
Generic Side-Channel Countermeasures for
Reconfigurable Devices?

Tim Güneysu and Amir Moradi

Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
{gueneysu,moradi}@crypto.rub.de

Abstract. In this work, we propose and evaluate generic hardware coun-
termeasures against DPA attacks for recent FPGA devices. The proposed
set of FPGA-specific countermeasures can be combined to resist a large
variety of first-order DPA attacks, even with 100 million recorded power
traces. This set includes generic and resource-efficient countermeasures
for on-chip noise generation, random-data processing delays and S-box
scrambling using dual-ported block memories. In particular, it is pos-
sible to build many of these countermeasures into a single IP-core or
hard macro that then provides basic protection for any cryptographic
implementation just by its inclusion in the design process – what is par-
ticularly useful for engineers with no or little background on IT security
and SCA attacks.

1 Introduction

Since the last fifteen years, side-channel analysis (SCA) [12] attacks have been
(publicly) known as a major threat to any unprotected cryptographic imple-
mentation in software and hardware. Lots of efforts have already been dedicated
towards the development of corresponding countermeasures, in particular against
differential power analysis (DPA) [13], such as [5, 11, 14, 15, 18–21, 23, 24] with
this list far from being complete. A particular subject of study has been on al-
gorithmic countermeasures that mask or shuffle security-critical processes of a
specific cryptographic system as well as on generic hardware countermeasures,
such as noise generators, non-deterministic processors or side-channel resistant
logic styles. Based on all these observations it has widely been accepted that a
single (and efficient) countermeasure cannot provide complete protection against
a large variety of SCA attacks. Hence, a mix of several countermeasures is typi-
cally required to provide the security as demanded by the protection profile for a
given application (e.g., dictated by an untrusted operation environment and the
attacker model). Despite the information theoretic metrics defined by [22], the
resistance for such a protection profile, such as against DPA attacks, is typically
specified by a number of samples that need to be recorded for a successful attack,
as typically done in common criteria evaluations. In other words, if all (known)

? The work described in this paper has been supported by the European Commission
through the ICT program under contract ICT-2007-216676 ECRYPT II.



2 T. Güneysu and A. Moradi

SCA attacks with a given number of recorded samples fail, the device is supposed
to be sufficiently resistant according to the specified protection profile [16].

In this context, it is primarily the decision of the system designer which com-
bination of countermeasures should be implemented in a device. Unfortunately,
choosing a suitable combination of countermeasures is a rather challenging and
tedious task in practice. In particular, each device that uses a different technol-
ogy, architecture or combination of several countermeasures may behave differ-
ently. In this context, a hardware developer (in particular one with no or little
background on cryptography and/or SCA) would be pleased to have a set of
generic, cheap and pre-evaluated hardware-countermeasure implementations at
hand that can be easily integrated and combined to achieve a product-specific
protection profile.

In this work, we propose and evaluate generic hardware countermeasures
against DPA attacks which are suitable for a large variety of recent FPGA devices
and cryptographic systems (in particular, devices from Xilinx/Altera). Recently,
FPGAs are commonly used for many cryptographic implementations and provide
a multitude of different pre-fabricated hardware resources. We will evaluate the
most promising reconfigurable resources concerning their usability for generic
DPA countermeasures. We finally present resource efficient and generic design
approaches for DPA countermeasures that can be combined to resist a large
variety of first-order DPA attacks. This includes countermeasures for on-chip
noise generation, the insertion of random data processing delays and memory
scrambling. In particular, it is possible to combine many of these evaluated
countermeasures into a single hard macro to achieve basic protection for any
cryptographic implementation – just by its inclusion into the synthesis process.
Such an available IP core can be especially valuable for engineers with no or
little background on side-channel analysis and/or cryptography.

This work is structured as follows. Section 2 introduces different novel and
generic countermeasures which are built from the available resources of recent
FPGA devices. In Section 3 we briefly introduce an unprotected AES design as
reference implementation for our evaluation. Our measurement setup and the
evaluation method used to analyze the impact of each proposed countermeasure
are also provided as part of this section. Our results are presented in Section 4
before we conclude in Section 5.

2 Generic Countermeasures for FPGAs

It is well known that generic hardware countermeasures against DPA attacks
primarily need to decrease the relation between data processed by a relevant
part of the cryptographic implementation and the actual power consumption of
the device. There are several options to achieve this goal:

– Reducing the Signal-to-Noise Ratio: An attacker attempts to exploit a spe-
cific part Dt of a power trace Pt that processes key-dependent data within a
(known) cryptographic implementation at a given point in time t. A straight-
forward countermeasure is thus to bury Dt with lots of additive (Gaussian)



Generic Side-Channel Countermeasures for Reconfigurable Devices 3

noise Nt so that the overall power trace can be modeled as Pt = Dt + Nt.
It is evident that the addition of noise is not capable to hide the attackable
part Dt completely but it can complicate a practical DPA attack, especially
when combined with further countermeasures.

