
Random Sampling for Short Lattice Vectors
on Graphics Cards

Michael Schneider and Norman Göttert

Technische Universität Darmstadt, Germany
mischnei@cdc.informatik.tu-darmstadt.de

Abstract. We present a GPU implementation of the Simple Sampling
Reduction (SSR) algorithm that searches for short vectors in lattices.
SSR makes use of the famous BKZ algorithm. It complements an ex-
haustive search in a suitable search region to insert random, short vec-
tors to the lattice basis. The sampling of short vectors can be executed
in parallel.
Our GPU implementation increases the number of sampled vectors per
second from 5200 to more than 120, 000. With this we are the first to
present a parallel implementation of SSR and we make use of the com-
puting capability of modern graphics cards to enhance the search for
short vectors even more.

Keywords. lattice reduction, random sampling, SSR, BKZ

1 Introduction

Lattices are discrete additive groups in the Euclidean vector space. They are
known for hundreds of years in mathematics, but their use in cryptography
and other fields of computer science started in the last decades of the twenti-
eth century. Roughly speaking, lattice reduction is the search for short vectors
with special geometric structure, i.e., vectors that are nearly orthogonal to each
other. In 1982, the famous LLL algorithm was presented by Lenstra, Lenstra,
and Lovász [16]. It set a starting point for developments and improvements of
lattice reduction algorithms until today. In 1991, the BKZ algorithm (for Block-
Korkine-Zolotarev reduction) which is a generalization of LLL was presented
[27]. Today, BKZ is still the strongest and mostly used algorithm for lattice ba-
sis reduction. In 2003, the Random Sampling Reduction (RSR) algorithm was
presented [26]. It is an adaption of BKZ, and applies BKZ together with the in-
sertion of some randomly sampled vectors. In 2006, Simple Sampling Reduction
(SSR) improved RSR by removing its heuristic assumptions [7].

In cryptology, lattice reduction has applications in cryptography as well as in
cryptanalysis. The security of lattice based cryptosystems can be sustained by
hard problems in lattices. The fact that makes lattice based cryptography special
is the ability to base the security of cryptosystems on worst case problems in
lattices, whereas usually security is only based on average case problems. This
so-called worst case to average case reduction is unique for lattices and is not
known in other fields.

For estimating the practical security of lattice based cryptosystems, it is nec-
essary to know the strength of lattice reduction algorithms such as LLL, BKZ,
and their revisions. Since there is a well-known gap between practical and the-
oretical strength of these algorithms, it is important to assess their practical
borders. Since today, even desktop computers and laptops are equipped with
multicore CPUs or graphics cards that support the CPU, this kind of special
hardware must be taken into account when talking about security of cryptosys-
tems. Due to the fact that supercomputers and new paradigms such as cloud
computing gain more and more importance, the computing capabilities of at-
tackers of cryptosystems rises as well. Therefore it is necessary to examine the
strength of lattice reduction algorithms concerning parallelization potential.

The BKZ algorithm is the lattice reduction algorithm most commonly used
in practice. It consists of two building blocks. One part is the LLL algorithm,
the other part is an enumeration subroutine that performs exhaustive search
for shortest vectors. No parallel version of BKZ is known to date. There are
approaches of parallelizing LLL in the SIMD model, e.g. [30,2] and also for
enumeration [9,15,10]. The combination of both however has not yet been tried.

It is apparent that SSR allows for distributed computing, since sampling
short vectors can be performed independently in parallel. The authors of [7]
state that most time of SSR is spent on sampling, which would allow for good
parallelization.

1.1 Previous Results

Schnorr presented the first sampling algorithm called Random Sampling Reduc-
tion (RSR) in [26]. Ludwig and Buchmann refine the algorithm and promise to
make sampling practical with their Simple Sampling Reduction (SSR) in [7].
They get rid of two RSR assumptions, namely the Randomness Assumption
(RA) and the Geometric Series Assumption (GSA), which they claim both do
not hold in practice. They replace the independent random sampling of vectors in
the search space by a deterministic exhaustive search. This makes it impossible
to sample the same vector multiple times, which was the case for RSR. Ludwig
gives a more detailed view on SSR in [17]. The implementation of Ludwig is
available upon request. Comparisons of his SSR implementation with BKZ on
cryptographic lattices can be found, e.g., in [6,5].

