contradicting a need
for “algorithm agility.” This paper explores a new approach, namely the
provision of re-configurable mechanisms to support dynamic (run-time
changeable) ISEs. Our results, obtained using an FPGA-based LEON3
prototype, show that this approach provides a flexible general-purpose
platform for cryptographic ISEs with all known advantages of previous
work, but relies on careful analysis of the associated security issues.

Keywords: FPGA, embedded processor, instruction set extension.

1 Introduction

Cryptographic kernels could be described as the archetype target for Instruction
Set Extensions (ISEs) [31]. Starting with a general-purpose host processor, the
idea is to specify an ideally minimal set of (more) special-purpose instructions
[25]. By carefully integrating instructions, plus any tightly coupled hardware to
support their execution, the goal is more effective implementation of the kernel
in question (e.g., with respect to efficiency, memory footprint, or security). This
approach can be ideal for cryptography where performance bottlenecks often
relate to non-standard or niche operations, and can easily be resolved using a
targeted ISE. There exists a wealth of related work to support this premise, see
e.g., [10, 17, 31]. Even when focused on one kernel such as AES, said work spans
academic results and evaluation on platforms such as the LEON3, through to
commercialisation in workstation-class Intel processors via AES-NI [34].

2 P. Grabher et al.

However, at least two valid counterarguments can be considered. First, even
though ISEs are often presented theoretically as “non-invasive,” their concrete
realisation may still be problematic. For example, one can imagine the difficul-
ty of altering incumbent processor designs contributed to the fact that Intel’s
AES-NI appeared long after suggested by initial work in this area [31]; issues
of re-design, re-verification, and re-deployment are scientifically non-trivial and
potentially very costly. Second, one has to consider the problems of utilisation
and flexibility. One aspect is ensuring the cost of design and implementation is
worthwhile, another is ensuring ISEs are useful to as many kernels as possible
(i.e., making an ISE flexible enough to cater for the future). Cryptography, in
particular, has a vested interest in the latter: if an (inflexible) special-purpose
ISE for a kernel is deployed and the kernel is then broken, the ISE, associated
hardware and sunk design cost subsequently represent useless overhead.

With all these counterarguments in mind, it is interesting to consider how an
ISE-based approach, in the most general sense, might be accommodated by next-
generation processors. In particular, how might next-generation general-purpose
processor designs support dynamic (i.e., changeable at run-time under control
of the program) instruction set extension and execution. In both embedded and
non-embedded contexts, we already have some answers: focusing on functional
units for example, both the Stretch S6000 and ARM-based Triscend A7 include
similar concepts which can be dynamically re-configured at run-time, and the
new Intel Atom E600C (or “Stellarton”) series includes an coarsely integrated
(i.e., coprocessor-like) Altera FPGA.

While re-configurable devices such as FPGAs have redefined the traditional
roles of hardware and software, re-configurable general-purpose processors are
now also a reality; the question is, how does this direction match cryptographic
use-cases? This is far from a new topic, but we make progress via four main
contributions; we stress that our focus is at the level of micro-architecture and
instruction sets, rather than the device level. First we survey strands of related
work that support dynamic instruction set extension and execution; second we
present PREON (short for Partially Reconfigurable LEON), a novel LEON3-
based prototype which includes two such mechanisms; third we evaluate a range
of cryptographic primitives on said prototype, demonstrating that it provides
a general-purpose platform capable of supporting many existing ISE proposals
and specifying some novel additions (e.g., for the two hash functions Skein and
JH); and finally, we extend previous security analysis to highlight several issues
that require resolution in order to support cryptographic workloads.

2 Background and Analysis

In this section, we present a limited survey of mechanisms that support the con-
cept of dynamic instruction set extension and execution in different ways. Each
mechanism has a rich lineage within the field of computer architecture, and is
sufficiently mature to exist in production (and in some cases embedded) proces-
sor designs [1]. Our overview spans implicit (i.e., invisible to the program) and

Mechanisms for Dynamic Cryptographic Instruction Set Extension 3

explicit (i.e., under control of the program) mechanisms; in the latter case we
expect that, in addition to the hardware components, there will be generic need
for inclusion of management and invocation instruction sets.

Re-Configurable Computation Fabric. The idea is to extend the computational
logic (e.g., the ALU) such that, instead of only computing operations which are
fixed at design-time, it can be re-configured at run-time. A fairly current and
comprehensive overview of the design space is given by Dales [6, Sect. 2.3] and
Amano [1], the latter including examples of commercialisation. A more limited
list of instances includes
– partly re-configurable functional units, for example CryptoManiac [37] and

PipeRench [29],
– tightly integrated run-time re-configurable logic, for example the Triscend

A7, Stretch S6000, and Infineon CARMEL, and
– coarsely integrated run-time re-configurable logic, for example Intel’s Atom

E600C with integrated Altera FPGA.
The choice of fabric can imply extra design constraints whose relevance depends
on the context. For example, an FPGA-based fabric could limit the maximum
clock frequency, but in an embedded context this may not be of primary concern
unless the cost of a mixed technology approach is prohibitive.

