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Abstract. Randomness extractors are important tools in cryptography.
Their goal is to compress a high-entropy source into a more uniform out-
put. Beyond their theoretical interest, they have recently gained atten-
tion because of their use in the design and proof of leakage-resilient prim-
itives, such as stream ciphers and pseudorandom functions. However, for
these proofs of leakage resilience to be meaningful in practice, it is im-
portant to instantiate and implement the components they are based on.
In this context, while numerous works have investigated the implemen-
tation properties of block ciphers such as the AES Rijndael, very little
is known about the application of side-channel attacks against extrac-
tor implementations. In order to close this gap, this paper instantiates
a low-cost hardware extractor and analyzes it both from a performance
and from a side-channel security point of view. Our investigations lead
to contrasted conclusions. On the one hand, extractors can be efficiently
implemented and protected with masking. On the other hand, they pro-
vide adversaries with many more exploitable leakage samples than, e.g.
block ciphers. As a result, they can ensure high security margins against
standard (non-profiled) side-channel attacks and turn out to be much
weaker against profiled attacks. From a methodological point of view,
our analysis consequently raises the question of which attack strategies
should be considered in security evaluations.

1 Introduction

Randomness extractors have recently been used as components of leakage-resilient
cryptographic primitives such as stream ciphers [3, 19], pseudorandom func-
tions [2, 16] and signatures [4]. They are also important in the design of public-
key cryptosystems resistant to key leakage [12]. In this setting, the proofs of
leakage-resilience usually rely on the fact that the amount of information leak-
age that is provided by one iteration of the extractor (i.e. when executed on one
input) is bounded in some sense. As a result, an important requirement for these
proofs to be meaningful in practice is that such a bounded leakage can actually
be guaranteed by hardware designers. For this purpose, a first implementation
and side-channel analysis of such a primitive was described in [14]. This work
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analyzed an unprotected software implementation of an extractor. It was shown
that, if no attention is paid, the extractor can actually lead to larger information
leakages than an unprotected implementation of the AES Rijndael. Mainly, this
happens because the extractor allows exploiting multiple leakage samples per
plaintext. Thus, this previous work emphasized the importance of including the
instantiation of cryptographic primitives in models of leakage resilience.

In this paper, we extend these preliminary investigations in two directions.
First, we analyze a low-complexity extractor implemented in hardware (rather
than software), and investigate the tradeoffs that such a design allows. Appeal-
ing design goals for the hardware implementation are a higher throughput and a
leakage reduction due to parallelization. Second, we evaluate the impact of the
masking countermeasure on the security of this extractor implementation. In par-
ticular, we exhibit an interesting homomorphic property that can be exploited to
mask our design efficiently. The results of our hardware design-space evaluation
show that the extractor can be masked up to unusually high orders while showing
similar performance as a first-order masked block cipher implementation. As for
the side-channel analysis results, they confirm part of the previous evaluations,
showing that multi-sample per input attacks allow very efficient profiled side-
channel attacks. Hence, depending on the adversarial strategies considered in
the security evaluations, the implementation of a masked extractor may appear
as weaker or stronger than the one of a block cipher. Positively, we show that
hardware implementations of randomness extractors can guarantee a bounded
leakage for bounded number of measurements. This validates their use as possi-
ble components of leakage-resilient constructions. Eventually, this work questions
the methodologies for the evaluation of leaking devices in general, and underlines
the large difference between profiled and non-profiled attacks that occurs for the
extractor case.

The remainder of the paper is structured as follows. Sections 2 and 3 describe
the analyzed low-complexity Hadamard extractor and its different hardware im-
plementations. The side-channel attack scenario is detailed in Section 4. This is
followed by an information theoretic analysis and security analysis in Sections 5
and 6. Finally, we draw conclusions in Section 7.

2 Low complexity extractor

In this section, we specify the instance of the low complexity Hadamard ex-
tractor, denoted as �, the implementation of which will be investigated in the
remaining of the paper. It relies on the LFSR-based hashing technique from [8].