1.2 Our Contribution

In this paper we present CUDA-SSR, a parallel variant of simple sampling re-
duction running on graphics cards using NVIDIAs CUDA framework. Our ex-
periments are twofold. First we compare CUDA-SSR to BKZ, and second we
compare it to our CPU-SSR implementation to show the strength of the GPU.

Although it is already mentioned in [7] that SSR is a good candidate for
parallelizing, we are the first to present a distributed version of SSR. The authors
of [7] mention a sampling rate of up to 5200 samples per second (on a 2.4GHz

Intel Pentium 4). On an NVIDIA GTX295 GPU (which was released in 2009)
we get rates of more than 120, 000 samples per second.

1.3 Organization of the Paper

The remainder of this paper is organized as follows. In Section 2, we present the
required background knowledge concerning lattices, random sampling, and GPU
computations. In Section 3, we develop a parallel version of SSR and explain
how we implemented it on graphics cards. This is the main contribution of our
work. Section 4 presents experimental results that show the strength of the GPU
version of random sampling.

2 Preliminaries

Let ‖v‖ denote the Euclidean norm of the vector v. Other norms are subscripted
like ‖v‖∞.

Let n, d ∈ N, n ≤ d, and let b1, . . . ,bn ∈ Rd be linearly independent. Then
the set L(B) = {

∑n
i=1 xibi : xi ∈ Z} is the lattice spanned by the basis column

matrix B = [b1, . . . ,bn] ∈ Zd×n. The lattice L(B) is called n-dimensional. Its
basis B is not unique, unimodular transformations lead to a different basis of the
same lattice. The first successive minimum λ1(L(B)) is the length of a shortest
vector of L(B). The lattice determinant det(L(B)) is defined as

√
det(BtB).

It is invariant under basis changes. For full-dimensional lattices, where n = d,
there is det(L(B)) = |det(B)| for every basis B. In the remainder of this paper
we will only be concerned with full-dimensional lattices.

Denote the Gram-Schmidt-orthogonalization (GSO) with b∗i = πi(bi) where
πi(b) → 〈b1 . . .bi−1〉⊥ is the orthogonal projection. The GSO is calculated via

b∗i = bi −
∑i−1
j=1 µi,jb

∗
j for all 1 ≤ i ≤ n, where µi,j = bTi b

∗
j/
∥∥b∗j∥∥2 for all

1 ≤ j ≤ i ≤ n. The values µi,j are called Gram-Schmidt (GS) coefficients.
Roughly speaking, lattice reduction is the process of transforming a basis of a

lattice into a second one consisting of short vectors which are nearly orthogonal.
The LLL [16] and BKZ [27] algorithms are the most common algorithms for
lattice reduction. BKZ is controlled by a blocksize parameter β, which allows
for a trade-off between runtime and reduction quality. Higher values of β lead
to better reduced bases at the expense of an exponentially (in β) increasing
runtime. LLL is the special case of BKZ with β = 2. Both LLL and BKZ sort
the basis vectors in increasing order, so that b1 is the shortest among the basis
vectors after reduction. Applied to a basis B, LLL provably finds a vector b1 with
‖b1‖ ≤ 2(n−1)/2λ1(L(B)). When LLL or BKZ is applied to a generator system
of a lattice L it will output a basis of L, so it will remove linear dependent
vectors. The first basis vector found by BKZ with β > 2 is shorter than with
LLL, i.e., it holds that ‖b1‖ ≤ (γβ)(n−1)/(β−1)λ1(L(B)) [25], where γβ is the
β-dimensional Hermite constant. A practical comparison of LLL and BKZ can
be found in [12]. Both LLL and BKZ are equipped with a parameter δ, which
only slightly controls the reduction quality and is usually set to 0.99. For further
information concerning lattices and lattice reduction we refer to [19,20,22].

2.1 Random Sampling

The idea of random sampling was presented by Schnorr in 2003 [26]. It was
adopted and improved in [17,7]. The idea of random sampling is the following.
Iteratively, it switches between reduction of the basis (using BKZ) and sampling

a random short vector of norm < 0.99 ‖b1‖2, which is then prepended to the
reduced basis (cf. Algorithm 1).

