
Higher-Order Glitches Free Implementation of
the AES using Secure Multi-Party Computation

Protocols

Emmanuel Prouff1 and Thomas Roche2?

1 Oberthur Technologies, 71-73, rue des Hautes Pâtures 92726 Nanterre, France
e.prouff(at)oberthur(dot)com

2 ANSSI, 51 boulevard de La Tour-Maubourg 75700 Paris 07 SP, France
thomas.roche(at)ssi(dot)gouv(dot)fr

Abstract. Higher-order side channel attacks (HO-SCA) is a powerful
technique against cryptographic implementations and the design of ap-
propriate countermeasures is nowadays an important topic. In parallel,
another class of attacks, called glitches attacks, have been investigated
which exploit the hardware glitches phenomena occurring during the
physical execution of algorithms. We introduce in this paper a circuit
model that encompasses sufficient conditions to resist glitches effects.
This allows us to construct the first countermeasure thwarting both
glitches and HO-SCA attacks. Our new construction requires Secure
Multi-Party Computation protocols and we propose to apply the one
introduced by Ben’Or et al. at STOC in 1988. The adaptation of the
latter protocol to the context of side channel analysis results in a com-
pletely new higher-order masking scheme, particularly interesting when
addressing resistance in the presence of glitches. An application of our
scheme to the AES block cipher is detailed.

1 Introduction

Higher-0rder Side-Channel Analysis (HO-SCA for short) is a class of physical
cryptanalyses against cryptosystems. They generalize the seminal side-channel
attacks introduced in the late nineties by Kocher et al. [11]. Contrary to the
latter attacks that only exploit instantaneous leakages, HO-SCA attacks mix
observations of several leakages to recover information about the secret parame-
ters of the targeted algorithm. The number of different leakages (e.g. related to
different times during the processing or to different locations in a circuit) defines
the attack order.

A very common countermeasure to protect block cipher implementations
against HO-SCA is to randomize the key-dependent variables by masking (a.k.a.

? This work has been carried out when the author was Post-doc at the University of
Paris 8, Département de mathématiques, 2, rue de la Liberté; 93526 Saint-Denis,
France

sharing) techniques [3, 8]. The masking can be characterized by both the num-
ber n of random shares and the smallest number d + 1 of them that are re-
quired to re-construct the variable. In this case, it is called a (n, d)-sharing. A
scheme specifying how to apply (n, d)-sharing to protect an algorithm implemen-
tation, is called dth-order masking scheme. It aims at defining a modus operandi
that thwarts any SCA attack of order lower than or equal to d. Even though a
(d+1)th-order SCA exploiting the leakage of d+1 shares can always theoretically
be successfully performed, it has been shown in [3] that the complexity of such
an attack increases exponentially with the order due to noises effects. Hence a
dth-order masking scheme is a sound countermeasure against HO-SCA attacks
when d is high enough w.r.t. the noise. Some dth-order masking schemes have
been proposed with formal security proof [9, 23–25]. However in 2004 Mangard
et al. [12] pointed out a weakness in the adversary model involved to construct
these masking schemes: when an implementation is processed, so-called hardware
glitches — common in CMOS technology — occur that deteriorate the effect of
masking and leak more information than the simple value of the variables spec-
ified by the implementation. Since the seminal work of Mangard et al. , several
papers have successfully applied so-called glitches attacks against implementa-
tions that were secure in the classical HO-SCA adversary model (see e.g. [12]).
Up to now, a unique masking scheme has been presented as secure in presence
of glitches [16–19]. This masking scheme is only resistant against 1st-order SCA,
which leaves open the problem of specifying cryptographic implementations se-
cure against higher-order SCA attacks in presence of glitches.

1.1 Related Works

The problematic of specifying cryptosystem implementations thwarting dth-order
SCA attacks in presence of glitches is recent. Actually, to the best of our knowl-
edge, most of the work on this subject have been done by Nikova et al. [16–19].
In those papers, a masking scheme is proposed that is claimed to resist 1st-order
SCA in presence of glitches. Unfortunately, adapting the proposed schemes to
also counteract SCA attacks of order greater than 1 seems difficult while keeping
the efficiency and performance on acceptable level. On the other hand, two im-
plementations proven secure against dth-order SCA attacks for any d have been
proposed by Ishai et al. [9] and Rivain et al. [24]. Ishai et al. ’s solution is ded-
icated to hardware implementations. It clearly does not thwart glitches attacks
and modifying it to achieve resistance against the latter ones is an (open) issue.
Rivain et al. ’s solution is dedicated to software context. When embedded in a
physical device there is no guaranty that no glitches effects will occur during
the processing. Providing such a guaranty may be possible by ensuring that all
the elementary operations are performed sequentially on a circuit which is re-
initialized between each operation. However, such a process, if possible, would
induce a prohibitive computational overhead.

1.2 Our Contribution

In this paper, we introduce a generic framework for the design of Hardware
or Software implementations that counteract HO-SCA in presence of glitches
(Sect. 2). This framework is built around the notion of multi-party circuit which
is defined as the composition of several sub-circuits whose respective side-channel
leakages are strictly independent. Secondly, we establish a parallel between the
construction of a HO-SCA resistant implementation inside our new framework
and the classical problem of building Secure Multi-Party Computation (SMC)
protocols in the context of semi-honest adversaries. As a matter of fact, starting
from the seminal work of Ben-Or et al. on non-cryptographic SMC protocols [1],
we show how to design a multi-party circuit that can implement any function
with a minimum number of sub-circuits (Sect. 3). As an example, we specify
such a circuit for the AES-128 algorithm (Sect. 4 and [21] for a description of
the scheme for the full AES-128). To the best of our knowledge, our proposal is
the first implementation that claims to thwart dth-order SCA attacks in presence
of glitches.