– Timing Disarrangement : DPA attacks operate on a high number of (key-
dependent) data points that are assumed to be sampled at exactly the same
point in time. The attacker usually runs a series of alignment filters to over-
come any intrinsic misalignment within the data processing, e.g., due to
clock jitter or other operational variations. An effective countermeasure is
to further randomize or shuffle the points in time when such attackable op-
erations are processed. Of course, this method can also be overcome [3, 5],
requiring the attacker to use advanced filtering functions beyond simple peak
alignment, such as complex integration and windowing methods.

– Signal Masking and Scrambling : An extensive protection against DPA can
only be obtained when the attackable part of the signal Dt completely disap-
pears in the power trace. This can be done by applying random masks to Dt.
Unfortunately, this strategy is usually very specific, requires expert knowl-
edge and involves significant changes of the cryptographic algorithm at the
additional cost of reduced performance and increased resource consumption
(see, e.g., for rather costly proposals [7, 8]).

In the next subsections we investigate implementation strategies for generic
FPGA countermeasures that are widely available for a large number of (symmet-
ric) cryptographic systems. In particular, a primary design goal for this analysis
will be to utilize only the (limited amount of) prefabricated resources that are
available on recent (Xilinx/Altera) FPGAs.

2.1 Generating Gaussian Noise

Generating white (Gaussian) noise on FPGA devices seems to be simple on
the first glance. First, place and route the logic for the main application (that
includes particularly a cryptographic component) on the FPGA device. Then,
connect all yet unused (but still routable) resources of the device to some ran-
dom data source and clock them accordingly to the chip enable signal of the
cryptographic component. This can even be done automatically, i.e., is certainly
possible to create a tool that detects and configures yet unused logic for noise
generation in a subsequent development step.

However, our goal in this section is much more specific: we intend to inves-
tigate how to configure the available FPGA resources in a way that we achieve
a maximum noise level. More precisely, we now analyze three power-consuming
strategies that are based on cascading and misusing FPGA resources.

Shift Register LUTs (SRL) Toggling the level of an input signal is known
to have the highest impact on a gate’s power consumption in CMOS devices –
what also holds for SRAM-based FPGA devices. Thus, to generate high noise,
we need to toggle as many signals as possible. Taking a closer glance at modern



4 T. Güneysu and A. Moradi

SRLi

CLKCE

A

OI

SRLsSRL1 SRL2
...

SRLsSRL1 SRL2
...

R
N
G

CE1

CEr

CLK

Fig. 1. Noise generation based on shift-register LUT (SRL)

FPGA architectures, these devices consist of large amounts of combined logic
functions made up from flip-flops and lookup tables (LUT). LUTs with n inputs
and m outputs can be configured as an n-to-m logic function generator (typically,
n = 4 or n = 6 and m = 1). A straightforward approach would then cascade
a large number of such LUT/flip-flop pairs (with the LUT being configured as
logical NOT) and clock these elements according to a connected random source.
However, we certainly could do better. Looking more into the details, a LUT
itself consists of 2n storage bits representing the truth table of its logic function.
As a secondary function, the truth table of these LUTs can often be configured
as 2n-bit shift-register LUT (SRL) providing significant savings with respect to
conventional shift registers made up from cascades of flip-flops. For an effective
noise source, we now configure r cyclic rings of s SRL elements initialized with
an alternating (toggle) bit pattern and connect the chip enable signal for each
ring to r output bits of a random number generator1. The two parameters r and
s control the amount of noise variance and noise amplitude, respectively. Fig-
ure 1 sketches the noise generating circuit using r× s SRL elements. Please note
that this noise generator does not have an output, hence synthesis tools usually
trim such unconnected components. Therefore, the KEEP attribute needs to be
applied in the HDL description for such constructions to override an undesired
optimization/removal by the tools.

BRAM Write Collisions (BWC) Another general observation for hardware
devices is that irregular behavior often leads to increased power consumption.
A write collision, for example, can occur in the dual-ported block memories
(BRAM) of FPGAs when different data is written at the same memory address
of a BRAM. For Xilinx FPGAs, for example, the result of such an incident is
just undefined [26]. Indeed, it was shown in [9] that the different driving direc-
tions lead to data contention on the internal bus lines resulting in metastabilities
within the inverter pair of a storage cell. We therefore assume the opposite and
conflicting driving directions of the two memory ports to lead to an increased
power consumption. We investigated and evaluated this effect using a construc-
tion with r BRAMs and s-bit port width as shown in Figure 2. Note that BRAMs
are typically a scarce resource in most FPGA applications. But since we only

1 For test implementations in this work, we used simple PRNGs, however the ideas
can easily be combined with available TRNG constructions for FPGAs, e.g., see [25].