Every basis vector v = [v1, . . . , vn] can be written in its orthogonalized form
v =

∑n
i=1 νib

∗
i . We can write its squared norm as

‖v‖2 =

n∑
i=1

ν2i ‖b∗i ‖
2
. (1)

Therefore, shortening a vector v is done either by decreasing νi or by decreasing
the ‖b∗i ‖.

For a reduced basis B (either LLL or BKZ reduced), it is known that the
norm of the orthogonalized vectors ‖bi‖ decreases for increasing index i. This
implies that for higher indices, the influence of the coefficient νi in Equation (1) is
less noticeable than for smaller indices. This fact helps interpreting the following
definition of a search space. For a basis B ∈ Zn×n and an integer u with 1 ≤
u ≤ n we define the set Su,B as the set of all lattice vectors v =

∑n
i=1 νib

∗
i with

|νi| ≤

{
0.5 for 1 ≤ i < n− u
1 for n− u ≤ i < n

, νn = 1 (2)

and call it the search space. It is Su,B ⊆ L(B), and this search space is supposed
to contain short lattice vectors. The algorithm sample (Algorithm 2, original
in [17]) uses as input a lattice basis B and an integer value x, and as output
it computes a vector v ∈ Su,B in the search space. The bit representation of
the integer x controls the sampling deterministically. If the search space Su,B
consists of 2u many points, running sample with all values x ∈ {1, . . . , 2u}
guarantees that the complete search space is sampled.

Algorithm 1: SSR

Input: Lattice basis B ∈ Zn×n, GS-coefficients R ∈ Qn×n, bound umax ∈ N,
blocksize β, norm bound A

Output: reduced basis B s.t. ‖b1‖ < A

1 B← BKZ([b1, . . . ,bn], β)
2 while ‖b1‖ > A do
3 for x = 1 to 2umax do
4 v← sample(B,R, x)

5 if ‖v‖2 ≤ 0.99 ‖b1‖2 then break

6 end
7 if x = 2umax then terminate(“No short vector found”)
8 B← BKZ([v,b1, . . . ,bn], β)

9 end

Algorithm 2: sample

Input: Lattice basis B ∈ Zn×n, GS-coefficients R ∈ Qn×n, x ∈ Z
Output: vector v ∈ Su,B

1 v← bn, ν ← rn
2 for j = n− 1 to 1 do
3 y ← dνj − 0.5e
4 if x = 1 mod 2 then
5 if νj − y ≤ 0 then y ← y − 1
6 else y ← y + 1

7 end
8 x← bx/2c, v← v − ybj , ν ← ν − yrj
9 end

10 return v

Algorithm 1 shows a pseudo-code listing of SSR, Algorithm 2 shows a list-
ing of sample. For more details on random sampling we refer to the works of
[26,17,7].

2.2 GPU Computation

Graphical Processing Units (GPUs) were developed to perform huge numbers of
graphical operations in parallel. The introduction of computing platforms such
as CUDA by NVIDIA [23] and CTM by ATI [1] opened graphics cards equipped
with GPUs for running custom user programs. The development of these com-
puting frameworks where the starting point of the breakthrough these processing
units had over the last years. The existence of standard libraries like BLAS [24]
for linear algebra made GPUs interesting for cryptographic applications as well.

In the field of cryptography, there are (among others) implementations of
AES [8,18,14] and RSA [21,29,11] available as well as implementations of the
SHA3 hash competition finalists [4]. In cryptanalysis, Bernstein et al. use paral-
lelization techniques on graphics cards to solve integer factorization using elliptic
curves [3]. Concerning lattices and lattice reduction, there is an implementation
of the ENUM algorithm on graphics cards [15]. We are not aware of other work
in the field of lattice reduction.

Programming Model. We will be using the CUDA framework from NVIDIA
on an NVIDIA GTX 295 card. The description might be slightly different for
newer cards of the Fermi architecture. A CUDA-capable GPU is equipped with
several multiprocessors, which contain small numbers of scalar processors each.
The programmer can stick to the single instruction - multiple thread (SIMT)
programming model. The programmer writes code for single threads, which is
uploaded to the device and executed in parallel by multiple threads.