2 Preliminaries and Multi-Party Circuits

In this section, we introduce a framework in which the resistance of a (hardware
or software) implementation against HO-SCA in presence of glitches attacks can
be stated. First, we give a formal definition of the attacks. Then, in Sect(s).
2.2 and 2.3 we exhibit sufficient conditions and general principles to thwart the
attacks.

2.1 Computation and Adversary Models

SCA attacks exploit a dependency between a subpart of the secret parameter
and the variations of a physical leakage as function of a known input. This
dependency results from the manipulation of some variables, called sensitive,
by the implementation. We say that a variable Z is sensitive if it depends on
both a known variable and a secret parameter. The physical leakage on such a
variable will be viewed as a noisy leakage function L(Z) which returns a noisy
information about it. The noisy property of L(·) is captured by assuming that
the bias introduced in the distribution of Z given the leakage L(Z) is bounded.

In this paper, we shall see the implementation targeted by a SCA attack as
a circuit, whose formal definition is given hereafter:

Definition 1 (Circuit Cf). Let f be a function and let O be a set of elementary
operations. A circuit Cf implementing f thanks to operations in O is an oriented
graph were each cell ci defines an elementary operation and each edge bears an
intermediate variable Vij which is an output of the operation ci and an input of
the operation cj.

Remark 1. The above notion of circuit encompasses both hardware and software
implementations. In the hardware context, the set O may only contain the logical
binary operations XOR and AND. In the software context, the set O may only
contain field operations ⊕ and ⊗ in GF(2m), where m is the architecture size.

Several adversary models have been proposed in the literature to capture a
practical SCA attacker against a circuit Cf . Among them, the probing adversary
model is the most popular one. We give hereafter a formal definition of this
adversary in our framework.

Definition 2 (dth-order Probing Adversary Model). Let Cf be a circuit
with (Vij)(i,j)∈I as edges and let d be a positive integer. Let L be a set of noisy

leakage functions. A dth-order Probing Adversary against Cf is an adversary that
can choose a subset J of I with #J = d and can observe the random variable
(Lij(Vij))(i,j)∈J , where (Lij(·))ij is a d-tuple of functions in L.

Remark 2. In the hardware context (when the circuit Cf is defined with respect
to operations XOR and AND), the Probing Adversary Model with L reduced to
the identity function exactly fits with the definition given by Ishai et al. in [9]. In
the software context (when the circuit Cf is defined with respect to operations
on m-bit words with m being the architecture size), our definition corresponds
to the classical notion of dth-order SCA [2, 10, 14]. In this case, L is usually
defined as the set of noisy leakage functions L(·) = HW(·) +B(µ, σ), where B is
a gaussian independent noise with mean µ and standard deviation σ and where
HW denotes the Hamming weight function.

Notation. An attack performed by the adversary in Definition 2 is called dth-
order probing attack. A circuit secure against those attacks is said to be d-probing
secure.

The two works of Ishai et al. [9] and Rivain and Prouff [24] show that
achieving perfect security in the Probing Adversary Model is possible. In parallel
however, several publications have shown that schemes secure in this model can
still be broken in practice (see e.g. [12] and [13]). The reason for this is that in
physical implementations (e.g. in CMOS), a lot of unintended switching activities
occur. These unintended switching activities are usually referred to as dynamic
hazards or glitches.

The effect of glitches on the side-channel resistance of masked circuits has first
been analyzed in [12]. The same year, a technique to model the effect of glitches
on the side-channel resistance of circuits has been published in [27]. Hereafter
we model an adversary which performs glitches attacks against a circuit. For
such a purpose, and following the same approach as in [27], we transform our
static definition of a circuit into a dynamic one. Actually, this simply amounts
to assume that the random variable Vij not only depends on the pair (i, j) but
also on a third time parameter t. We denote by Vij(t) the dynamic version of
Vij and call dynamic the corresponding circuit. The main difference between the
two models is that, in the probing model, the value taken by Vij is assumed

to be constant, whereas its dynamic version Vij(t) can change over the time,
even when the circuit input is fixed. The internal state transition at time t′ of a
circuit Cf with (Vij)(i,j)∈I as edges refers to all the non-zero transitions of the
value taken by the Vij(t) at time t = t′. It is denoted by Cf (t′).

Definition 3 (dth-order Glitches Adversary Model). Let Cf be a circuit
and let d be a positive integer. Let L be a set of leakage functions. A dth-
order Glitches Adversary against Cf is an adversary that can choose d times
t1, t2, ..., td and can observe the internal state transition at the d selected times
(Li(Cf (ti))i≤d, where, for each i ≤ d, Li(·) is a function in L.

Notation. An attack performed by the adversary defined in Definition 3 is called
dth-order glitches attack. A circuit secure against those attacks is said to be
d-glitches free.

Security in the glitches adversary model implies security in the probing adver-
sary model whereas the converse is false. In the following sections, we introduce
the notions of d-probing security and of d-glitches freeness. In both cases, we
exhibit generic constructions principles that enable to design circuits achieving
them.