Advanced Mechanisms for Instruction Delivery. The idea is to extend the fetch
unit so that the mechanism for instruction delivery is (partly) controlled by the
program being executed. There is a huge range of related concepts and concrete
implementations; a non-exhaustive list includes mechanisms for
– instruction fusion [22], for example load-modify operations in Intel’s Core2

micro-architecture and multiply-accumulate in DSP-like (or embedded) pro-
cessors, allowing composite micro-operations [8] to be specified by a single
ISA-level instruction,

– macro-like [32] translation, for example the “sequencer unit” within the IBM
RISC Single Chip (RSC) and PowerPC [24] processor, and the ARM Jazelle
framework for acceleration of Java programs,

– processor-controlled cache-like structures, for example the trace cache and
loop buffer designs within the Core2 and NetBurst micro-architectures, and

– user-controller memory structures such as the register-based buffer of Hines
et al. [13], and the now well-studied ideas of scratch-pad memories [2] and
non-transparent caches [23].

3 PREON: A LEON3-based Experimental Prototype

In this section, we introduce PREON, a prototype implementation of selected
mechanisms surveyed in Section 2. As a starting point we used the LEON3, an
open-source implementation of a 32-bit SPARC V8 compliant processor core
developed by Gaisler Research AB. We altered the 7-stage LEON3 pipeline as
described in detail below, and equipped it with Harvard-style instruction and
data caches (or I-cache and D-cache), each 4 kB in size.

4 P. Grabher et al.

The PREON prototype was synthesised to the SASEBO-GII evaluation plat-
form, which we used to produce the experimental results given in Section 4; the
processor core itself required 2338 slices of the Xilinx Virtex-5 FPGA (model
XC5VLX50-1FF324). The PREON core is clocked at 24 MHz, although we stress
that this is a limit imposed by the SASEBO on-board clock.

3.1 Re-configurable Fabric

The first addition is a re-configurable fabric, tightly integrated with the execu-
tion unit. We view the fabric essentially as an FPGA, but clearly less general
alternatives are viable and potentially preferable in certain contexts. Inclusion
of this mechanism is mainly motivated by the goal of improved computational
throughput per-instruction (rather than, say, instruction throughput), without
compromising flexibility; the fabric can be re-configured to efficiently compute
what the general-purpose processor cannot. At least two further benefits result:
first, the mechanism reduces communication latency versus a coarsely integrated
alternative (e.g., co-processor), and second, it permits the sharing of resources
between the processor and fabric (e.g., storage such as registers).

Design and Programming Interface. Use of the fabric by a program executing
on PREON is achieved through a single extra instruction named fabric. When
executed, the instruction has the semantics

GPR[dst] = f(GPR[src1], GPR[src2], imm)

where f denotes a single-cycle functionality provided by the resident configura-
tion: the 32-bit content of the registers src1 and src2 (with an 8-bit immediate
value imm) is presented to the fabric as input, and the output (according to the
current configuration) is stored in register dst. Essentially, the fabric acts as a
replacement for the ALU. One can imagine a few alternative models, but this
approach allows the fabric to use imm as a means of first specifying any sub-
operation (e.g., to house more than one operation on the re-configurable fabric
and select between them), and second supplying any immediate data.

PREON allows a configuration resident in the fabric to maintain short term
state, e.g., house a register. On one hand, this is arguably outside the traditio-
nal remit of ISEs. On the other hand, it allows a high degree of flexibility since
for example, multi-input and/or multi-output operations can be supported. In
the former case, the fabric is configured to include an “operand fetch” operation
which takes the two operands and stores them internally; the stored operands
can then be combined with two more operands in a “normal” operation. This
feature could be used to overcome the restrictions of the SPARC V8 3-address
instruction format without invasive alteration of the micro- or instruction set ar-
chitecture. Likewise, multi-cycle operations are possible: the fabric is configured
to include a “bubble” or NOP-style operation that can be used to absorb cycles
while computing the required output. Some other approaches to increasing the
input or output bandwidth are possible, e.g., those proposed by Kluter et al. in
[19], but our aim is to limit the amount of extra bespoke hardware required.

Mechanisms for Dynamic Cryptographic Instruction Set Extension 5

Implementation. In practice, one would expect the re-configurable fabric to be
implemented using a different technology than the processor core. However, the
PREON prototype demands partial re-configuration of a host FPGA represent-
ing both components. Per [38], this requires partitioning at the top-level: we had
to divide our design into a static part (the LEON3 processor) and a dynamic
part (the re-configurable fabric). In addition, the SASEBO-GII includes 2 Mbit
of on-board SRAM memory which we use to store partial bit-streams. A Xilinx
XPS HWICAP core, altered with a wrapper for the LEON3 AMBA bus, is used
to interface with the FPGA’s Internal Configuration Access Port (ICAP). The
size of the SRAM, plus the 700 slices reserved on the FPGA for the dynamic
part, set an artificial upper limit on the length of the bit-stream, and hence also
limit the complexity of configurations used by PREON.

Integration with the LEON3 core is relatively easy: we simply use the fabric
rather than the ALU for fabric instructions, abusing the 8-bit Address Space
Identifier (ASI) register to supply imm. Re-configuration of the fabric is done
in software by the processor core; essentially, this boils down to a memcpy-style
transfer of content from the SRAM into the fabric via the ICAP interface. In
theory, it is possible to partition the fabric and allow multiple configurations to
be resident at the same time; Dales [6, Section 5] outlines various techniques to
manage this, but for simplicity we consider a single configuration only.

3.2 Instruction Register File

Since the LEON3 can already be extended with a scratch-pad for instructions
(the so-called ILRAM), it is reasonable to question the novelty of our second
addition. Crucially however, the concept of an Instruction Register File (IRF), as
described for example by Hines et al. [13], captures program fragments whose
form relates to basic blocks rather than functions. In short, we suggest that an
appropriate IRF design can provide macro-like cryptographic ISEs: the idea is
to record short instruction sequences on-chip, then later replay them from the
IRF rather than main memory. Rather than “extended” computational ability
during execution, the IS“E” here is an “expansion” from a single instruction to
a semantically richer straight-line instruction sequence.