Generic Side-Channel Countermeasures for Reconfigurable Devices 5

PORT B PORT A
IN

B

IN
A

A
D

D
R

A

A
D

D
R

B

W
E

B

W
E

A

s=
36

Vcc

CE

BNi

r1 2

CE1 CEr

CLK

9

RNG

CE2

CLK

s=
36

Fig. 2. Noise generator based on memory write collisions

need a single/few empty memory lines to create a write collision, we can also
reuse (inactive) BRAMs for noise generation that are actually used otherwise in
the main application and whose memory is not entirely used.

Short Circuits in Switch Boxes (SC) Producing a short circuit in a hard-
ware circuit is certainly another strategy to significantly increase the power con-
sumption of a device. Hence, we now try to generate a controlled short circuit
(SC) on an FPGA for a very limited amount of time. Note that creating SCs
in such a controlled way is not easy with FPGAs, since the design tools run
sophisticated design rule checkers that inhibit any misconfiguration. Thus, the
development of SC elements need to be done manually and cannot be simplified
using HDL tools.

Moreover, we need to consider that SCs have the potential to damage a
device. However, FPGA vendors are faced with this issue already by design.
Recall that the vendors need to make sure that a configuration file cannot damage
a device even if it is corrupted. In case such an illegal configuration is loaded into
the FPGA in serial manner, many SCs can happen before the integrity check
is finally able to detect the invalid device state. This takes place, in particular,
on Xilinx Virtex devices with enabled bitstream encryption when an encrypted
configuration is loaded for which no or an incorrect key is present (in this case,
the FPGA is getting noticeably hot). Hence, FPGA vendors typically limit the
strength of all conflicting drivers to less than 100 µA. Therefore, we can conclude
that intentionally constructing short circuits should not have severe consequences
on an FPGA’s constitution or lifetime.

In order to create an SC in an FPGA configuration based on our Xilinx FPGA
setup (cf. Section 3), we refer to the work by Beckhoff et al. [2] which lately
demonstrated that LUT input multiplexers of the switch boxes are the most
promising source to generate high-power SCs. We used Xilinx low-level tools to
create three interconnected LUTs (i.e., two first-level LUTs sourcing a second-
level LUT with two input multiplexers). Since it is not possible to directly define
the state of routing input multiplexers, we employed Xilinx Design Language
(XDL) to convert our placed design into a textual representation that then
allows to modify all programmable interconnect points (PIP) freely. We manually



6 T. Güneysu and A. Moradi

SCrSC1 SC2

IA,1

CLK

SCi

CLKSLICE1

IB,1 IA,2 IB,2 IA,r IB,r

SWITCH
BOX

SLICE2 SLICE3

IA IB

RNG

Fig. 3. Short circuits at the input multiplexer to a logic slice (denoted by red wires)

reconnected the outgoing PIPs of the first-level LUTs to the identical pinwire of
the second-level LUT. This structure (see Figure 3) is then converted into a hard
macro that can then be placed multiple times by black-box instantiation inside
the FPGA configuration, providing a large number of controllable SC elements.
Note that modern FPGAs contain several thousands of LUTs and corresponding
input multiplexers. Hence we can easily insert r instances with nearly no resource
overhead to scale the amount of noise accordingly to our needs. Note, however,
that SC elements should always be spread among the entire chip to distribute
the SC load to different power regions to avoid unintended side-effects.

2.2 Clock Randomization (CR)

DPA attacks need to exactly identify the point in time of a power trace when
cryptographic data is processed. In order to complicate data alignment, ran-
domized delays or dummy cycles are inserted into the cryptographic operation
either by special state machines or non-deterministic processors [3, 10]. In this
work, we present a novel and very efficient way to randomize data processing by
using irregular clock cycle delays and multi-phase shifting obtained from digital
clock managers (DCM) in FPGAs. Note that modern FPGAs usually contain a
large number of DCMs (often ≥4) and clock buffers (≥16) of which many remain
unused in typical applications. Hence, the following proposal is very appealing
to use this type of resource which would be wasted otherwise.

The integrated clock-management functions of many FPGA devices allow
jitter correction, clock scaling and phase shifted clock signals. Clock buffers are
placed on strategic places of the FPGA to optimize clock distribution. They
also enable clock multiplexing (e.g., to drive the design temporarily at reduced
clock frequency to implement processor sleep modes) that intrinsically provides
a minimum cycle preservation. More precisely, assume we have two different
clocks that are multiplexed via a clock buffer to drive a component of the FPGA
design. When the clock input is requested to change from one to the other, the
clock buffer will wait until the currently selected first clock is low/goes low and
remains low until the second input clock has made a transition from high to low.
After that, the second clock starts driving the output. In addition, the behavior
can be interrupted (resulting in a wait state of undefined length) in case the clock



Generic Side-Channel Countermeasures for Reconfigurable Devices 7

RNG

P
S

D
C

M
A

P
S

+
45

°

D
C

M
B

0°

90°

180°

270°

45°

135°

225°

315°

CLKCiph.