2.2 Security in the Probing Adversary Model

The following definition formalizes the notion of security w.r.t. dth-order probing
adversaries. Note that this definition corresponds to that involved in numerous
papers (e.g. [2, 4, 10,14,20]).

Definition 4 (d-probing Security). Let d be a positive integer. A circuit Cf
with family of edges V is d-probing secure iff no family of at most d elements in
V is sensitive.

To achieve d-probing security, the most widely used approach is to split each
sensitive variable appearing in the algorithmic description of the cryptosystem
into several shares and to replace operations on the sensitive data by operations
on the shares. We give hereafter a formal description of this technique called
(n, d)-sharing in the sequel.

Definition 5 ((n, d)-sharing). Let n and d be two positive integers such that
n > d. A (n, d)-sharing of a variable Z ∈ GF(2m) is a family of n variables
(Zi)1≤i≤n such that:

1. there exists F from GF(2m)n into GF(2m) s.t. F (Z1, · · · , Zn) = Z,
2. for every I ⊂ [1;n] s.t. #I ≤ d, we have Pr(Z | (Zi)i∈I) = Pr(Z).

In relation with the notion of (n, d)-sharing we will sometimes use the notion
of independent sharings. A formal definition is given hereafter.

Definition 6 (Independence of (n, d)-sharings). Let n and d be two positive
integers such that n > d. Two (n, d)-sharings (Zi)i≤n and (Z ′i)i≤n of two (not
necessarily distinct) variables Z and Z ′ are said to be independent if for every
pair of subsets (I, I ′) in [1;n], each of cardinality lower than or equal to d, we
have Pr((Zi)i∈I | (Z ′i)i∈I′) = Pr((Zi)i∈I).

Remark 3. Two (n, d)-sharings are independent if they involve independent mask-
ing materials (i.e. different random values). The replacement of a (n, d)-sharing
of Z by a new independent one is sometimes called re-randomization or masks
refreshing in the literature [1, 24].

In the SCA literature, the family (Zi)1≤i≤n is usually called a masked repre-
sentation at order d of Z. The function F is usually simply defined as the sum
of the Zi and n is chosen equal to (d+ 1). Several ways have been proposed to
apply such a d-sharing to protect a circuit against probing attacks. To the best of
our knowledge, only the circuit implementations proposed by Ishai et al. [9] and
Rivain and Prouff [24] are d-probing secure for any fixed value d. Unfortunately,
those schemes are not by construction secure in the Glitches Adversary Model.
In the following, we introduce a new strategy to directly obtain circuits secure
in the Glitches Adversary Model.

2.3 Security in The Gliches Adversary Model

To achieve security in the Glitches Adversary Model, we develop hereafter a
strategy that consists in hermetically separating some parts of the computa-
tion. The idea is to split a circuit Cf implementing a function f into several
sub-circuits Cf i such that the observation of d or fewer sub-circuits gives no in-
formation on the original circuit input. The security/pertinence of this approach
is essentially based on the following simple observation: if n sub-circuits Cf i
operate each on a single element of a (n, d)-sharing and if the processings leak
independently, then the circuit composed of the n sub-circuits is d-glitches free.
Of course, this observation alone does not directly permit to design a d-glitches
free circuit implementing any function f . Indeed, the above construction implies
that each sub-circuit is input with a single share of a sharing and cannot access
the other shares. By consequence, only a certain type of function f (homomor-
phic with respect to the sharing) can be split into n independent computations,
each operating only a single share of f ’s input and returning a sharing of Cf ’s
output.

Secure Multi-Party Computation protocols, and in particular the protocol
in [1] recalled in next section, are methods that extend the above idea to any
function f (i.e. not only homomorphic function for which, as we have seen, the
solution is straightforward). This extension however requires to provide each
sub-circuit Cf i with the ability to send to the other ones information about
some of its intermediate results. To ensure that this new ability does not im-
pact on the d-glitches freeness of the circuit composed of the n sub-circuits, this
sent information must itself be shared between all the other n sub-circuits. This

implies that each sub-circuit must only be able to access a single share of a
(n, d)-sharing of the intermediate result of another sub-circuit. To ensure that a
sub-circuit cannot receive several shares of a same (n, d)-sharing or cannot access
several shares related to dependent (n, d)-sharings, we set the condition that all
the shares accessed by a sub-circuit come from distinct and independent (n, d)-
sharings. To formalize our construction, each sub-circuit Cf i is extended with a
family of n−1 channels ($ij)j 6=i, the channel $ij being dedicated to the commu-
nication between Cf i and Cf j and being not accessible by another sub-circuit.
Through those channels, each Cf i can access a share of any intermediate result
of another sub-circuit, each new accessed share being related to a (n, d)-sharing
independent of the previous ones. The family of extended circuits (Cf i, ($ij)i6=j)i
is called a (n, d)-multi-party circuit. We give a formal definition of it hereafter.

Definition 7. Let f be a function and let Z denote its input. Let (Zi)i be a
(n, d)-sharing of Z. A circuit Cf composed of n extended sub-circuits (Cf 1, ($1j)j 6=1),
..., (Cfn, ($nj)j 6=n) is a (n, d)-multi-party circuit iff:

– every Cf i is input with a share Zi only,
– each Cf i can access, through $ij, to a share of an (n, d)-sharing of an inter-

mediate result of the sub-circuit Cf j,
– all the shares accessed by a sub-circuit Cf i relate to mutually independent

(n, d)-sharings,
– the Cf ′is outputs form a (n, d)-sharing of f(Z).
– for i 6= j, Cf i leaks independently to Cf j.