Inclusion of the mechanism is motivated by two main goals: it should reduce
off-chip memory access (which implies lower power consumption), and provide
low-latency and deterministic fetch behaviour (both without the physical over-
head of an instruction cache). Our premise is that cryptographic use-cases are
ideally suited to take advantage of these features, and also benefit from them as
a result, for example, of a need to avoid cache-based attacks.

Design and Programming Interface. Our realisation of the IRF concept uses a
few small buffers into which instructions are placed and retrieved. Let B[i][j]
denote the j-th entry in the i-th buffer where 0 ≤ j < n and 0 ≤ i < m, i.e.,
there are m buffers, each of n elements. Let C[i] denote the number of valid
instructions currently held in the i-th buffer, meaning that 0 ≤ C[i] < n for all
i. Three additional instructions are used to control these structures:

6 P. Grabher et al.

1 ! AES T-table block #1
2 ! input : packed AES state in %o0 to %o3
3 ! packed AES round key in %o4 to %o7
4 ! T-table base addresses in %i3 to %i6
5 ! output : equivalent of %l4 = T-table0[(%o0 >> 0)& 0xFF] ^
6 ! T-table1[(%o1 >> 8)& 0xFF] ^
7 ! T-table2[(%o2 >> 16)& 0xFF] ^
8 ! T-table3[(%o3 >> 24)& 0xFF] ^ %o4;
9 record %g0, 0, %g0

10 srl %o0 , 22, %l4 ; and %l4 , 1020, %l4 ; ld [%l4 + %i3], %l4
11 srl %o1 , 14, %l5 ; and %l5 , 1020, %l5 ; ld [%l5 + %i4], %l5
12 srl %o2 , 6, %l6 ; and %l6 , 1020, %l6 ; ld [%l6 + %i5], %l6
13 sll %o3 , 2, %l7 ; and %l7 , 1020, %l7 ; ld [%l7 + %i6], %l7
14 xor %l4 , %l5, %l4 ; xor %l4 , %l6 , %l4
15 xor %l4 , %l7, %l4 ; xor %l4 , %o4 , %l4
16 stop %g0, 0, %g0
17 ! AES T-table block #2
18 ...
19 ! AES T-table block #3
20 ...
21 ! AES T-table block #4
22 ...
23 ! AES round
24 play %g0, 0, %g0 ! playback T-table block #1 once
25 play %g0, 32, %g0 ! playback T-table block #2 once
26 play %g0, 64, %g0 ! playback T-table block #3 once
27 play %g0, 96, %g0 ! playback T-table block #4 once
28 ...

Fig. 1. A sketched example of IRF use: each “block” of a T-table based AES imple-
mentation (including key addition) is recorded as a macro into an IRF buffer, then
later played back and expanded to form a (non-final) AES round.

– record takes an immediate operand i (which specifies a buffer number) and
places the fetch unit into recording mode. This acts to redirect instructions
into the i-th buffer rather than the pipeline:
1. initially set C[i] = 0,
2. for each instruction received from the fetch unit, if the instruction is

stop then act appropriately, otherwise store it to B[i][C[i]], and update
C[i]← C[i] + 1 (mod n).

– stop returns the fetch unit to normal mode, redirecting the instruction
stream into the pipeline again.

– play takes two immediate operands i and c (specifying a buffer number and
playback count) and places the fetch unit into playback mode. This acts
to inject instructions into the pipeline from the i-th buffer, rather than the
fetch unit, c times
1. freeze the program counter,
2. inject each j-th instruction from B[i][j], for 0 ≤ j < C[i], into the

pipeline, repeating the process c times then
3. put the fetch unit back into normal mode, and resume execution from

the frozen program counter.
We note that it may be of value to store pre-decoded content in the buffer (like
in a trace cache), but defer this topic for further work.

Mechanisms for Dynamic Cryptographic Instruction Set Extension 7

Implementation. Implementation of the IRF in PREON is relatively simple: we
follow a conventional (data oriented) register file design, using flip-flops to store
content. This structure is controlled by a state machine in the existing LEON3
fetch unit, which applies appropriate operating rules according to the descrip-
tion above. The result contrasts with the more heavy-weight, general-purpose
memory approach of an ILRAM in both form and function. More precisely, an
ILRAM-based approach implies a larger storage capacity and more involved
interface (i.e., memory transaction). Additionally, executing an instruction se-
quence in an ILRAM demands a branch into and back from said sequence; even
if each instruction is retrieved with low latency, the additional branches cause
a significant overhead for short sequences. The same is not true of IRF use as
there is just a single cycle overhead relating to each playback.

Although the description allows general parametrisation (perhaps restricting
m and n to powers-of-two), concrete parameters must be selected before use. In
theory, the parameters could be selected at run-time using special configuration
instructions; this would allow for a high degree of flexibility at relatively marginal
cost. However, for simplicity, our PREON prototype currently caters for cases
where m ·n = 64, e.g., m = 4, n = 16, fixed at design-time after analysis of the
associated trade-off. Although larger m or n may improve our results below in
theory, our choice tries to balance this against practicality; for example, a total
on-chip storage of 64 · 4 = 256 B matches the capacity of the SSE register file in
x86-64 processors.