In order to compute k�x, one first expands x = s0s1· · ·sn−1 with the recurrence:

si+n
def
= a0si + a1si+1 + · · ·+ an−1si+n−1 (mod 2), (1)

where the public constants an−1· · ·a0 are the coefficients of a primitive polyno-
mial of degree n. Then, we simply compute m inner products (mod 2) between
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k and the rows of a matrix filled with the expanded x:

� : {0, 1}n × {0, 1}n → {0, 1}m (m≤n) :

k � (x
def
= s0s1· · ·sn−1) =


sn−1 · · · sk−1 · · · s1 s0

sn
. . . · · ·

. . . s2 s1
...

. . .
. . . · · ·

. . .
. . .

sn+m−2 · · · sn sn−1 · · · sm−1

 · k.
Hence, the function “ � ” is equivalent to:

� : k × x 7→ [〈x ·A0,k〉, 〈x ·A1,k〉, · · · , 〈x ·Am−1,k〉], (2)

where the matrix A is defined as follows:

A =



0 0 · · · 0 a0
1 0 · · · 0 a1

0 1
. . . 0

...
...

. . .
. . . 0 an−2

0 0 · · · 1 an−1

 . (3)

This function is a 2-source extractor since the Toeplitz matrix (as in the defini-
tion of �) has full rank for any non-zero vector x, which in turn follows from the
properties of maximal length LFSR. Note, that this extractor directly inherits
the homomorphic property of Krawczyk’s hash function. Namely, we have that
〈x ·Ai,k + m〉+ 〈x ·Ai,m〉 = 〈x ·Ai,k〉.

3 Hardware implementation

Following the specification from the previous section, we now present the hard-
ware architecture and the tradeoffs that we considered when implementing the
Hadamard extractor. We also use this description of the hardware to list the
different parameters that will be analyzed in our following side-channel evalu-
ations. As indicated by the notations in Section 2, we will generally apply the
extractor to an n-bit public value x and an n-bit secret key k, in order to pro-
duce an l-bit random string y (which is the typical scenario in leakage resilient
cryptography). Practical values that we consider in this work are n = 192 and
l = 128. For simplicity, we start by describing a fully serial implementation (with
n = 8), illustrated in Figure 1.

In this basic form, the extractor circuit mainly consists of two registers. One
is used to store the current LFSR values (denoted as r[0] to r[7] in the figure),
and consequently evolves as the implementation is running. The other one is
used to store the key and remains static during the extraction process. Note
that the decision to store the secret key in the static register is motivated by the
minimization of the computations (hence, leakage) involving secret data. In a
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Fig. 1. Fully serial hardware implementation of the extractor.

fully serial implementation, the r register is shifted by one position at each clock
cycle. Next, n AND gates and n− 1 XOR gates are added to the design, in such
a way that one can extract one bit (i.e. compute one inner product 〈x · Ai,k〉)
per clock cycle. Thus, in order to extract 128 bits, we have to clock the circuit
128 times (while the registers are typically 192-bit long). Such a basic design can
essentially be extended in two main directions that we now detail.

Parallelizing the implementation. In general, hardware implementations
are most efficient if they can take advantage of some inherent parallelism in
algorithms. Fortunately, this is typically the case when considering our extractor.
That is, as illustrated in Figure 2, one can easily double the throughput of
the previous design, by extending the LFSR by one cell r[8] and duplicating
the combinatorial parts of the design (i.e. the XOR gates used in the LFSR
recurrence and the inner product computation). This allows one to compute two
inner products per clock cycle. Interestingly, the registers cells r[1] to r[7] and
the key register can be shared by these two inner product combinations, which
makes the parallelization quite efficient. Such a process can be further extended.
In general, by multiplying the number of inner product combinations p times,
we decrease the number of cycles to extract 128 bits by the same factor.

Masking the implementation. Next, as detailed in Section 2, the proposed
extractor inherently benefits from an additive homomorphic property. This im-
plies that it can be easily masked, following the proposals of Goubin and Patarin [7]
and Chari et al. [1]. In our setting, it is most natural to mask the key, as
masking the plaintext would lead to a weakness similar to the “zero problem”
when applying multiplicative masking to the AES S-box [6]. That is, the bitwise
AND between a masked plaintext and a key would still allow distinguishing the
zero key bits. From an implementation point of view, a masked computation
〈x · Ai,k + m〉 + 〈x · Ai,m〉 = 〈x · Ai,k〉 can be performed using essentially
the same design as in the unmasked case. And it straightforwardly extends to
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Fig. 2. Hardware implementation of the extractor with parallelism (p = 2).

higher-order masking, where the order o of the masking scheme refers to the
number of n-bit masks consumed per extraction, as we now detail.