The threads altogether are organized in blocks, which again are organized in
grids. A kernel is a program running on a graphics device. When a kernel (a
grid) is executed, 32 threads are scheduled in a so-called warp. These 32 threads
should perform the same computation, since otherwise the threads are handled
in serial, not in parallel.

Memory Model. One big issue on NVIDIAs GPUs is the different types of mem-
ory available. There are registers, shared memory, global memory, texture, and
constant memory. Registers and shared memory are on chip and close to the
multiprocessor and can be accessed with low latency. The number of registers
and shared memory is limited, since the number available for one multiprocessor
must be shared among all threads in a single block. Global memory is slow, since
it is off-chip and there is no cache for it. Constant and texture memory are parts
of the global memory, but they are cached and can be used for specific types of
data or special access patterns.

3 GPU Algorithm CUDA-SSR

The CUDA-SSR approach in Algorithm 3 is a slightly changed variant of the
original SSR algorithm. In each outer while loop, up to 2umax vectors are sam-
pled in parallel, and the m shortest samples are added to the basis. The main
difference to the original SSR is the sampling of new vectors v, which is done
on the GPU and returns not only a single vector but multiple ones within a
bound of m. The calculated vectors [v1,v2, . . . ,vm] are added to the front of
the lattice B in a sorted order, before the extended lattice is reduced by the
BKZ algorithm. With the adding of multiple vectors we get a benefit of a more
stabilized reduction, as we will see in the experiments section.

The algorithm terminates if a given norm of the first vector of B is undercut
by a new vector v or if no smaller vector is found in the given search space.

Algorithm 3: CUDA-SSR

Input: Lattice basis B ∈ Zn×n, GS-coefficients R ∈ Qn×n, bound umax ∈ N,
blocksize β, norm bound A, add vector bound m

Output: BKZ-β reduced basis B s.t. ‖b1‖ ≤ A
1 B← BKZ([b1, . . . ,bn], β)
2 foundSmaller = true
3 xOffset = 0
4 while ‖b1‖ > A and foundSmaller = true do
5 while xOffset < 2umax do
6 parallel [i = xOffset . . . xOffset + maxSamplesPerCall] do
7 [v1,v2, . . . ,vm], foundSmaller ← par-sample(B,R, xi,m)
8 end
9 if foundSmaller = true then break inner while loop

10 xOffset += maxSamplesPerCall
11 if xOffset ≥ 2umax then terminate

12 end
13 B← BKZ([v1,v2, . . . ,vm,b1, . . . ,bn], β)

14 end

The subroutine par-sample (which is now executed on GPU) is a slightly
changed variant of sample (Algorithm 2). The original sample algorithm was
parallelized, so that it computes a huge number of vectors per call. The possibility
of parallelization is based on the independence of the samples. The only difference

among two samples is the input value x, which can be interpreted as an unique
identifier or seed.

One sample is stored in the shared memory of a CUDA block. The amount
of shared memory, which is used for producing one sample, consists of memory
for the vector v (4Byte · dimension), for the vector ν (4Byte · dimension), for
y (4Byte), and for a valid-Byte (1Byte). For one CUDA block a number of

samplesPerBlock =

⌊
available shared memory

(4 + 4Byte) · dimension+ 4Byte+ 1Byte

⌋
vectors are produced. If we use all available CUDA blocks, the overall number
of samples is 65535 · samplesPerBlock per call. For example, at a dimension of
80 one call calculates 65535 · b 16344

8·80+5c = 1, 638, 375 samples.1

3.1 Parallel Implementation of Subroutine Sample

Here we describe how we implemented the sampling of samplesPerBlock many
vectors in Su,B on GPU. This is the main contribution of the paper.

The first step for determining samplesPerBlock samples in one CUDA block
is to copy the entries of the last vector of the matrices B and R to v and ν in
parallel. The matrices B and R resist in the texture memory, because they are
read multiple times and this memory is cached.