4 Evaluation of Cryptographic Workloads

4.1 Re-configurable Fabric

Limited evaluations of cryptographic kernels, executed via a similar mechanism
with respect to the re-configurable fabric, exist; for example, Dales [6, Section
4.3.2.3] details some experiments with Twofish. In the following, we extend this
to include a broader set of modern kernels. Table 1 shows a range of empirical
results produced using our prototype PREON implementation. Each result com-
pares a C implementation to a fabric-supported4 alternative, both with inline
assembly statements where appropriate (e.g., to invoke the fabric, or to access
SPARC-specific functionality).

Each configuration is designed to match the critical path of the processor; no
configuration extends the existing critical path, except the F3m multiplier. The
execution times (i.e., cycle counts) are averaged over a number of randomised
inputs. Although few kernels have data dependent control-flow, this approach
takes into account the behaviour of both data and instruction cache. Also note
that techniques for automatic identification of configurations, as in [25], seem
applicable, but we defer investigation of this topic to future work.

We use the subsections below to discuss each implementation, and conclude
with a summary of the results.
4 To satisfy space restrictions we omit the formal description of each ISE, opting to

include a complete description in a full version of this paper.

8 P. Grabher et al.

Table 1. Experimental results comparing the performance of various cryptographic
kernels without and with support of ISEs provided by the re-configurable fabric. Note
that the static footprint includes instructions and any major static data (e.g., T-tables
and expanded key schedule), and that initialisation of the fabric is not included in the
total number of cycles, rather as a column in the table.

Without ISE With ISE
Performance Static Performance Static ISE ISE

footprint footprint area re-config.
(cycles) (bytes) (cycles) (bytes) (slices) (µs)

AES
AES-128 encryption 1281 6068 463 412 115 177

SHA2/SHA3
SHA-256, 4096-bit message 45241 3304 30528 2492 48 118
JH-256, 4096-bit message 6584962 2052 976372 2116 26 59
Skein-512-256, 4096-bit message 332739 8152 117123 6340 319 470
Grøstl-256, 4096-bit message 258389 16248 152169 1980 112 177

Multiplication in Z∗N
1024-bit multiplication 86460 768 25148 428 321 590

Multiplication in F2233

School-book 30864 548 2290 428 170 295
Width-4 comb 14900 908 12908 724 44 118

Multiplication in F3337

School-book, bit-sliced 163340 1504 6985 828 690 1062
School-book, bit-serial 445670 1616 11898 420 343 590
Width-4 comb, bit-sliced 82940 4100 56380 3596 70 118
Width-4 comb, bit-serial 247281 8484 40213 2930 54 118

AES. Tillich et al. [31] proposed a set of ISEs that permit efficient implemen-
tation of AES on 32-bit architectures, focusing on SPARC V8-based LEON2 in
particular. We adopt two ISE classes [31, pp. 275–276], namely sbox4s (plus
sbox4r) and mixcol4s (and inverses), and compare them with a T-tables based
implementation in software. We note that acceleration of bit-sliced implementa-
tions of AES following [10] is viable, but do not investigate this further.

SHA-2/SHA-3. In terms of ISE, SHA-2, focusing on SHA-256 in particular, has
been paid relatively little attention. Juliato et al. offer in [17] an exception and
explore different hardware/software approaches that include ISEs for rotation
and the Ch and Maj functions; we follow their approach fairly directly.

Regarding SHA-3, we stress that we do not aim to compare the five finalists
directly, but rather evaluate PREON. The finalists can be split into two rough
categories: Blake, Keccak and Skein are AXR-based, while Grøstl and JH are
AES-based. For the cases of Blake and Keccak, Hoerder et al. [15] highlighted
the difficulty of finding appropriate ISEs: their design is already RISC-friendly
and potential ISEs therefore fit a more coprocessor-like approach that captures
and operates on (most of) the state in each step.

JH-256 We pack eight 4-bit state words into a 32-bit register and utilize three
ISEs: one for the S-box and linear transform layer, and two more for the
permutation layer; the design of JH means the same ISEs can be used for all
parametrisations. To maintain comparability with the reference implemen-
tation, we use the ISEs to compute the round constants at run-time. This

Mechanisms for Dynamic Cryptographic Instruction Set Extension 9

requires re-packing the round constants at various points, and explains the
marginal increase in code footprint.

Skein-512-256 We focus on acceleration of the internal Threefish cipher. In
order to match the 32-bit datapath of the LEON3, we specify a four-step
ISE to support the MIX function; for comparison, we use the 32-bit oriented
reference implementation. To avoid the need for a general-purpose rotation
unit, we specify (and supply immediate inputs to select) ISEs for each of 27
rotation distances. The disadvantage of this approach is that the same ISEs
can not support a different parametrisation.

Grøstl-256 We pack four 8-bit state words into a 32-bit register and use three
ISEs: one for the SubBytes step, and two more for the MixBytes step. The
T-tables based reference implementation is used for comparison.

Multiplication in Z∗
N (supporting RSA, ECC). Großschädl et al. [11] propose an

ISE for RSA, or more specifically for Montgomery multiplication; their design
is implemented on a SPARC V8-based LEON2. The ISE focuses on Multiply-
ACcumulate (MAC) operations (e.g., S ← S + a× b), and uses three dedicated
32-bit accumulator registers. We replicate this approach fairly directly, housing
the accumulators within the fabric configuration itself, and compare our results
with a C implementation provided by the authors of [11].