First observe that, in the unprotected case, the result of an extraction is
available after 128/p clock cycles. In the masked case, this performance decreases
only linearly, since it is possible to operate on all shares independently. In other
words, each mask can be discarded immediately after it has been processed. For
this purpose, we first need 192 clock cycles to load the mask register and (at the
same time) add the mask to the key. Next, 128 clock cycles are needed to extract
from the mask. Finally, the (bidirectional) plaintext register is rewound during
128 clock cycles. Overall, every mask needs 448 clock cycles to be processed. And
the final result is obtained by extracting from the masked key, which requires
another 128 clock cycles. Summarizing, we have implemented the circuit such
that the cycle count c increases linearly, following the formula c = (128+o·448)/p,
with o the masking order and p the degree of parallelization. Table 1 summarizes
the performances of various extractor implementations. These numbers were
obtained from post-synthesis results, using Cadence RTL compiler 2009 and the
UMC F180GII standard-cell library. Note that, in a fully serial and unprotected
implementation, the area cost is already dominated by the registers r and k.
They alone account for 3.6 kGE. Roughly speaking, the hardware overhead of a
masked implementation mainly corresponds to one additional register for storing
the mask, and a 192-bit multiplexer in order to switch the AND gates’ input
between the key and the mask.
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Table 1. Area in kilo gate equivalents (kGE) and cycle count (c) for extractor imple-
mentations with different datapath widths and different masking orders (the polyno-
mial x192 + x149 + x97 + x46 + 1 has been used in the recurrence).

Parallelization 1 4 8

w/o masking 4.3 kGE 128 c 7.0 kGE 32 c 10.3 kGE 16 c
1st-order 7.3 kGE 576 c 10.1 kGE 144 c 13.6 kGE 72 c

2nd-order 7.3 kGE 1024 c 10.1 kGE 256 c 13.6 kGE 128 c

3rd-order 7.3 kGE 1472 c 10.1 kGE 368 c 13.6 kGE 184 c

4 Adversarial capabilities and leakage assumptions

The goal of this paper is to investigate the side-channel resistance of different
versions of the implemented extractor, with and without parallelism and mask-
ing. For this purpose, we will apply the two parts of the framework in [15]. That
is, we start with an information theoretic analysis (in the next section), in order
to capture a worst case scenario. Next, we perform a security analysis, that con-
siders the success rates of different adversaries. In general, such an evaluation
requires to define the adversary’s capabilities and leakage assumptions.

In our present context, the first question to answer is to determine the target
operations for the side-channel adversary. For this purpose, one generally selects
the operations where the known input x and secret key k are mingled. For the
extractor implementations in Figures 1 and 2, this corresponds to the bitwise
AND gates (the side-channel attacks against a software implementation of ex-
tractor in [14] were based on exactly the same assumption). Next, it is typically
needed to determine the size of the key guess (i.e. the number of key candidates
that will be enumerated in the attack). In the following, we will consider a 4-
bit key guess, that is a convenient choice for limiting the time complexity of
the evaluations. This choice is motivated by the fact that we aim to investigate
many sets of parameters. In the Figures 1 and 2, it means that an adversary will
typically try to predict the output of the AND gates that are included in the
gray rectangles.

In addition, and more importantly, a central feature of the Hadamard extrac-
tor implementations is that the key register is used numerous times in order to
extract l bits. For example, in the serial implementation of Figure 1, in which one
extracts l = 128 bits, it implies that 128 leaking operations can potentially be
exploited by the adversary. In the case of the parallel implementation of Figure 2,
where p = 2, this amount of exploitable leakage points is decreased to 64. This
is in strong contrast with traditional implementations of block ciphers, where
one typically predicts a few leakage points, corresponding to the intermediate
computations of the block cipher that can be easily enumerated. For example,
in the block cipher PRESENT, a 4-bit guess allows predicting the first (or last)
key addition and S-box computations of an encryption process. But following
operations become hard to predict, because of the diffusion in the cipher. As im-
plementations of extractors are not affected by such a strong diffusion property,
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a very important parameter is the number of leakage points exploited by the
adversary. Our experiments will consider both single-sample attacks, that are
similar to standard DPA attacks against block ciphers, and t-sample attacks, for
which we aim at discussing their relevance in a side-channel evaluation context.
Summarizing, our evaluations will investigate three main parameters:

1. the degree of parallelism in the implementation p,
2. the order of the masking scheme o,
3. the number of leakage samples per plaintext exploited in the attacks t.