The second step is to compute the factor y for every sample and build new
vectors inside a for-loop. A single y is processed by one CUDA thread, therefore
all y′s of one CUDA block can be calculated in parallel. Afterwards the tempo-
rary new vectors v and ν are built, whereby all entries of a vector are assigned
in one parallel step. If an integer overflow is noticed in this step, the sample will
be indicated as invalid.

When the loop is finished, the square norms of the new samples are calculated
with the common vector reduction approach, after squaring all entries of v in
parallel. Figure 1 illustrates this procedure. Once a square norm of 2x (with
x = max{y ∈ Z : 2y ≤ dimension}) is determined, the result will be added to
the first entry of the next interval. This procedure continues, until there is no
more than one entry left.

Because the square norms of all vectors are calculated step by step, we can
register the smallest square norm of a CUDA block. Therefore a CUDA block
writes only the smallest vector back to the global memory, assumed that the
square norm is less than 99% of ‖b1‖2 and the sample is valid. With this we
save a lot of global memory. Instead of writing 65535 · samplesPerBlock many
vectors to global memory we use shared memory for samplesPerBlock many
vectors of each block and only write 65535 many vectors to the device.

For achieving higher performance we introduce a counter, which increases
if a vector with a square norm less than 99% of ‖b1‖2 is found. When m vec-
tors below this bound have been found, we break the parallel sampling. The

1 The shared memory of 16384Byte is decreased by the parameters of the kernel call,
which are also stored in shared memory (16Byte for dimBlock and dimGrid, 24Byte
for 3 pointers). These values might change for other CUDA compute capabilities.

Fig. 1. Computation of the norm of a single vector v in parallel.

counter is increased with so called atomic operations, which provides an exclu-
sive read-modify-write operation for one CUDA thread. The parallel processing
of the CUDA framework is only “semi-parallel”, because only a part of all CUDA
blocks are processed parallel for real (we have 65535 blocks but only 30 multi-
processors available). Therefore we can abort further calculations, if the counter
m reached a defined value. A flow chart of our GPU algorithm of sample is
shown in Appendix A. In order to remove serialization we also tested replacing
the condition in Line 4 of sample by arithmetic computations, but recognized
no speedups. Since there is no else-block, the fact that (on average) half of the
threads are idle does not influence the total runtime.

For establishing the gain of parallel sampling we also implement a CPU
version of the SSR algorithm (called CPU-SSR), which produces new vectors
step by step. Our CPU as well as the GPU implementation are available online.2

4 Experimental Results

We are using an NVIDIA GTX 295 GPU for our experiments. The CPU that
we use is an Intel Core2 Duo E8400 CPU running at 3GHz. The lattices we use
are the SVP challenge lattices [13] with seed 0, so we use only one lattice per
dimension. For LLL and BKZ reduction we use the NTL library [28] in version
5.5.2. The parameter δ is always set to the standard value 0.99. We run LLL
with precision RR followed by BKZ with precision QP.

First we compare our results of CUDA-SSR to BKZ, and second we present
experiments comparing CUDA-SSR to CPU-SSR.

4.1 Comparison of CUDA-SSR and BKZ

Let B be the basis of L(B) in dimension n and c be a constant. Using BKZ with
blocksize β, Gama and Nguyen [12] predict the average norm of the first basis

2 http://www.cdc.informatik.tu-darmstadt.de/mitarbeiter/mischnei.html

vector after BKZ reduction to be

gn = cn det(L(B))1/n , (3)

where the Hermite factor constant c relies on the blocksize used. For BKZ-20,
e.g., they experimentally gain a value of c = 1.0128.

Our experiments are performed as follows. First, we reduce a lattice basis
with BKZ with increasing blocksize, until we reach a vector of desired goal
norm gn, cf., Equation (3). We use a value of c = 1.0129 to calculate our goal
norm. The resulting run times and the reached norms are shown in Figures 2
and 3. Second, we use CUDA-SSR with half the blocksize (rounded up) that
BKZ needed to reach the goal norm and run CUDA-SSR on the same lattice;
i.e., random sampling has to close the gap between BKZ with half blocksize and
BKZ with full blocksize. We stop the GPU sampling when m = 0.25 · n vectors
below 0.99 · ‖b1‖2 were found by par-sample.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 60 80 100 120 140 160 180 200

Dimension n

CPU BKZ reached norm
CUDA-SSR reached norm

goal norm

Fig. 2. Reached norm of BKZ and CUDA-
SSR.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 60 80 100 120 140 160 180 200

Dimension n

CPU BKZ(β) time
CUDA-SSR time

BKZ(β/2) time

Fig. 3. Required time in seconds for BKZ
with blocksize β and for CUDA-SSR to
reach the same goal norm.