Multiplication in F2n and F3m (supporting ECC, Pairing-Based Crypto). Con-
sidering the cases n = 233 and m = 337, arithmetic in F2233 [X]/X233 + X73 + 1
and F3337 [Y]/Y 337 + Y 30− 1 underpin specific parametrisations in elliptic curve
and pairing-based cryptography, e.g. the former is specified in NIST-B-233. In
the characteristic-two case, coefficients of some x ∈ F2n have a natural repre-
sentation; various published ISEs, including those for SPARC V8-based LEON2
[30] and the Intel CLMUL extension to x86, provide an associated polynomial
(or “carry-less”) multiplication instruction. A similar concept is possible in the
characteristic-three case, but the issue of representation is more complex.

Our implementations accelerate school-book multiplication mainly via a ded-
icated polynomial multiplication ISE; the width-4 comb based multiplication is
accelerated using a “shift with carry” ISE, which is missing in the SPARC V8
instruction set. Particularly for characteristic three, the flexibility of PREON is
beneficial: it allows a range of subtle implementation options without changes to
the architecture, and resolves some problems with previous work. For example
Grabher et al. [10] support bit-slicing, but only using unconventional 6-address
instructions; the “operand fetch” idiom in PREON can cope with multi-operand
instructions, and still provide significant performance improvements.

Summary and Discussion. It is unsurprising that ISE-based implementations
improve either latency (overall cycles) and/or size (memory footprint). For the
kernels studied, the latter case implies a hidden side-benefit of reducing memory
traffic (primarily loads) and hence reduced reliance on a cache to achieve quoted
performance; in a rough sense, one can view the cost of including the fabric as
counterbalancing the need for large, efficient layers of memory hierarchy.

10 P. Grabher et al.

Focusing on AES, one can contrast results for dynamic ISE provided by the
PREON re-configurable fabric with static ISE (taking AES-NI as an example)
and coarsely-integrated FPGA-based coprocessors. As stated in [34], AES-NI
achieves a throughput of 3.589 cycles per byte (in CBC mode), i.e., 57.4 cycles
per block. However, AES-NI operates on 128-bit SSE registers, which increases
the throughput by a factor of 4 in relation to a 32-bit bit datapath. Hence, one
can estimate that a 32-bit analogue of AES-NI would require about 230 cycles
per block, roughly half that of the PREON-supported implementation. Compar-
ison with an FPGA-based cryptographic coprocessor must consider the interface
through which coprocessor and host are connected. For example, Hodjat et al
[14] and Schaumont et al. [27] attached an AES coprocessor to the LEON core
and achieved a throughput of 704 cycles (via the LEON coprocessor interface)
and 1492 cycles (via memory-mapped I/O) per block, even though the AES core
itself performs an encryption in only 11 cycles. Using a dedicated high-speed
interconnect, such as Xilinx’s Fast Simplex Link (FSL), allows improvement to
about 202 cycles per block [9]. In summary, even accepting the limited scope
and accuracy of this comparison, the PREON prototype offers a very attractive
compromise: it is competitive to both static AES extensions and coprocessors
using metrics of performance and flexibility.

This flexibility is highlighted by the possibility for combination of configura-
tions to support multi-kernel ISEs. Trivial merging of configurations is possible
where size permits, but more specific approaches also exist. For example, one
may consider multi-field multipliers and, hence, multi-kernel ISEs as described
by Vejda et al. [33]. As a more concrete example, AES and Grøstl compute the
S-box function in the same way, and therefore it is possible to design a single
configuration that supports both kernels. While the performance figures remain
the same as above, the total size required is 152 slices, roughly 30% less than a
separate implementation.

A less positive issue is that of re-configuration speed. Ideally, one might aim
for per-instruction change in an ISE (i.e., the configuration) to maximise the
emphasis on flexibility. However, without the facility for multiple resident con-
figurations, the re-configuration speed of our Xilinx Virtex-5 FPGA (100 Mbit/s
at 25 MHz, meaning latencies of upto 1000 µs for our more complex cases) is a
limiting factor. In a sense this is a property of the technology used to realise the
fabric, but even so the re-configuration speed limits “ISE dynamism,” which one
might reasonably argue is disadvantageous.

4.2 Instruction Register File

Hines et al. [13, Table 2] include a set of security-related benchmarks (e.g., AES
and SHA-2), adopting a domain-neutral (and compiler supported) approach to
implementation. Since our design differs, we do not offer a direct comparison
with these results. Rather, we aim to explore how careful use of our IRF design
compares with the natural alternative of cached instruction access.

Again, we use the sub-sections below to discuss each implementation, and
conclude with a summary of the results.

Mechanisms for Dynamic Cryptographic Instruction Set Extension 11

Table 2. Experimental results comparing the performance of various cryptographic
workloads without and with support from ISEs provided by the IRF (and without and
with support from the I-cache in each case). Note that initialisation of the IRF buffers
are not included in the total number of cycles.

AES
Without ISE With ISE

Performance Fetches (from Performance Fetches (from
(cycles) main memory) (cycles) main memory)

Without I-cache 4751 823 2644 309
With I-cache 1281 823 1302 309

Multiplication in Z∗N
Without ISE With ISE

Performance Fetches (from Performance Fetches (from
(cycles) main memory) (cycles) main memory)

Without I-cache 189069 34765 67366 4046
With I-cache 51708 34765 48640 4046

AES. Parametrising the IRF with m = 4, n = 16, we record each “block” of a
T-tables based AES implementation into a buffer; these are then replayed (as
roughly illustrated in Figure 1) to form each round.