Our experiments are based on simulated traces, which reflect the ideal power
consumption of the previously described hardware architecture. In order to allow
a systematic comparison between the level of security of the extractor implemen-
tation and the one of a masked S-box, we added Gaussian noise. More precisely,
we used simulated traces to generate the mean value of the target leakages, with

the Signal-to-Noise Ratio as a parameter (SNR = 10 · log10(
σ2
s

σ2
n

)). In other words,

we extended the simulation environment of [17] to the context of an extractor.
Note, that most of our following conclusions relate to the comparative impact
of the parameters p, o and m. Hence, the possible deviations that one would
observe between simulated traces and actual measurements would not affect
these conclusions (i.e. they would essentially only cause some slight shifts of the
information theoretic and security analysis curves in the following sections).

5 Information theoretic analysis

In this section, we aim to evaluate the security of the previously described ex-
tractor implementation, in function of the amount of parallelism, masking and
leakage samples available to the adversary. For this purpose, we start with the
information theoretic analysis advocated in [15], the goal of which is to analyze
a worst case scenario, where the adversary has perfect knowledge of the leak-
age distribution (i.e. is able to perform a perfect profiling). For our simulated
setting, this means that the adversary is provided with the leakage samples lij ,
where the subscript j relates to the number of shares in a masking scheme and
the superscript i relates to the number of samples used per input x in the at-
tack. More specifically, in an unmasked implementation, the adversary is given
the following leakage samples:

li1 = WH

(
(x ·Ai) ∧ k

)
+ n, (4)

where WH denotes the Hamming weight function and n is a Gaussian noise.
From this definition, one can straightforwardly compute the following mutual
information metric, for the fully serial (i.e. p = 1) single sample (i.e. t = 1) case:

I(K;X,L1
1) = H[K]−

∑
k∈K

Pr[k]
∑
x∈X

Pr[x]
∑
l11∈L

Pr[l11|x, k] · log2 Pr[k|x, l11]. (5)
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Next, considering a masked implementation would change the previous analysis
as follows. First, the adversary now has to exploit the leakage of several shares.
For example, in the first-order case (i.e. o = 1), we have:

li1 = WH

(
(x ·Ai) ∧m

)
+ n, (6)

li2 = WH

(
(x ·Ai) ∧ (k ⊕m)

)
+ n. (7)

Second, the computation of the mutual information metric is turned into:

I(K;X,L1
1, L

1
2) = H[K]−

∑
k∈K

Pr[k]
∑
x∈X

Pr[x]
∑
m∈M

Pr[m]

·
∑

l11,l
1
2∈L2

Pr[l11, l
1
2|x,m, k] · log2 Pr[k|x, l11, l12], (8)

where Pr[k|x, l11, l12] =
∑
m′ Pr[m′|x, l11] Pr[k|x,m′, l12]. That is, the mask is not

given to the adversary, but its leakage allows building a bivariate conditional
distribution that is key-dependent. This naturally extends towards larger o’s.