 14

 16

 18

 20

 22

 24

 26

 60 80 100 120 140 160 180 200

Dimension n

CPU BKZ required blocksize

Fig. 4. Required blocksize of BKZ to reach
the desired goal norm.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 60 80 100 120 140 160 180 200

Dimension n

CPU BKZ-time / CUDA-SSR time

Fig. 5. Speedup factor of CUDA-SSR in
comparison to BKZ.

Figure 4 shows the blocksize that BKZ needed to find the resulting vector.
The picture shows that the blocksize is around 20 in most of the cases, as pre-

dicted by [12]. Figure 5 shows the speedup factor of CUDA-SSR compared to
BKZ.

We notice that with both approaches, BKZ as well as CUDA-SSR, we find
vectors of comparable length (Figure 2). CUDA-SSR is always faster (up to 40%).
For comparison reason, Figure 3 includes the runtime of BKZ with blocksize
dβ/2e, the pre-processing step of SSR (Line 1 of Algorithm 3). The picture
shows that it takes a huge part of the random sampling time (dashed line). This
implies that the later part of SSR (sampling - BKZ - sampling - . . .) takes a lot
less time (the time difference between the dotted and dashed curve) than the
initial BKZ. Therefore, the total SSR runtime cannot profit too much from the
parallel sampling part in this setting.

The runtime speedup factor (Figure 5) seems to increase with the dimension,
from 1.1 in dimension 80 to a maximum value of 1.6 in dimension 160. The peek
in dimension 150 is also apparent in Figure 4 and seems to result from special
structure in the lattice (SSR is working less in this lattice).

4.2 Comparison of GPU and CPU Variant of SSR

Our second block of experiments is supposed to show the strength of paralleliza-
tion on GPU of the SSR algorithm. For this, we run our CPU implementation
and our GPU implementation of SSR for the same lattices until they undercut
the goal norm. For pre-reduction, we use LLL only. We note the reached norm
(cf. Figure 6) and the runtime (cf. Figure 7). Figure 8 shows the speedup factor
gained by the GPU version. We prepend m = 0.1 ·n vectors to the basis in each
GPU iteration. Figure 9 compares a typical behaviour of SSR on GPU and CPU
over time, concerning the norm of the sampled vectors.

On CPU, the sampling rate was about 160 samples per second for a 180-
dimensional lattice. The GTX 295 GPU reached about 120, 000 samples per
second for a 180 dimensional lattice. In smaller dimension, sampling rates of
more than 250, 000 are possible, e.g. in dimension 60.

From Figure 7 we conclude that the runtime of SSR on GPU is very stable,
whereas on CPU (solid curve), we see two different behavior patterns. In some
dimensions, e.g. 90 or 110, SSR finds shorter vectors very early, and the runtime
is comparable to the CUDA-SSR runtime. In other cases we see huge peeks in
the runtime curve, e.g. in dimension 100 or 120, which suggest that on CPU it
takes a long time until shorter vectors are found. We conclude that sampling
multiple vectors in each iteration helps SSR to run much more stable.

The speedup factor shown in Figure 8 shows the potential of the CUDA
version compared to the CPU version. In small dimension we gain speedup fac-
tors of up to 180. On GPU, in the first iteration a vector below the bound is
already found, whereas on CPU multiple iterations have to be performed. In
bigger dimensions, the speedup factor decreases, depending on the behaviour
pattern.