CLKI

S2

S0 S1

B

C

A

CLKI

A

B

C

CLKCiph.

Clock Output WaveformCLKFSM

CLKFSM

Fig. 4. Clock randomization using DCMs and a tree of clock buffers

multiplexer is requested to switch clocks again before the first clock change has
been completely finished [26].

DCMs in Xilinx FPGAs directly provide outputs for clocks with fixed phase
shifts of 0◦, 90◦, 180◦and 270◦. Furthermore, the phase of the output clock can
also be set to a custom value (which can also be changed dynamically during
runtime what is not considered in this work). Our clock randomization coun-
termeasure makes use of a set of l DCMs providing n different output clocks,
each phase-shifted by a fixed amount of 360/n degrees. A tree of n − 1 clock
multiplexers combines the different clocks to a single clock output that drives
the cryptographic core. In addition to that, we need two further clock buffers
to sample the input clock and to generate a system clock that is used for the
remaining non-cryptographic part of the application (and for noise generating
countermeasures). A sample design of this countermeasure with n = 8 different
phase-shifted clocks is shown in Figure 4.

2.3 Preventing Clock Frequency Manipulations (PCM)

DPA attacks are usually performed at rather low frequencies to easily allow
visual peak inspection of the power traces. However, DPA attacks are also at
higher clock frequencies possible (e.g., at more than 100 MHz, see [17]), but
become more complex due to low-filtering effects of the chip. Hence, to achieve
a simple attack setup, an attacker usually desires to reduce the external clock
frequency driving the FPGA. This can be prevented as follows. First, a DCM
always requires a specific minimum input frequency (specified by the FPGA
vendor), otherwise it may not lock (and the main application will not start).
Second, a system designer can easily include a detector that triggers an alarm
as soon as the clock falls below a specified minimum clock frequency. Figure 5
shows a suitable clock measurement circuit that uses a fixed path delay to shift
the phase of a target clock by a fixed amount of d = 180+a where a > 0 denotes
an additional phase margin to overcome clock jitter of the input clock. When an
attacker attempts to reduce the external input clock frequency (or manipulate
the duty cycle) beyond this margin, either one of the flip-flops will sample the
alternate part of the clock period, causing finally the alarm to be triggered.



8 T. Güneysu and A. Moradi

Fig. 5. Circuit to detect external clock manipulations

2.4 Block Memory Content Scrambling (BMS)

In this section we present a novel hardware countermeasure for FPGAs based
on BRAM-based S-box/T-box scrambling. In many symmetric ciphers, S-boxes
are used to introduce a non-linear component in the encryption process and
are usually implemented as simple lookup tables. Depending on their size and
construction, S-boxes can be realized either using (large amounts of) LUTs or
block memories on an FPGA. DPA attacks typically focus on the input and/or
outputs of the (known) S-boxes, hence a well-studied countermeasure attempts
to mask the S-box data with readily changing, random values. However, it turned
out that such a system either significantly reduces the encryption performance
and/or requires costly additional operations to pass a random mask through the
non-linear S-box [7, 8]. Similar to the concept of random permutation tables by
Coron [4], we now build a freely running S-box masking scheme specifically for
FPGA device. We first assume that we can rewrite the round function y = R(x)
of an arbitrary symmetric cipher as composition of a linear part L(x) (including
a linear key addition function) and a non-linear part N(x) (implemented as
a-on-b-bit S-box), resulting in y = L(N(x)) as round function.2 Assume now
N is realized as a lookup table using one port of a dual-ported BRAM of an
FPGA device. We further assume that N occupies less than half of the memory
available in the BRAM (i.e., 18KBit/36KBit for Xilinx devices). Now we define
two memory segments or contexts in the BRAM: an active context which contains
a recent version of the (masked) S-box currently used for encryption and an
inactive context containing a copy which is currently scrambled and remasked by
an encryption-independent process. The scrambling itself is a sequential process
on the second port of that BRAM that applies a b-bit mask m to each S-box
entry at address i of the active context and stores the result at address i ⊕
π(L(m)) of the inactive context (here, π(x) represents a selection function for
the corresponding S-box input bits if a 6= b). In other words, it applies an
additive mask to the S-box output that is also pushed through the linear part
L of the round function to determine the new (permuted) input address index

2 Note that this generalization actually holds for a large number of ciphers, though
symmetric round constructions often contain several linear operations L1, L2, L3, . . .
involving constructions such as y = L1(L2(N(L3(. . . (x)))). But assuming that only a
single non-linear component N is used in the round function, we can always combine
and rearrange subsequent rounds in a way that the linear subcomponents aggregate
into a single L as shown above and as could be seen in [4].