These previous equations were considering single-sample-per-input attacks
that are typically similar to the DPA against the AES S-box in [10] and masked
AES S-box in [17]. When moving to the multi-sample context, the computation
of the mutual information metric for the unmasked case is turned into:

I (K;X,Lt1) = H[K]−
∑
k∈K

Pr[k]
∑
x∈X

Pr[x]

·
∑

l11,l
2
1,...,l

t
1∈Lt

Pr[l11, l
2
1, . . . , l

t
1|x, k] · log2 Pr[k|x, l11, l21, . . . , lt1]. (9)

And for the masked case, it becomes:

I (K;X,Lt1, L
t
2) = H[K]−

∑
k∈K

Pr[k]
∑
x∈X

Pr[x]
∑
m∈M

Pr[m]

·
∑

l11,l
2
1,...,l

t
1,l

1
2,l

2
2,...,l

t
2∈L2t

Pr[l11, l
2
1, . . . , l

t
1, l

1
2, l

2
2, . . . , l

t
2|x,m, k]

· log2 Pr[k|x, l11, l21, . . . , lt1, l12, l22, . . . , lt2]. (10)

Interestingly, this multi-sample case implies that many samples can be used to
“bias” the mask in the computation of the mixture distribution:

Pr[k|x, l11, l21, . . . , lt1, l12, l22, . . . , lt2] =
∑
m

Pr[m|x, l11, l21, . . . , lt1] Pr[k|x,m, l12, l
2
2, . . . , l

t
2].

As will be seen in the following, this strongly reduces the security improvements
of masking in this setting. Finally, independent of the parameters o and t, an
increased parallelism is modeled by changing the leakage function. For example,
in the p = 2 case of Figure 2, the adversary would obtain samples of the form:

li,i+1
1 = WH

(
(x ·Ai) ∧ k

)
+ WH

(
(x ·Ai+1) ∧ k

)
+ n. (11)
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Fig. 3. Single sample attacks, serial imple-
mentation, without masking.

Fig. 4. Single sample attacks, serial im-
plementation, with masking.

In general, modifying the parallelism has no impact on the previous equations.
However, increasing p implies that the maximum number of samples that one can
exploit per plaintext is more limited (to 64 if p = 2, 32 if p = 4, . . . ). Note again
that, due to the weak diffusion of the extractor implementation, a 4-bit guess
would then allow to predict several 4-bit parts of the inner product computations
(e.g. one part of both WH functions in Equation (11) can be predicted).

5.1 Single sample attacks, serial implementation

For the first scenario, we assume an adversary who looks only at one leakage
sample per side-channel trace. This can be seen as a naive attack, where the
adversary applies exactly the same strategy as he would for an S-box. The im-
plementation of the extractor is fully serialized and its masking order varies
between zero and two. Figure 3 shows the unprotected case (t = 1, p = 1, o = 0)
and Figure 4 shows the masked case (t = 1, p = 1, o ∈ {1, 2}). We compare those
curves with the information curves for an unmasked and a masked PRESENT
S-box. As higher-order masking schemes leading to efficient hardware implemen-
tations remain an open problem, we restrict the S-box evaluations to first-order
masking1. For the unmasked case, the curves confirm what was already observed
in [14]. Namely, a single extractor sample contains less information than a single
S-box sample, on average. As for the masked case, the results follow the expec-
tations in [1, 17]. That is, for a sufficient amount of noise, increasing the order
of the masking scheme implies an exponential security increase, reflected by the
different slopes of the log scale curves in Figure 4. Note finally that, in this lat-
ter case and for similar orders, the information provided by a single sample of
the extractor is now slightly higher than the one provided by an S-box sample
(which can be explained by the shape of the masked leakage distributions).

1 The only straightforward solution is to use a large look-up table of size 2o·n×n bits.
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Fig. 5. Multi sample attacks, serial implementation.

5.2 Multi-sample attacks, serial implementation

The results in the previous section suggest that the security of an extractor im-
plementation can be strong when adversaries exploit a single sample per leakage
trace. But as previously mentioned, extractors are different than standard block
ciphers in the sense that a small key guess (here 4-bit) allows adversaries to pre-
dict multiple intermediate computation results (up to t = 128). In this section,
we consider the worst case of a serial implementation where an adversary would
exploit all this information. Applying this approach to the unmasked case implies
to compute the mutual information metric given in Equation (9). We mention
that, since integrating over 128 dimensions is too complex, the following estima-
tions are obtained by statistical sampling. Similarly, evaluating a multi-sample
attack against a masked implementation requires to compute Equation (10). As
previously mentioned, this equation suggests that the mask can be strongly bi-
ased because, in the multi-sample attack setting, an adversary can exploit 128
leakage points generated from the manipulation of the same mask value.