Multiplication in Z∗
N (supporting RSA, ECC). Parametrising the IRF with m =

4, n = 16, we refer directly to the CIOS algorithm in [4, Section 5]. The idea is
to record the body of each inner loop into a buffer; we include a final instruction
which increments j. Then, by using one playback instruction, the buffer can be
replayed s times (having set C = 0 and j = 0 initially); the resulting, expanded
instruction sequence implements the entire unrolled loop.

Summary and Discussion. Table 2 outlines our results. Broadly speaking, the
conclusion is that use of the IRF can significantly reduce the number of fetches
from memory (roughly 2- and 8-fold improvement) without significant negative
impact (indeed, in some cases with positive impact) on the performance. The
latter result is, naturally, magnified when we switch off the I-cache and (e.g., in
the case of Montgomery multiplication) realise benefits of loop unrolling with-
out the associated disadvantage in terms of static footprint.

In an attempt to quantify this in terms of power consumption, we refer to
the widely cited figures provided by Segars [28, Slides 34 and 42]. He quotes an
ARM9TDMI register file as representing 13% of the datapath power consump-
tion, and ARM920T I- and D-caches as 25% and 19%, respectively, of the total
power consumption. Therefore, one can estimate that an ARM920T register file
represents about 13% of the quoted 25% total power consumption. As such, one
might roughly reason that replacing the I-cache with an IRF reduces the total
power consumption by around 20% (per fetch from IRF-resident content).

4.3 Combined Utilisation

A key motivations for our specific selection of mechanisms above is the potential
for composing their use: since use of the fabric is via a normal instruction, such

12 P. Grabher et al.

instructions can be captured in the IRF like any other. As a final, one-off case
study, we produced such a combined implementation of AES. Encryption of a
128-bit block using the T-tables based reference implementation performs 823
instruction fetches from main memory, 208 loads and 4 stores; it takes a total
of 1281 cycles and relies on a 6068 B static memory footprint. In contrast, an
ISE-based implementation (combining the previous fabric configuration and the
IRF parametrised with m = 1, n = 64) performs 45 instruction fetches from
main memory, 48 loads and 4 stores; it takes a total of 434 cycles and relies on
a 340 B static memory footprint.

In summary, considered use of the two mechanisms yields a 3-fold improve-
ment in performance, a 10-fold improvement in main memory access (combined
fetches, loads and stores), and a 17-fold improvement in memory footprint; this
is achieved in a manner which permits similar benefit to other kernels without
alteration of the PREON architecture, and largely without the I- and D-caches
which underpin the T-tables based approach.

5 Issues Relating to Practical Deployment

Section 4 highlights some practical advantages of the two mechanisms consid-
ered. However, these advantages rely on the re-configurable fabric and IRF in
PREON housing state: their configuration in both cases, and internal registers
in the case of the fabric. As such, one must also consider related disadvantages
(i.e., the issue of security). In this section, we discuss some (fairly speculative)
examples within the context of both PREON and other existing proposals.

Trusted Configuration and Use. Design verification and policy enforcement are
well-researched areas in embedded security, and form a key requirement within
high-assurance contexts. A review of related techniques is, for example, given
by Huffmire et al. [16, Sect. 4.4.1]; they point out that partial re-configuration
is rarely used within said contexts due to the increased complexity of design
verification. However, the approach of coupling a general-purpose processor to
a re-configurable fabric offers a potential solution to this dilemma. Since access
control to the re-configurable fabric must be integrated into the security model
of the processor, this will not cause the same problem as the more general case
considered by Huffmire et al. In particular, it is no more difficult to design access
policies for the fabric than for the processor itself.

As an example, access to the re-configurable fabric might be limited to the
OS kernel via a privilege mode within the processor; this offers a similar protec-
tion to that for conventional process state. Likewise, the processor may enforce
policies on the configuration bit-stream; a possible approach is to accept only
authenticated bit-streams. An effective implementation of such mechanisms is
fundamental to mitigation of several problems outlined below.

State “Read Out”. Focusing on the fabric, it is obvious that internal registers
maintained by one process should not be readable by any other process. More

Mechanisms for Dynamic Cryptographic Instruction Set Extension 13

subtle issues are raised by the fabric configuration itself. For example, pushed
to an extreme, it is tempting to consider aggressive compile-time or run-time
specialisation techniques (cf. Warp processors [21]), e.g., a fabric configuration
specialised per key. In this case, it is also vital that the configuration can not be
read by another process (or by an external attacker): Kerckhoffs’ principle does
not apply if secret key material is embedded in the configuration rather than
simply used by it. This issue relates vaguely to attacks described in [39].

Information Leakage. When unmanaged, the state of the re-configurable fabric
acts as a shared resource between processes. Said resource (or conversely, the
lack of appropriate process isolation) represents the potential for various forms
of micro-architectural attack; for example, see Wang and Lee [35, Section 4].

A concrete example can be applied to the ProteanARM [6], which requires a
process to register the fabric configurations with the OS. When an instruction
references a configuration (via an identifier), it is either
1. executed by the fabric (if the configuration is resident),
2. transformed into a call to an equivalent software implementation (where the

registration dictates this mode), or
3. causes an exception (whereby the OS can load the configuration if it is not

resident).
In a rough sense, this implies that the content of the re-configurable fabric can
be “queried” by timing how long a use of the fabric takes to complete. Hence, a
heavy-weight version of the so-called “prime + probe” approach to cache-based
side-channel attacks seems to apply.