Generic Side-Channel Countermeasures for Reconfigurable Devices 9

Context B
S-box under
scrambling

Context A
Active 
S-box

OUTA

ADDRA

Active Context

OUTB

ADDRB

WEB

RNG

FSM

INB

Mask m

L(x)

Fig. 6. Construction scrambling S-box entries with random masks

where each updated masked S-box value is finally stored. Note that we refer to
this process (that adds a random b-bit mask m iteratively to all S-box entries
and writes each entry back to a permuted address) as scrambling rather than
masking. After all S-box entries have been processed by this scrambling process,
the context can be switched (i.e., the inactive context becomes active and vice
versa) and scrambling restarts on the recently deactivated context. Note that the
cipher and scrambler operate concurrently, however, the context switch is never
done within a running encryption to avoid data inconsistency issues. This implies
that multiple sequential rounds and encryptions are performed using the same
scrambled S-box and mask m (what could be exploited from a theoretical point of
view using higher-order attacks). We like to stress at this point that we designed
this countermeasure for performance and efficiency, since the concurrent data
scrambling process and the instant context switch does not reduce the encryption
speed. Note further, that in combination with previous countermeasures such as
clock randomization and noise generation, higher-order attacks will also become
extremely complex. Figure 6 shows finally the generic construction of the BRAM
scrambling circuitry.

3 Case Study

We now investigate how the countermeasures presented above can harden an
AES implementation against DPA attacks. We start with an unprotected AES
instance which we subsequently augment with our countermeasures to evaluate
their effectiveness.

3.1 Reference Architecture

For our experiments we used an unprotected, round-based T-table implementa-
tion of the standardized AES block cipher with a 128-bit data path. The round
function for such an implementation uses four 8-to-32-bit T-tables Ti to compute
a 32-bit share Sj of the 128-bit AES state S according to the following formula:

Sj = kj ⊕ T0[π0,j(S)]⊕ T1[π1,j(S)]⊕ T2[π2,j(S)]⊕ T3[π3,j(S)], (1)



10 T. Güneysu and A. Moradi

B
R
A
M

8 8 8
32

T0 T1 T2 T3

IN0

ki

8

128

8 8 88

128

Column 3

T0 T1 T2 T3k0

ki+3

k3

32

Column 0

IN3

S3S0

32 32

π π π π π π π π

Fig. 7. T-table AES implementation used for this case study

where πi,j represents a static input byte selection function. Note that we can
rewrite Equation (1) to

Rj(S) = L(N0(π0,j(S)), N1(π1,j(S)), N2(π2,j(S)), N3(π3,j(S)), kj) (2)

with Ni = Ti and L(a, b, c, d, e) = a ⊕ b ⊕ c ⊕ d ⊕ e to comply with the generic
round function specification discussed in Section 2.4. Further information about
the AES T-table implementations can be found in [6]. Our unprotected AES
implementation as shown in Figure 7 requires 21 clock cycles (1 initial clock
cycle and 2 for each round) to compute a full AES-128 encryption and consumes
682 slices (1182 LUTs, 397 FF) and 8 BRAMs storing the 16 T-tables on a Xilinx
Virtex-II Pro FPGA.

3.2 Measurement Setup and Attack Model

The AES design explained above was implemented on the Xilinx Virtex-II Pro
FPGA (xc3vp7) of a SASEBO circuit board which is particularly designed for
side-channel attack evaluations [1]. The instantaneous power consumption traces
are collected using a LeCroy WP715Zi 1.5 GHz oscilloscope at a sampling rate of
2.5GS/s and by means of a differential probe capturing the voltage drop across
a 1Ω resistor placed in the VCCINT (1.6V) path of the target FPGA.

In order to examine the leakage of the implementation and find a suitable
power model for the correlation power analysis (CPA) attacks, we started the
practical experiments when the target core is clocked at 24MHz which is selected
as the reference implementation for further comparisons. Figure 8(a) shows a
superposition of 1000 traces of this case indicating the well alignment of the
measurements. Since the I/O ports of the BRAMs of the target FPGA have a
considerably higher capacitance compared to the other low amount of logic cells
of our target design, data transfered through the BRAM buses caused by reading
the memory cells while computing the T-table outputs should have noticeable
impact on the power consumption. Therefore, we have used the Hamming weight
(HW) of the 32-bit T-table output as the hypothetical power model in a CPA
attack. The result of such an attack predicting the T-table outputs of the first
encryption round using 10 000 traces is shown in Figure 8(b). It shows that
– using a rule of thumb [17] – around 3000 traces are the minimum number



Generic Side-Channel Countermeasures for Reconfigurable Devices 11

(a) (b)

Fig. 8. The AES core in 24MHz (a) superimposition of 1000 traces, (b) CPA attack
result using 10 000 traces

of required measurements. We have examined a couple of other hypothetical
models, and the best result was achieved using the aforementioned model.

4 Evaluation and Results

The results of the attacks evaluating the effect of each method introduced in
Section 2 are presented in the following. Since the leakage model of the target
device is well known and can be appropriately estimated by a HW model, we
limited our evaluations to CPA attacks and considered the number of required
measurements as metric for comparisons. The result of each scheme is compared
to the results shown above in the reference implementation.