Figure 9 shows a typical behaviour of SSR on CPU and GPU. CUDA-SSR
starts with lower norm, which implies that the first iterations of SSR decreases
the norm much more than on CPU. We noticed that in the first iterations, there

 0

 5000

 10000

 15000

 20000

 25000

 60 80 100 120 140 160 180 200

Dimension n

CPU-SSR reached norm
CUDA-SSR reached norm

goal norm

Fig. 6. Reached norm of CPU-SSR and
CUDA-SSR.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 60 80 100 120 140 160 180 200

Dimension n

CPU-SSR time

CUDA-SSR time

Fig. 7. Required time in seconds of CPU-
SSR and CUDA-SSR to reach the same
goal norm.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 60 80 100 120 140 160 180 200

Dimension n

CPU-SSR time / CUDA-SSR time

Fig. 8. Speedup factor of GPU compared
to CPU variant of SSR.

 1e+08

 1e+09

 1e+10

 0 2 4 6 8 10 12 14 16

Iteration

CPU-SSR
CUDA-SSR

goal norm

Fig. 9. Development of the squared norm
of SSR over time, in a 190 dimensional lat-
tice. The ordinate shows the squared norm
of the vectors found by sampling.

exists a huge number of vectors below the 0.99 ‖b1‖2 bound. Therefore, on GPU
we have good chance to find a much shorter vector. On CPU only the first vector
below the bound is picked, whereas on GPU multiple vectors are prepended to
the basis, and all these vectors are potentially smaller than the CPU one.

To show the strength of our GPU version, Figure 10 shows the time needed
by CUDA-SSR and CPU-SSR to sample the same amount of vectors, namely 221

many. It is evident that on GPU, the sampling is much faster, with a maximum
factor 14.5 in dimension 190.

5 Conclusion and Further Work

We have presented a parallel version of random sampling and an implementation
on GPU. Our results show the strength of parallelism for this type of algorithm.
Our proposal CUDA-SSR allows for more than 120, 000 sampled vectors per
second, which is the maximum stated in literature. Unfortunately, the speedups

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 60 80 100 120 140 160 180 200
T

im
e

 [
s
]

Dimension n

Intel Core2 Duo E8400 3GHz
NVIDIA GTX 295

Fig. 10. Time to sample 221 many vectors using CUDA-SSR and CPU-SSR.

compared to BKZ are not too impressive, due to the big fraction of the runtime
that BKZ takes. The percentage of BKZ of the total runtime was up to 97%.
This is not optimal, since BKZ does not apply the hardware acceleration of the
graphics card. LLL took 67% of the total runtime in dimension 100. [7] mention
that sampling takes most of the time, but we were not able to reproduce that.

The speedup in sampling rates is much higher than the speedups in runtime.
So the potential of parallelization is visible, but SSR does not take full advantage
of it.

The SVP challenge comes with a generator for lattices, to allow participants
not only to download one lattice in each dimension but to generate multiple
instances. To present smoother graphs it is necessary to run our experiments on
multiple instances in each dimension.

In order to allow for good parallelization, we did not include new search
spaces as proposed in [7]. Ludwig and Buchmann present check search space size
(CSSS) functions in order to sample from smaller sets of vectors. It would be
interesting to compare how this influences the rate of parallelism and if usage of
CSSS could speed up CUDA-SSR even more.

Acknowledgements

Michael Schneider is supported by project BU 630/23-1 of the German Research
Foundation (DFG). This work was supported by CASED (www.cased.de). We
thank the anonymous reviewers for their comments.

References

1. Advanced Micro Devices. ATI CTM Guide. Technical report, ATI, 2006.

2. Werner Backes and Susanne Wetzel. Parallel lattice basis reduction using a multi-
threaded Schnorr-Euchner LLL algorithm. In Euro-Par, volume 5704 of LNCS,
pages 960–973. Springer, 2009.

3. Daniel J. Bernstein, Tien-Ren Chen, Chen-Mou Cheng, Tanja Lange, and Bo-Yin
Yang. ECM on graphics cards. In EUROCRYPT, volume 5479 of LNCS, pages
483–501. Springer, 2009.

4. Joppe W. Bos and Deian Stefan. Performance analysis of the SHA-3 candidates
on exotic multicore architectures. In CHES, volume 6225 of LNCS, pages 279–293.
Springer, 2010.

5. Johannes Buchmann and Richard Lindner. Secure parameters for SWIFFT. In
INDOCRYPT, volume 5922 of LNCS, pages 1–17. Springer, 2009.