The following proposition states on the security of our construction against
glitches attacks3.

Proposition 1. A (n, d)-multi-party circuit is secure in the dth-order Glitches
Adversary Model.

In the next section we recall the basics about Secure Multi-party Computation
and, in particular, a SMC protocol introduced by Ben Or et al. in [1]. Then,
we argue that this protocol can be adapted to our context in order to design
(n, d)-multi-party circuits as long as n is greater than 2d.

3 Secure Multi-Party Computation

Secure Multi-Party Computation represents a rich area of research initiated by
the seminal work of Yao in 1986 [28]. For a n-ary function f and a family of n
players (Ii)i≤n, each holding a private value Zi, a secure multi-party computation
is a joint protocol enabling the players Ii to compute f(Z1, · · · , Zn) while under
attack by an external adversary and/or by a subset of malicious players (also
called the colluding players). The purpose of the attack is to learn the private
information of the – non-colluding – honest players or to cause the computation

3 A sketch of proof can be found in the extended version of this paper [21]

to be incorrect. As a result, there are two important requirements of a multi-
party computation protocol: correctness and privacy. Those two requirements
relate to two different kinds of adversaries. The first one, usually called active,
is allowed to let the malicious parties deviate from the protocol in arbitrary
ways. It is out of the scope of this paper. The second adversary kind, called
passive or semi-honest, is only allowed to create collusion of players to gain
information about the secret. The corrupted players still follow the protocol and
never forge wrong data. A security threshold parameter d ≤ n is used to indicate
the maximum number of players the adversary is allowed to corrupt. A SMC
protocol secure against a passive or active adversary with threshold d is called a
d-private protocol. We show in this section how the problem of designing SMC
protocols secure for this adversary model is related to the problem of designing
multi-party circuits secure in the Glitches Adversary Model. Before that, we
recall in the next section the main aspects of the SMC protocol introduced by
Ben Or et al. in [1] on the basis of an idea proposed by Shamir in 1988.

3.1 Shamir’s Secret Sharing Scheme and BGW’s protocol

In a seminal paper [26], Shamir has introduced a simple and elegant way to share
a secret Z (considered here in GF(2m)) between n < 2m players such that no col-
lusion of d < n players can retrieve information about Z. In Shamir’s protocol,
an entity called the Dealer generates a degree-d polynomial PZ(X) ∈ GF(2m)[X]

with constant term Z and secret coefficients ai (i.e. PZ(X) = Z +
∑d

i=1 aiX
i).

Then, he chooses n distinct non-zero elements α1, · · · , αn in GF(2m), makes
them publicly available and distributes to each player Ii the value Zi = PZ(αi).
To re-construct the secret Z, the players publish their private values Zi, recon-
struct PZ by polynomial interpolation (always possible since n > d) and evaluate
PZ(X) in 0 (we have Z = PZ(0)). It can be easily checked that Shamir’s sharing
fits with the notion of (n, d)-sharing given in Definition 5 with reconstruction
function F defined s.t. F (Z1, · · · , Zn) =

∑n
i=1 Zi

∏n
k=1,k 6=i−αk(αi−αk)−1 (due

to Lagrange’s Interpolation, F (Z1, · · · , Zn) equals PZ(0) that is Z).

Remark 4. The products
∏n

k=1,k 6=i−αk(αi−αk)−1 for all i can be precomputed
once for all. They actually correspond to the first row (λ1, · · · , λn) of the inverse
of the Vandermonde (n×n)-matrix (αj

i)1≤i,j≤n. We hence have F (Z1, · · · , Zn) =∑n
i=1 λiZi.

Starting from Shamir’s secret sharing, Ben Or et al. have defined in [1] a
d-private SMC protocol in the case where the number of players n satisfies
n > 2d. This construction, called BGW’s protocol in the following, is in fact a
constructive proof of Theorem 1 (see [1]):

Theorem 1. For every (probabilistic) function f and n > 2d, there exists a
d-private protocol.

In BGW’s protocol, the input (Z1, · · · , Zn) of the function f whose computa-
tion must be made d-private is assumed to correspond to Shamir’s sharing of a

secret variable Z. Namely, they correspond to the evaluation of a degree-d secret
polynomial PZ(X) in n distinct non-zero public points α1, ..., αn. It is moreover
assumed that each player Ii has been initially provided with a share Zi which
is unknown to the others. Then, the function f is modeled as a sequence of
computations operating either an affine transformation on an intermediate state
V or additions/multiplications between two intermediate states V and V ′. Let
us denote by C such a (univariate or bivariate) computation. BGW’s protocol
ensures that the intermediate states V and V ′ at input of a bivariate operation
C have been shared w.r.t. two random polynomials PV and PV ′ which are in-
dependent but evaluated in the same public points α1, ..., αn (i.e. Vi and V ′i
satisfy Vi = PV (αi) and V ′i = P ′V ′(αi) respectively). Moreover, for each C to
process, BGW’s protocol is designed such that each player Ii has either a single
share Vi (if C is univariate) or a single pair of shares (Vi, V

′
i) (if C is bivariate).

Eventually, BGW’s protocol describes a d-private multi-party computation for
each kind of operation C depending on its nature. We recall them hereafter.