4.1 Noise Generators

Adding each of the noise generation schemes individually as explained in Sec-
tion 2.1 leads to an increased amount of switching noise and has an effect on
the number of required measurements for a successful attack. In order to practi-
cally examine their effectiveness, we added the noise generators based on shift-
register LUTs (SRL), BRAM write collisions (BWC) and short circuits (SC)
individually into the reference implementation and repeated the measurements
and corresponding attacks. We used uniform parameters for the individual noise
generators, namely r = 16 and s = 36, taking an additional resource consump-
tion of 576 LUTs (SRL), 16 BRAMs (BWC) and 48 LUTs (SC), respectively.
Figure 9 shows the result of the attacks when each of the noise sources is sep-
arately enabled in addition to the case when all of them exist in the design.
It can be concluded that adding noise sources with quite moderate parameters
already increases the number of required measurements slightly, i.e., to around
8000. In this context, the SC noise generator is obviously the most efficient one
with respect to the number of consumed resources. However, using solely noise
addition (even with much larger parameters for r and s) can certainly not be
considered as an optimum way to make any attacks infeasible.



12 T. Güneysu and A. Moradi

(a) (b)

(c) (d)

Fig. 9. CPA attack results using 50 000 traces of the AES core in 24MHz including
(a) shift-register LUTs, (b) BRAM write collisions, (c) short circuits, and (d) all three
noise sources

4.2 Clock Randomizing

In Section 2.2 we presented the CR method to randomize the clock source by
randomly changing the clock phase to introduce a variable misalignment of the
power traces. For our attack, we used a setup based on l = 2 DCMs with
n = 8 phase-shifted clock outputs which are processed and multiplexed by 9
clock buffers. An encryption clocked by this irregular output takes on average
3.77 times longer than our reference implementation. Embedding this unit into
the reference implementation – as expected – led to a variable amount of time
required for an encryption. Figure 10(a) shows a superimposition of 1000 traces,
already indicating a strong misalignment. Therefore, we performed the attacks
using considerably more measurements, i.e., 10 000 000. The results shown in Fig-
ure 10(b) signifies the need for around 3 000 000 traces to determine the correct
key hypothesis. We like to emphasize that the randomization of processing times
is not aligned with the primary clock any longer (unlike in shuffling schemes),
rendering a combing technique [24] useless in our case. Since combing is done
by adding up the leakage points of consecutive clock cycles of a trace while
– as shown in Figure 10(a) – it is here not possible to clearly distinguish the
clock cycles. Reducing the input clock frequency to facilitate the attack can be
prevented by using a detector for clock manipulations as shown in Section 2.3.
However, a windowing approach [3], summing up all points within a defined win-
dow, proved to be effective since the operating clock frequency of 24MHz let the
power peaks of consecutive clock cycles overlap with each other (i.e., this intrin-
sic low pass filter has the same effect as windowing). Indeed, we even repeated



Generic Side-Channel Countermeasures for Reconfigurable Devices 13

(a) (b)

Fig. 10. The AES core in 24MHz equipped with the clock phase shift unit (a) super-
imposition of 1000 traces, (b) CPA attack result using 10 000 000 traces

(a) (b)

Fig. 11. The AES core in 24MHz equipped with BRAM scrambling (a) superimposition
of 1000 traces, (b) CPA attack result using 100 000 000 traces

this type of attack with different window sizes, but with no significant difference
to Figure 10(b).

4.3 Block Memory Content Scrambling

In order to integrate the BRAM scrambling technique (BMS) introduced in
Section 2.4 into our reference implementation, we need to duplicate the number
of BRAMs to provide a separate memory port and space for the scrambling
process. For the scrambling, we used 16×32 bit masks mi to mask the output
of all 16 T-tables requiring a total of 512 random bits per scrambling cycle.
According to Equation (2), we can apply the linear transformation L of the 32-bit
AES round function to the masks by computing L(mi,mi+1,mi+2, mi+3, 0) =
Mi for i = 0 . . . 3. From each aggregated 32-bit mask Mi the corresponding
input byte mask is finally selected by π(Mi) and determines the corresponding
permutation mask to the next round’s T-table input.

Since this scheme does not affect the timing behavior of the design, the variety
of power traces should be similar to that of the reference implementation. One
difference that may have an influence on the power consumption is the additional
scrambler circuit that concurrently modifies the BRAM contents. Therefore, as
shown in Figure 11(a) the DC level of the power traces is increased compared
to Figure 8(a).

The input and output of the T-tables are now masked by random values which
are not shared inside a single round computation, and we expect this design to



14 T. Güneysu and A. Moradi

avoid univariate power analysis attacks. In order to examine this claim, we have
measured 100 000 000 traces and have performed the same attack as before. The
result is shown in Figure 11(b).