6. Johannes Buchmann, Richard Lindner, and Markus Rückert. Explicit hard in-
stances of the shortest vector problem. In PQCrypto, volume 5299 of LNCS, pages
79–94. Springer, 2008.

7. Johannes Buchmann and Christoph Ludwig. Practical lattice basis sampling re-
duction. In ANTS, volume 4076 of LNCS, pages 222–237. Springer, 2006.

8. Debra L. Cook, John Ioannidis, Angelos D. Keromytis, and Jake Luck. Crypto-
graphics: Secret key cryptography using graphics cards. In CT-RSA, volume 3376
of LNCS, pages 334–350. Springer, 2005.

9. Özgür Dagdelen and Michael Schneider. Parallel enumeration of shortest lattice
vectors. In Euro-Par, volume 6272 of LNCS, pages 211–222. Springer, 2010.

10. Jérémie Detrey, Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Accelerating
lattice reduction with FPGAs. In LATINCRYPT, volume 6212 of LNCS, pages
124–143. Springer, 2010.

11. Sebastian Fleissner. GPU-accelerated Montgomery exponentiation. In ICCS, vol-
ume 4487 of LNCS, pages 213–220. Springer, 2007.

12. Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In EURO-
CRYPT, volume 4965 of LNCS, pages 31–51. Springer, 2008.

13. Nicolas Gama and Michael Schneider. SVP Challenge, 2010. available at http:

//www.latticechallenge.org/svp-challenge.

14. Owen Harrison and John Waldron. AES encryption implementation and analysis
on commodity graphics processing units. In CHES, volume 4727 of LNCS, pages
209–226. Springer, 2007.

15. Jens Hermans, Michael Schneider, Johannes Buchmann, Frederik Vercauteren, and
Bart Preneel. Parallel shortest lattice vector enumeration on graphics cards. In
AFRICACRYPT, volume 6055 of LNCS, pages 52–68. Springer, 2010.

16. Arjen Lenstra, Hendrik Lenstra, and László Lovász. Factoring polynomials with
rational coefficients. Mathematische Annalen, 4:515–534, 1982.

17. Christoph Ludwig. Practical Lattice Basis Sampling Reduction. PhD thesis,
Technische Universität Darmstadt, 2005. http://elib.tu-darmstadt.de/diss/

000640/.

18. Svetlin A. Manavski. CUDA compatible GPU as an efficient hardware accelerator
for AES cryptography. In ICSPC, pages 65–68. IEEE Computer Society Press,
2007.

19. Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems: a cryp-
tographic perspective. Kluwer Academic Publishers, 2002.

20. Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Daniel J.
Bernstein, Johannes A. Buchmann, and Erik Dahmen, editors, Post-Quantum
Cryptography, pages 147–191. Springer, 2008.

21. Andrew Moss, Dan Page, and Nigel P. Smart. Toward acceleration of RSA using
3D graphics hardware. In IMA International Conference, volume 4887 of LNCS,
pages 364–383. Springer, 2007.

22. Phong Q. Nguyen and Brigitte Vallée. The LLL Algorithm - Survey and Applica-
tions. Springer, 2010.

23. NVIDIA. Compute Unified Device Architecture Programming Guide. Technical
report, NVIDIA, 2007.

24. NVIDIA. CUBLAS Library, 2007.
25. Claus-Peter Schnorr. Block reduced lattice bases and successive minima. Combi-

natorics, Probability & Computing, 3:507–522, 1994.
26. Claus-Peter Schnorr. Lattice reduction by random sampling and birthday methods.

In STACS, volume 2607 of LNCS, pages 146–156. Springer, 2003.
27. Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practical

algorithms and solving subset sum problems. Mathematical Programming, 66:181–
199, 1994.

28. Victor Shoup. Number theory library (NTL) for C++. http://www.shoup.net/

ntl/.
29. Robert Szerwinski and Tim Güneysu. Exploiting the power of GPUs for asym-

metric cryptography. In CHES, volume 5154 of LNCS, pages 79–99. Springer,
2008.

30. Gilles Villard. Parallel lattice basis reduction. In ISSAC, pages 269–277. ACM,
1992.

A Flow Chart of Parallel Sampling in CUDA-SSR