If C is an affine transformation applied on a shared variable V , then
the protocol simply consists in asking each player Ii to apply C on its private
share Vi. After this step, each player owns a new share C(Vi) and the family
(C(Vi))i is a (n, d)-sharing of C(V). Indeed, since C is affine, C(PV (X)) is a degree-
d polynomial such that C(PV (0)) = C(V) and each C(Vi) corresponds to the
evaluation of PV in αi (i.e. C(Vi) = C(PV (αi))).

If C is the addition operation ⊕ applied on two shared intermediate
states V and V ′, then the protocol consists in asking each player Ii to compute
C(Vi, V

′
i) = Vi ⊕ V ′i . After this step, each player owns a new share C(Vi, V

′
i)

and the family of shares (C(Vi, V
′
i))i is a (n, d)-sharing of C(V, V ′). Indeed, by

construction of the Vi and V ′i , we have C(Vi, V
′
i) = PV (αi)⊕ PV ′(αi) which im-

plies that (C(Vi, V
′
i))i corresponds to the evaluation of the polynomial (PV (X)⊕

PV ′(X)) in (αi)i. This polynomial is of degree at most d and satisfies (PV (0)⊕
PV ′(0)) = V ⊕ V ′ = C(V, V ′).

If C is the multiplication operation ⊗ applied on two shared intermediate
states V and V ′, then the protocol is more complex than the previous ones. It
involves the first row (λ1, · · · , λn) of the inverse of the Vandermonde (n × n)-
matrix (αj

i)1≤i,j≤n and it is composed of three steps4. Each player Ii:

1. computes C(Vi, V
′
i) = Vi ⊗ V ′i = PV (αi)⊗ PV ′(αi).

2. randomly generates a degree-d polynomial Qi such that Qi(0) = C(Vi, V
′
i)

and for every j 6= i, sends the value Qi(αj) to player Ij .

3. computes the linear combination Q(αi) =
∑n

j=1 λjQj(αi).

The shares C(Vi, V
′
i) computed by the players at Step 1 correspond to the

degree-2d polynomial PV (X) × PV ′(X). As desired, the constant term of this
polynomial is C(V, V ′). However, the family (C(Vi, V

′
i))i built by Step 1 is not a

(n, d)-sharing since the corresponding polynomial is firstly not of degree d and

4 The protocol described in this paper is an improved version of the protocol originally
proposed by Ben-Or et al. [1]. It has been introduced by Gennero et al. in [6].

secondly, is not a random polynomial (its distribution over the set of degree-
2d polynomials with constant term C(V, V) is not uniform). To overcome this
issue, Steps 2 and 3 perform both a degree reduction and a re-randomization
of the shares. More precisely, Step 2 allows player Ii to compute the (n, d)-
sharing (Qi(αj))j of its share C(Vi, V

′
i) thanks to a random polynomial Qi, and

to send those shares to the other players. Then, in Step 3 each player Ii computes
Q(αi) =

∑n
j=1 λjQj(αi). The family (Q(αi))i corresponds to the evaluation in

(αi)i of the polynomial Q(X) =
∑

j λjQj(X), which, by construction, is of
degree d and admits C(V, V ′) as constant term. It is therefore a (n, d)-sharing of
C(V, V ′) (see [6] for more details).

3.2 SMC protocol and Multi-Party Circuits

The design of a (n, d)-multi-party circuit from BGW’s protocol is merely based
on the following remark: the d-privacy for a set of n semi-honest players evalu-
ating a function f coincides with the d-probing security for a set of n circuits
implementing f . Hence, if each player Ii in BGW’s protocol is replaced by an ex-
tended sub-circuit (Cf i, ($ij)j 6=i), then the previous description specifies a (n, d)-
multi-party circuit. Moreover, such a design can be specified for any function f
as long as n and d satisfy n > 2d. If f is defined over the finite field GF(2m)
with addition and multiplication laws ⊕ and ⊗, the sub-circuits Cf i are defined
with respect to the elementary operations {A(m),⊕,⊗}, where A(m) denotes
the set of affine functions over GF(2m). By construction, each extended sub-
circuit (Cf i, ($ij)j 6=i) always operates on a single share of a sensitive variable
and has never access to the other shares nor a function of them. Consequently,
the observation of an extended sub-circuit cannot give more information than
a single share of a (n, d)-sharing. Hence, since the sub-circuit executions do not
overlap, and by definition of a (n, d)-sharing, a glitches adversary must observe
the behavior of at least d + 1 extended sub-circuits (Cf i, ($ij)j 6=i) to recover
sensitive information.

Eventually, to fully specify how to put BGW’s protocol into practice for a
(n, d)-multi-party circuit, it just remains to clarify the following practical points:

(a) Messages exchange between sub-circuits (a.k.a. players) during
Step 2 of the secure processing of ⊗. The exchange of messages is done
thanks to the channels $ij . In software, each channel $ij between a pair of sub-
circuits (Cf i, Cf j) may simply consist in a RAM space which is not accessed by
another circuits Cf k with k 6= i, j. In hardware, the designer can code a unique
communication channel for each pair of circuits running sequentially. Another
solution could be to run each sub-circuit in a different environment (e.g. different
platforms) and to implement a channel between each pair of them.

(b) The initial shares distribution by a honest entity (the Dealer).
In our context, the role of the Dealer is played by a special procedure run before
processing the multi-party circuit. This procedure shares the sensitive variable
as usually done in the literature to counteract dth-order probing attacks. To also
achieve security in the dth-order Glitches Adversary Model, the computation is

split into elementary operations that are processed sequentially. Although ex-
pensive this strategy can always be followed to go from probing attack security
to glitches attacks security.