However, a critical point is the reuse of the masks between the subsequent
rounds. This means, the 512-bit mask used in the first round is reused in the
later rounds since the BRAM sections used during an encryption process stay
unaltered. Therefore, a second-order attack is possible combining the leakages,
for example, of two consecutive rounds. To do this, the adversary needs to predict
at least 240 bits of the key, i.e., 232 for 4 bytes of the first round key which are
at the same column after ShiftRows, and 28 for one byte of the second round
key. One may also think about combining the leakages of the scrambler module
with that of the first encryption round, but this requires to know exactly the
instance in time when the scrambler processes the T-table content used in the
next encryption. Note further that the scrambler unit operates independently
with a separate clock, hence its computations are not synchronized with the
encryption process.

4.4 Combining Countermeasures

Although we were already unable to defeat the latter countermeasure with first-
order attacks and 100 million traces, we like to stress that we still can strengthen
this design by adding the clock randomization and noise generation countermea-
sures. We have omitted to provide it as a separate result since it is similar to the
one depicted in Figure 11(b). The combination of all proposed countermeasures
are likely to harden our design against a large number of multivariate attacks
which are out of scope of this work. The designer thus can mix and match the
proposed countermeasures according to the security requirements of the appli-
cation and the remaining logic available on the FPGA device. Table 1 shows
the overhead of the countermeasures for the generic and specific case consid-
ering their impact on the logic resource consumption and execution time of a
cryptographic process. Comparing our results with other work, we noticed that
countermeasures specifically built for (comparable) FPGA devices are quite rare.
We thus only refer to the work [18] implementing an SCA countermeasure based
dynamic partial reconfiguration on a Virtex-II Pro. Their countermeasure re-
quires an overhead of 2566 slices (i.e., up to 5132 LUT/FF pairs) and reduces
the throughput of a plain AES implementation by a factor of 6.6. Except for
BWC, combining all our countermeasures of this work results in a more efficient
solution (i.e., a combination of all methods, excluding BWC, consumes 2337
LUT, 1171 FF, 1 DCM, 7 CB and reduces the throughput by a factor of 3.77).

5 Conclusion

In this work we presented several generic hardware countermeasures against DPA
attacks that can be efficiently implemented on recent FPGA devices. We could
practically demonstrate that a combination of the presented countermeasures



Generic Side-Channel Countermeasures for Reconfigurable Devices 15

Table 1. Time and resource overhead for each proposed countermeasure for parameters
r = 16, s = 36 and l = 2, excluding RNG and output combining function. The plain
AES implementation consumes 8 BRAM, 1182 LUT and 397 FF on a Xilinx Virtex-II
Pro. Figures with asterisk (*) are not quantified due to implementation-specific char-
acteristics. Abbreviations: LUT=Look-Up-Table, FF=Flip-Flop, DCM=Digital Clock
Manager, BRAM=Block Memory, CB=Clock Buffer.

Section/ Generic Implementation AES T-Table Case Study
Method Logic Time Logic Time

2.1.1/SRL r · s LUT none 576 LUT none
2.1.2/BWC r BRAM, r · s LUT none 16 BRAM, 576 LUT none
2.1.3/SC 3 · r LUT none 48 LUT none

2.2/CR l − 1 DCM, 4l − 1 CB n/a* 1 DCM, 7 CB 3.77×
2.3/PCM 1 LUT, 2 FF, Delay Path none 3 LUT, 2 FF none

2.4/BMS n/a* none 8 BRAM, 1706 LUT, 1169 FF none

(noise generation, clock randomization and memory scrambling) rendered first-
order DPA attacks with up to 100 million traces unsuccessful. For independent
verification of our results and future work (e.g., second-order SCA), the PROM
files with the AES implementation and all countermeasures for the SASEBO are
publicly available at http://www.emsec.rub.de/research/publications.

References

1. Side-channel Attack Standard Evaluation Board (SASEBO). Further information
are available via http://www.rcis.aist.go.jp/special/SASEBO/index-en.html.

2. C. Beckhoff, D. Koch, and J. Torresen. Short-Circuits on FPGAs Caused by Partial
Runtime Reconfiguration. In FPL, pages 596–601. IEEE Computer Society, 2010.

3. C. Clavier, J.-S. Coron, and N. Dabbous. Differential power analysis in the pres-
ence of hardware countermeasures. In Çetin Kaya. Koç and C. Paar, editors,
CHES 2000, volume 1965 of LNCS, pages 252–263. Springer, Aug. 2000.

4. J.-S. Coron. A new DPA countermeasure based on permutation tables. In R. Ostro-
vsky, R. D. Prisco, and I. Visconti, editors, SCN 08: 6th International Conference
on Security in Communication Networks, volume 5229 of LNCS, pages 278–292.
Springer, Sept. 2008.

5. J.-S. Coron and I. Kizhvatov. Analysis and improvement of the random delay coun-
termeasure of CHES 2009. In S. Mangard and F.-X. Standaert, editors, CHES 2010,
volume 6225 of LNCS, pages 95–109. Springer, Aug. 2010.