Of course, it is possible to construct mitigating solutions. For example, one
can (at least in theory) demand a full context switch of all such resources. In
practise, however, it is often very tempting to take short-cuts since the overall
cost of switching the context of the re-configurable fabric is extremely high (as
illustrated by Section 4). We note that Chan et al. [5] examine a similar issue
of processor isolation albeit in a more coprocessor-like context.

Fault Injection. Although one can question whether the statement is still true
today, in 2003 Wollinger and Paar [36] mention that “there appears to be no
published attempt to perform this kind of [fault] attack against FPGAs.” A cur-
sory literature search shows there is (at least) not as much work in this area
as one might expect, a notable exception being [3], with more attention paid to
ASICs. Some related work includes that of Desmedt et al. [7] and Hadžic et al
[12], who introduce the idea of an FPGA “virus.” If one accepts mechanisms to
support some type of re-configurable fabrics as a viable direction, the examples
above suggest issues in terms of security. In particular, does the re-configurable
nature of an FPGA mean that “traditional” fault attacks on computation are
easier (e.g., by altering logic cells in the same way as RAM)?

Hardware Trojans. In order to reduce the cost of a context switch, the Protean-
ARM processor [6, Sect. 4] allows a configuration associated with one process
to be resident in the fabric while another process is being executed. Imagine the

14 P. Grabher et al.

re-configurable fabric is not gated, i.e., that operands are fed to it and compu-
tation occurs even if the output is not used. Since the fabric is not forcibly re-
configured for each process, a process may unintentionally provoke computation
within the fabric whose configuration is dictated by another process. Or, imagine
two (partial) configurations coexisting on a fabric: one might speculate that the
behaviour of one (e.g., with respect to thermal properties) could influence the
other in some way. These simple examples suggest the potential for a hardware
Trojan: the attacker configures the fabric with a high-leakage function which is
able to capture (or export) information leaked by some target process.

As above, the issue of isolation is important. We note that the “moats and
drawbridges” design concept of Kastner et al. [18] is of special interest in this
context: the goal is physical in-fabric isolation of partial configurations, i.e., the
separation of Trojan hardware from benign targets.

6 Conclusions

Our results in Section 4 highlight advantages with respect to support for and
use of dynamic ISEs in cryptography. Both conceptually simple, relatively non-
invasive additions to the LEON3 generalise many existing ISE proposals for this
platform and permit high-performance, “algorithm-agile” implementations. In
short, such an approach can support ISEs like AES-NI without a need for fixed
AES-related functionality. However, to realise said advantages, and following a
similar line of reasoning as [20, 26], we show in Section 5 that careful analysis
and consideration of security is a strict prerequisite.

At least two well-founded criticisms exist. First, one might view speculative
attacks against prototype processor designs as moot. Second, and focusing on
the re-configurable fabric, one may argue that other design constraints prevent
integration of an FPGA into the processor data-path. Recalling Section 2, we
again stress that processors of this sort already exist; in a sense, commercialised
examples offer an interesting vehicle for future work on some questions raised
in Section 5. Along similar lines, we stress that it is perfectly viable to instead
find a compromise between general- and special-purpose fabric: again, this is
an interesting challenge for future work. Partly re-configurable functional units
(e.g., those in PipeRench [29] and CryptoManiac [37]) give some direction.

Even though there are some unresolved challenges, our experimental results
suggest that the general concept of providing tightly integrated re-configurable
components represents an interesting approach for (embedded) processors. We
further conclude that provision of exposed, programmer-controlled components
rather than automated (cf. the transparent operation of caches) alternatives is
an attractive direction for cryptography since they allow at least the potential
to avoid classes of existing micro-architectural (e.g., cache-based) attack.

Acknowledgements. The work described in this paper has been supported in
part by EPSRC grant EP/H001689/1. The authors would like to thank Atukem
Nabina for his general input on FPGA partial re-configuration.

Mechanisms for Dynamic Cryptographic Instruction Set Extension 15

References

1. H. Amano. A survey on dynamically reconfigurable processors. IEICE Tran.
Comm., E89-B(12):3179–3187, 2006.

2. R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel. Scratchpad
memory: design alternative for cache on-chip memory in embedded systems. In
CODES, pages 73–78, 2002.

3. G. Canivet, P. Maistri, R. Leveugle, J. Clédière, F. Valette, and M. Renaudin.
Glitch and laser fault attacks onto a secure AES implementation on a SRAM-
based FPGA. J. Cryptology, 24(2):247–268, 2011.

4. Ç.K. Koç, T. Acar, and B.S. Kaliski. Analyzing and comparing Montgomery mul-
tiplication algorithms. IEEE Micro, 16(3):26–33, 1996.

5. H. Chan, P. Schaumont, and I. Verbauwhede. Process isolation for reconfigurable
hardware. In ERSA, pages 164–170, 2006.

6. M.W. Dales. Managing a reconfigurable processor in a general purpose workstation
environment. PhD thesis, University of Glasgow, 2003.

7. Y. Desmedt and J.-J. Quisquater. Public-key systems based on the difficulty of
tampering (is there a difference between DES and RSA?). In CRYPTO, pages
111–117. LNCS 263, 1986.

8. M.J. Flynn and M.D. McLaren. Microprogramming revisited. In Proc. of the 22nd
ACM National Conference, pages 457–464, 1967.