Because it is the most tricky part in BGW’s protocol, we develop hereafter the
algorithm processed by each sub-circuit Cf i when computing the (n, d)-sharing
of the product of two shared values over a field GF(2m).

Notation. Instruction read(X, $ij) reads the content of $ij (viewed as a chan-
nel or a memory address) and update X accordingly. Instruction write(X, $ij)
writes the value X on $ij .

Algorithm 1 Secure Multiplication Part Dedicated to a Sub-Circuit Cf i, ($ij)
Input: the ith element PV (αi) of a (n, d)-sharing of V , the ithelement PV ′(αi) of a
(n, d)-sharing of V ′ and a set of channels ($ij)j 6=i.
Output: the ith element QV⊗V ′(αi) of a (n, d)-sharing of V ⊗ V ′.
Public: the points αi, the first row (λ1, · · · , λn) of the inverse of the matrix (αj

i)
with i and j lower than n.

1. do Wi ← PV (αi)⊗ PV ′(αi)
*** Randomly generate a d-tuple (aj) of coefficients in GF(2m)

2. for j = 1 to d do aj ← rand(GF(2m))
*** Compute a (n, d)-sharing (Qi(α1), · · · , Qi(αn)) of Wi.

3. for j = 1 to n do Qi(αj)←Wi ⊕
⊕d

k=1 akα
k
i

*** Send the shares of Wi to the other sub-circuits Cf j through $ij.

4. for j = 1 to n, j 6= i write(Qi(αj), $ij)
*** Receive a share Qj(αi) from each sub-circuit Cj through $ji.

5. for j = 1 to n, j 6= i read(Qj(αi), $ij)
*** Compute the share QV⊗V ′(αi)

6. do QV⊗V ′(αi)←
⊕n

j=1 λjQj(αi).

Steps 2 enables to randomly generate a degree-d polynomial Qi(X) = Wi +⊕d
j=1 ajX

j . Step 3 evaluates Qi(X) in each public point αj to construct a (n, d)-
sharing (Qi(αj))j of Wi. Step 4 sends those shares to the other sub-circuits and
Step 5 enables Cf i to receive the shares Qj(αi) computed by the other sub-
circuits Cf j . Eventually, Step 6 computes a share of V ⊗ V ′ for sub-circuit Cf i.

3.3 Complexity of the Scheme and Comparison

Complexity Evaluation Except the multiplication, the proposed scheme re-
places each operation of a given function by n similar operations. Concerning
the multiplication ⊗ over GF(2m), it is performed by asking each of the sub-
circuits to run Algorithm 1. As a consequence, the multiplication ⊗ is replaced by
n2(d+1)+n multiplications, n2(d+1)−n additions and 2(n−1) read/write op-
erations. In the following table, we develop this complexity for n = 2d+1 (which

is the smallest value n allowed in BGW’s protocol). For comparison purpose, we
also give the complexity of the secure multiplication proposed in [24]. We recall
that when applied with n = 2d + 1, the multiplication algorithm proposed in
Algorithm 1 offers the same (perfect) resistance against d-probing attacks than
the method proposed in [24].

Table 1. Complexity of the secure processing of a field multiplication.

Method multiplications additions random bytes

This paper 4d3 + 8d2 + 3d 4d3 + 8d2 + 7d+ 2 d(2d+ 1)

[24] 2d2 + 2d d2 + d+ 1 d(d+ 1)/2

Comparison With Other State Of The Art Solutions In [18], Nikova et
al. have already attempted to apply the multi-party computation theory in the
context of hardware implementations, with 1-glitches freeness in mind. Contrary
to our proposal where data are shared thanks to Shamir’s scheme, Nikova et
al. ’s construction relies on the classical additive sharing (namely the circuit’s
input is additively masked with several, say n− 1, random variables). To secure
the processing on the masked input and the masks, they propose to split the
computation according to a set of security rules. The obtained circuit sharing
differs from ours in the two following main points. First, the security is only
proven against first-order attacks, which implies that Nikova et al. ’s construction
can not be used to design (n, d)-multi-party circuits for d > 1. Secondly, the
sharing is not explicit and involves an exhaustive search that becomes impossible
when the size m of the circuit input is greater than 5. Moreover, there is no
guaranty that the approach works for any circuit. In particular, Moradi et al. [15]
discuss the difficulty of applying Nikova et al. ’s scheme to the AES s-box. In [19],
the scheme has been applied to Noekeon. Instead of taking the direction proposed
in the present paper where the circuit is divided into several sub-circuits leaking
independently, they take an opposite position where the different shares of a
variable are manipulated simultaneously by the same circuit. Our scheme could
also be implemented in such a way but the resulting security against dth-order
attacks would be significantly reduced.

On the opposite side, the constructions proposed in [9] (operations in GF(2))
and in its extension [24] (operations in GF(2m)) are d-probing secure but not 1-
glitches free. The cost of the secure multiplication in BGW’s protocol is greater
than that of the d-probing secure multiplication proposed in [24] (see Tab. 1).
The overhead between the two methods is essentially explained by the fact that
BGW’s multiplication is designed to achieve d-glitches freeness whereas Rivain-
Prouff’s one is not. As a matter of fact and as far as we know, the only sound
way to induce glitches freeness in Rivain-Prouff’s multiplication would be to
implement it on a multi-party circuit such that each elementary operation is

processed on a separate sub-circuit. This implies the use of O(d2) sub-circuits
when BGW’s protocol, and then our scheme, was designed to minimize the
number of players (thus the number of sub-circuits here) to 2d+ 1. Hence, even
though the overall bit-complexity of our scheme is one order of magnitude more
expensive than Rivain-Prouff’s scheme, its limited cost in sub-circuits number
makes it competitive when the design of sub-circuits is prohibitive.