6. J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryp-
tion Standard. Springer, 2002.

7. J. D. Golic and C. Tymen. Multiplicative masking and power analysis of AES. In
B. S. Kaliski Jr., Çetin Kaya. Koç, and C. Paar, editors, CHES 2002, volume 2523
of LNCS, pages 198–212. Springer, Aug. 2002.

8. L. Goubin and J. Patarin. DES and differential power analysis (the “duplication”
method). In Çetin Kaya. Koç and C. Paar, editors, CHES’99, volume 1717 of
LNCS, pages 158–172. Springer, Aug. 1999.



16 T. Güneysu and A. Moradi

9. T. Güneysu. Using Data Contention in Dual-ported Memories for Security Appli-
cations. Journal of Signal Processing Systems, pages 1–15, 2010.

10. J. Irwin, D. Page, and N. P. Smart. Instruction Stream Mutation for Non-
Deterministic Processors. In ASAP, pages 286–295. IEEE Computer Society, 2002.

11. K. Itoh, J. Yajima, M. Takenaka, and N. Torii. DPA countermeasures by improving
the window method. In B. S. Kaliski Jr., Çetin Kaya. Koç, and C. Paar, editors,
CHES 2002, volume 2523 of LNCS, pages 303–317. Springer, Aug. 2002.

12. P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In N. Koblitz, editor, Advances in Cryptology – CRYPTO’96,
volume 1109 of LNCS, pages 104–113. Springer, Aug. 1996.

13. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. J. Wiener,
editor, Advances in Cryptology – CRYPTO’99, volume 1666 of LNCS, pages 388–
397. Springer, Aug. 1999.

14. F. Macé, F.-X. Standaert, and J.-J. Quisquater. Information theoretic evaluation
of side-channel resistant logic styles. In P. Paillier and I. Verbauwhede, editors,
CHES 2007, volume 4727 of LNCS, pages 427–442. Springer, Sept. 2007.

15. H. Mamiya, A. Miyaji, and H. Morimoto. Efficient countermeasures against RPA,
DPA, and SPA. In M. Joye and J.-J. Quisquater, editors, CHES 2004, volume
3156 of LNCS, pages 343–356. Springer, Aug. 2004.

16. S. Mangard. Hardware countermeasures against DPA? a statistical analysis of
their effectiveness. In T. Okamoto, editor, Topics in Cryptology – CT-RSA 2004,
volume 2964 of LNCS, pages 222–235. Springer, Feb. 2004.

17. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the
Secrets of Smart Cards. Springer, 2007.

18. N. Mentens, B. Gierlichs, and I. Verbauwhede. Power and fault analysis resis-
tance in hardware through dynamic reconfiguration. In E. Oswald and P. Rohatgi,
editors, CHES 2008, volume 5154 of LNCS, pages 346–362. Springer, Aug. 2008.

19. A. Moradi and A. Poschmann. Lightweight cryptography and DPA countermea-
sures: A survey. In R. Sion, R. Curtmola, S. Dietrich, A. Kiayias, J. M. Miret,
K. Sako, and F. Sebé, editors, FC 2010 Workshops, volume 6054 of LNCS, pages
68–79. Springer, Jan. 2010.

20. K. Okeya and T. Takagi. A more flexible countermeasure against side channel
attacks using window method. In C. D. Walter, Çetin Kaya. Koç, and C. Paar,
editors, CHES 2003, volume 2779 of LNCS, pages 397–410. Springer, Sept. 2003.

21. E. Prouff and R. P. McEvoy. First-order side-channel attacks on the permutation
tables countermeasure. In C. Clavier and K. Gaj, editors, CHES 2009, volume
5747 of LNCS, pages 81–96. Springer, Sept. 2009.

22. F.-X. Standaert, T. Malkin, and M. Yung. A unified framework for the analysis
of side-channel key recovery attacks. In A. Joux, editor, Advances in Cryptology –
EUROCRYPT 2009, volume 5479 of LNCS, pages 443–461. Springer, Apr. 2009.

23. F.-X. Standaert, S. B. Örs, and B. Preneel. Power analysis of an FPGA: Imple-
mentation of Rijndael: Is pipelining a DPA countermeasure? In M. Joye and J.-J.
Quisquater, editors, CHES 2004, volume 3156 of LNCS, pages 30–44. Springer,
Aug. 2004.

24. S. Tillich and C. Herbst. Attacking state-of-the-art software countermeasures-a
case study for AES. In E. Oswald and P. Rohatgi, editors, CHES 2008, volume
5154 of LNCS, pages 228–243. Springer, Aug. 2008.

25. M. Varchola. FPGA Based True Random Number Generators for Embedded Cryp-
tographic Applications. PhD thesis, Technical University of Kosice, 2008.

26. Xilinx Inc. User Guides for Xilinx FPGA devices, April 2011. http://www.xilinx.
com.