9. I. Gonzalez and F. Gómez-Arribas. Ciphering algorithms in MicroBlaze-based
embedded systems. Computers and Digital Techniques, 153(2):87–92, 2006.

10. P. Grabher, J. Großschädl, and D. Page. Light-weight instruction set extensions
for bit-sliced cryptography. In CHES, pages 331–345. LNCS 5154, 2008.

11. J. Großschädl, S. Tillich, and A. Szekely. Performance evaluation of instruction
set extensions for long integer modular arithmetic on a SPARC V8 processor. In
DSD, pages 680–689, 2007.

12. I. Hadžic, S. Udani, and J.M. Smith. FPGA viruses. In FPL, pages 291–300. LNCS
1673, 1999.

13. S.R. Hines, J. Green, G. Tyson, and D. Whalley. Improving program efficiency by
packing instructions into registers. In ISCA, pages 260–271, 2005.

14. A. Hodjat and I. Verbauwhede. Interfacing a high speed crypto accelerator to an
embedded CPU. In Asilomar Conference on Signals, Systems, and Computers,
volume 1, pages 488–492, 2004.

15. S. Hoerder, M. Wójcik, S. Tillich, and D. Page. An evaluation of hash functions
on a power analysis resistant processor architecture. In WISTP, pages 160–174.
LNCS 6633, 2011.

16. T. Huffmire, C. Irvine, T.D. Nguyen, T. Levin, R. Kastner, and T. Sherwood.
Handbook of FPGA Design Security. Springer, 2010.

17. M. Juliato and C. Gebotys. Tailoring a reconfigurable platform to SHA-256 and
HMAC through custom instructions and peripherals. In ReConFig, pages 195–200,
2009.

18. R. Kastner, T. Levin, T. Nguyen, C. Irvine, B. Brotherton, G. Wang, T. Sherwood,
and T. Huffmire. Moats and drawbridges: An isolation primitive for reconfigurable
hardware based systems. In IEEE Security and Privacy, pages 281–295, 2007.

19. T. Kluter, P. Brisk, P. Ienne, and E. Charbon. Way stealing: cache-assisted auto-
matic instruction set extensions. In DAC, pages 31–36, 2009.

20. P.C. Kocher, R.B. Lee, G. McGraw, and A. Raghunathan. Security as a new
dimension in embedded system design. In DAC, pages 753–760, 2004.

16 P. Grabher et al.

21. R. Lysecky, G. Stitt, and F. Vahid. Warp processors. TODAES, 11(3):659–681,
2006.

22. N. Malik, R.J. Eickemeyer, and S. Vassiliadis. Interlock collapsing ALU for in-
creased instruction-level parallelism. SIGMICRO Newsletter, 23(1-2):149–157,
1992.

23. J.E. Miller and A. Agarwal. Software-based instruction caching for embedded
processors. In ASPLOS, pages 293–302, 2006.

24. C.R. Moore, D.M. Balser, J.S. Muhich, and R.E. East. IBM single chip RISC
processor (RSC). In ICCD, pages 200–204, 1991.

25. N. Pothineni, P. Brisk, P. Ienne, A. Kumar, and K. Paul. A high-level synthesis
flow for custom instruction set extensions for application-specific processors. In
ASP-DAC, pages 707–712, 2010.

26. S. Ravi, A. Raghunathan, P.C. Kocher, and S. Hattangady. Security in embedded
systems: Design challenges. TECS, 3(3):461–491, 2004.

27. P. Schaumont, K. Sakiyama, A. Hodjat, and I. Verbauwhede. Embedded software
integration for coarse-grain reconfigurable systems. In IPDPS, pages 137–142,
2004.

28. S. Segars. Low power design techniques for microprocessors (tutorial session). In
ISSCC, 2001.

29. R.R. Taylor and S.C. Goldstein. A high-performance flexible architecture for cryp-
tography. In CHES, pages 231–245. LNCS 1717, 1999.

30. S. Tillich and J. Großschädl. A simple architectural enhancement for fast and
flexible elliptic curve cryptography over binary finite fields GF (2m). In ACSAC,
pages 282–295. LNCS 3189, 2003.

31. S. Tillich and J. Großschädl. Instruction set extensions for efficient AES imple-
mentation on 32-bit processors. In CHES, pages 270–284. LNCS 4249, 2006.

32. A.B. Tucker and M.J. Flynn. Dynamic microprogramming: processor organization
and programming. CACM, 14(4):240–250, 1971.

33. T. Vejda, D. Page, and J. Großschädl. Instruction set extensions for pairing-based
cryptography. In Pairing-Based Cryptography, pages 208–224. LNCS 4575, 2007.

34. VeriSign. An evaluation of new processor instructions for accelerating selected
cryptographic algorithms, 2010.

35. Z. Wang and R.B. Lee. Covert and side channels due to processor architecture. In
ACSAC, pages 473–482, 2006.

36. T. Wollinger and C. Paar. How secure are FPGAs in cryptographic applications?
In FPL, pages 91–100. LNCS 2778, 2003.

37. L. Wu, C. Weaver, and T. Austin. CryptoManiac: a fast flexible architecture for
secure communication. In ISCA, pages 110–119, 2001.

38. Xilinx. Partial reconfiguration user guide (UG702) v12.1, 2010. http://www.

xilinx.com/support/documentation/sw_manuals/xilinx12_1/ug702.pdf.
39. B. Yang, K. Wu, and R. Karri. Scan based side channel attack on dedicated

hardware implementations of data encryption standard. In ITC, pages 339–344,
2004.