4 Glitches Free HO-Masking of the AES

We apply here the construction proposed in Section 3.2 to design a multi-party
circuit implementing the AES-128 nonlinear layer SubBytes which applies the
same substitution-box (s-box) to every byte of the internal state. The s-box S
is defined as the left-composition of an affine transformation ΓA over GF(256)
with the power function x 7→ x254 over the field GF(256). In the following,
we propose a (n, d)-multi-party circuit (Cf 1, · · · , Cfn) implementing the power
function. The secure implementation of the full AES-128 is not detailed here,
but it can be straightforwardly deduced from the algorithms presented in this
section and in the previous section.

As shown in [24], the exponentiation x 7→ x254 can be processed thanks to
a chain of operations composed of raisings to powers in the form 2j (which are
linear over GF(256)) and 4 field multiplications. For any j, let us denote by ηj
the power function x 7→ x2

j

, the exponentiation algorithm proposed in [24] is
recalled hereafter:

Algorithm 2 Exponentiation to the 254
Input: V
Output: Y = V 254

1. Z ← η1(V) [Z = V 2]

2. Y ← Z ⊗ V [Y = V 2V = V 3]

3. W ← η2(Y) [W = (V 3)4 = V 12]

4. Y ← Y ⊗W [Y = V 3V 12 = V 15]

5. Y ← η4(Y) [Y = (V 15)16 = V 240]

6. Y ← Y ⊗W [Y = V 240V 12 = V 252]

7. Y ← Y ⊗ Z [Y = V 252V 2 = V 254]

Starting from Algorithm 2 and applying Algorithm 1 to securely process the
multiplications ⊗, we develop hereafter the s-box computation routine processed
by each extended sub-circuit (Cf i, ($ij)j 6=i).

Algorithm 3 Secure S-box Processing Routine Dedicated to an Extended Circuit
(Cf i, ($ij)j 6=i)
Input: the ith element PV (αi) of a (n, d)-sharing of V and a family of channels
($ij)j 6=i.
Output: the ith element PV (αi) of a (n, d)-sharing of S(V).

Public: the n distinct points αi, the first row (λ1, · · · , λn) of the inverse of the matrix
(αj

i) with i and j lower than n.

1. do PZ(αi)← η1(PV (αi)) [Z = η1(V)]

2. do PY (αi)← Algorithm 1(PV (αi), PZ(αi), ($ij)j 6=i) [Y = V ⊗ Z]

3. do PW (αi)← η2(PY (αi)) [W = η2(Y)]

4. do PY (αi)← Algorithm 1(PY (αi), PW (αi), ($ij)j 6=i) [Y = Y ⊗W]

5. do PY (αi)← η4(PY (αi)) [Y = η4(Y)]

6. do PY (αi)← Algorithm 1(PY (αi), PW (αi), ($ij)j 6=i) [Y = Y ⊗W]

7. do PY (αi)← Algorithm 1(PY (αi), PZ(αi), ($ij)j 6=i) [Y = Y ⊗ Z]

8. do PV (αi)← ΓA(PY (αi)) [Y = ΓA(Y)]

5 Conclusion

Thanks to the notion of multi-party circuit, we have shown in this paper that
it is possible to prove, under realistic assumptions, the resistance of a dth-order
masking scheme in the presence of glitches. This new framework enables to con-
vert any classical dth-order secure scheme into an implementation immune to
glitches effects. The complexity of the new implementation greatly depends on
the number of sub-circuits in which the initial scheme has been shared and the
latter scheme must therefore be carefully chosen. Here, we have proposed to
adapt the SMC protocol proposed in [1] to define a circuit sharing that is par-
ticularly well suited to our problematic. We have applied it to build a d-glitches
free AES-128 implementation. As a side effect of basing our security on SMC
scheme, the protocol is intrinsically immune against fault injection attacks when
fewer than 1/3 of the sub-circuits are corrupted. This is a real asset of the pro-
posed scheme when both active and passive attacks must be thwarted by the
implementation. In addition, our work, together with the recent analysis [7] of
Shamir’s secret sharing scheme conducted in the context of SCA, shows that this
sharing is a valuable alternative to the classical Boolean masking. It indeed not
only enables to define glitches-free implementations, but it is also intrinsically
more resistant against higher-order SCA (see [7,21] for an argumentation of this
point). We based our study on very strong hypothesis on the attacker power.
Even if such brutal approach allows us to develop sound proofs of security, the
resulted secure implementation is costly. Future works could investigate more
realistic (weaker) adversary models in order to build lighter secure implementa-
tions, or, to the same purpose, study alternative SMC protocols, less generic than
BGW’s protocol but more efficient. Another avenue could be to study some ex-
isting optimizations of BGW’s protocol (e.g. the optimization based on Franklin
and Yung’s trick [5] that is based on efficient parallel computations.

References

1. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In STOC ’88: Proceedings of

the twentieth annual ACM symposium on Theory of computing, pages 1–10, New
York, NY, USA, 1988. ACM.

2. J. Blömer, J. G. Merchan, and V. Krummel. Provably Secure Masking of AES.
In M. Matsui and R. Zuccherato, editors, SAC 2004, volume 3357 of LNCS, pages
69–83. Springer, 2004.

3. S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In M. Wiener, editor, Advances in Cryptology –
CRYPTO ’99, volume 1666 of LNCS, pages 398–412. Springer, 1999.

4. J.-S. Coron. A New DPA Countermeasure Based on Permutation Tables. In
R. Ostrovsky, R. D. Prisco, and I. Visconti, editors, SCN 2008, volume 5229 of
LNCS, pages 278–292. Springer, 2008.

5. M. Franklin and M. Yung. Communication complexity of secure computation
(extended abstract). In STOC ’92: Proceedings of the twenty-fourth annual ACM
symposium on Theory of computing, pages 699–710, New York, NY, USA, 1992.
ACM.

6. R. Gennaro, M. O. Rabin, and T. Rabin. Simplified vss and fact-track multiparty
computations with applications to threshold cryptography. In PODC, pages 101–
111, 1998.

7. L. Goubin and A. Martinelli. Protecting AES with Shamir’s Secret Sharing Scheme.
In B. Preneel and T. Takagi, editors, CHES 2011, LNCS. Springer, 2011. To appear.

8. L. Goubin and J. Patarin. DES and Differential Power Analysis – The Duplication
Method. In Ç. Koç and C. Paar, editors, CHES ’99, volume 1717 of LNCS, pages
158–172. Springer, 1999.

9. Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against
probing attacks. In D. Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in
Computer Science, pages 463–481. Springer, 2003.

10. M. Joye, P. Paillier, and B. Schoenmakers. On Second-order Differential Power
Analysis. In Rao and Sunar [22], pages 293–308.

11. P. Kocher, J. Jaffe, and B. Jun. Introduction to Differential Power Analysis and
Related Attacks. Technical report, Cryptography Research Inc., 1998.

12. S. Mangard, T. Popp, and B. M. Gammel. Side-Channel Leakage of Masked CMOS
Gates. In A. Menezes, editor, Topics in Cryptology – CT-RSA 2005, volume 3376
of LNCS, pages 351–365. Springer, 2005.

13. S. Mangard and K. Schramm. Pinpointing the Side-Channel Leakage of Masked
AES Hardware Implementations. In L. Goubin and M. Matsui, editors, CHES
2006, volume 4249 of LNCS, pages 76–90. Springer, 2006.

14. T. Messerges. Using Second-order Power Analysis to Attack DPA Resistant Soft-
ware. In Ç. Koç and C. Paar, editors, CHES 2000, volume 1965 of LNCS, pages
238–251. Springer, 2000.

15. A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang. Pushing the limits: A
very compact and a threshold implementation of aes. In K. G. Paterson, editor,
EUROCRYPT, volume 6632 of LNCS, pages 69–88. Springer, 2011.

16. S. Nikova, C. Rechberger, and V. Rijmen. Threshold implementations against side-
channel attacks and glitches. In P. Ning, S. Qing, and N. Li, editors, IICICS’06,
volume 4307 of LNCS, pages 529–545. Springer, 2006.

17. S. Nikova, V. Rijmen, and M. Schläffer. Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches. In P. J. Lee and J. H. Cheon, editors,
ICISC 2008, volume 5461 of LNCS, pages 218–234. Springer, 2008.

18. S. Nikova, V. Rijmen, and M. Schläffer. Secure hardware implementation of non-
linear functions in the presence of glitches. Technical report, VAMPIRE II, 2010.

19. S. Nikova, V. Rijmen, and M. Schläffer. Secure hardware implementation of non-
linear functions in the presence of glitches. J. Cryptology, 24(2):292–321, 2011.

20. E. Prouff and T. Roche. Attack on a higher-order masking of the aes based on
homographic functions. In G. Gong and K. Gupta, editors, Progress in Cryptology
- INDOCRYPT 2010, volume 6498 of Lecture Notes in Computer Science, pages
262–281. Springer Berlin / Heidelberg, 2010.

21. E. Prouff and T. Roche. Higher-Order Glitches Free Implementation of the AES
using Secure Multi-Party Computation Protocols. Cryptology ePrint Archive, To
Appear, 2011. http://eprint.iacr.org/.

22. J. Rao and B. Sunar, editors. CHES 2005, volume 3659 of LNCS. Springer, 2005.
23. M. Rivain, E. Dottax, and E. Prouff. Block Ciphers Implementations Provably

Secure Against Second Order Side Channel Analysis. Cryptology ePrint Archive,
Report 2008/021, 2008. http://eprint.iacr.org/.

24. M. Rivain and E. Prouff. Provably secure higher-order masking of aes. In S. Man-
gard and F.-X. Standaert, editors, CHES, volume 6225 of LNCS, pages 413–427.
Springer, 2010.

25. K. Schramm and C. Paar. Higher Order Masking of the AES. In D. Pointcheval,
editor, CT-RSA 2006, volume 3860 of LNCS, pages 208–225. Springer, 2006.

26. A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, Nov. 1979.
27. D. Suzuki, M. Saeki, and T. Ichikawa. DPA Leakage Models for CMOS Logic

Circuits. In Rao and Sunar [22], pages 366–382.
28. A. C.-C. Yao. How to generate and exchange secrets. In Proceedings of the 27th

Annual Symposium on Foundations of Computer Science, pages 162–167, Wash-
ington, DC, USA, 1986. IEEE Computer Society.