The results of the information theoretic analysis corresponding to this strongest
possible adversary are depicted in Figure 5. It can be seen that the situation
changes dramatically. Up to an SNR of -5, the remaining entropy of the key
variable after seeing a single side-channel trace is zero (i.e. unbound leakage).
For SNRs below -5 the recovered information eventually decreases and also mask-
ing starts to bring additional security. However, due to the mask biasing process,
it also requires smaller SNRs until the impact of masking is fully released. Fur-
thermore, even for an SNR as small as -20, the second-order masked extractor
implementation reveals more information than the unprotected S-box one. Sum-
marizing, while an extractor implementation provides strong security against
standard univariate DPA attacks, the exploitation of multiple samples leads to
an opposite conclusion. Roughly speaking, the exploitation of t samples per trace
in this setting corresponds to the exploitation of t single-sample traces (all using
the same mask) in the previous section. We now discuss strategies to relax this
limitation.
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Fig. 6. Multi-sample attacks, reducing t
for masking of order 1.

Fig. 7. Multi-sample attacks, reducing t
for masking of order 2.

5.3 Decreasing the leakage by reducing t

Following the previous section, one important objective for improving the se-
curity of an extractor implementation is to limit the number of leakage points
exploitable per trace. In the full version of this paper [11], we investigate different
strategies to achieve this goal, namely re-keying, re-masking and parallelism and
compare them from an implementation and side-channel point of view. Here, we
focus on the general effect of reducing the parameter t and in particular discuss
parallelization as it is the most appealing approach from a performance point of
view.

Figures 6 and 7 show the impact of limiting t in such a way, for masking of
order one and two. It can be seen that the information decreases exponentially
with t. Furthermore, this exponential decrease is larger the higher the masking
order is, essentially because we do not only limit the available samples for the
key but also for the masks.

In general, parallelization has the same impact as just reducing t. However, as
now more computations are performed per clock cycle, also the amount of infor-
mation leakage contained per sample might be higher. As a simple example, let
us denote two leakage samples generated by an unprotected serial implementa-
tion as l1 and l2. By parallelizing the operations corresponding to these leakage
samples, one provides the adversary with a new sample l′ = l1 + l2. If these
two leakage samples are related to the same key guess, the information provided
by one of them is generally less than the information provided by their sum,
which is again less than their joint information. This is illustrated in Figures 8
and 9. However, as will be seen in the security analysis, not every distinguisher
is capable of exploiting this extra information.

6 Security analysis

The results of the previous IT analysis define upper bounds for the information
which can be extracted by an adversary. In this section we discuss how well
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these upper bounds represent the capabilities of an adversary. In particular, we
raise two questions: (1) Are t-sample attacks relevant in practice? (2) How large
is the practical security gain of masking an extractor? The first question can
be answered positively under some reasonable assumptions. As for the second
question, it turns out that masked extractors can actually provide good security
when looking at standard higher-order DPA attacks.

6.1 Identifying multiple samples

In general, the critical parameters for evaluating side-channel attacks are the
data complexity (in the first place) and the time complexity (when the order of
the attacks increases). The data complexity typically depends on the amount of
information contained in each leakage trace. The time complexity typically de-
pends on the number of samples of interest to identify in the traces. As a result,
it is interesting to determine how efficiently the previous multi-sample attacks
trade time and data. For this purpose, say an adversary has to identify t samples
in an N -sample leakage trace. Without additional assumptions, the complexity
of finding them is in O(N t). However, in the case of the hardware extractor, the
adversary can assume that time samples are equidistantly distributed along the
power trace. For instance, our hardware architecture produces p bits every clock
cycle and the extraction process takes t clock cycles. Thus the distance between
the interesting samples is one clock cycle. Given this information, one can sweep
over the power trace like in a standard single-sample DPA, and directly launch
a multi-sample attack exploiting the t equidistant samples with a complexity in
O(N). In other words, an adversary does not have to detect these samples of
interest separately and in advance. This observation implies the interesting con-
sequence that the order of a side-channel attack (usually defined as the number
of samples exploited per trace) is not a generally good indicator of security. It
is sometimes easy to launch high-order attacks. Note also that the assumptions
on the underlying hardware to launch such low complexity attacks are generally

Fig. 8. Single sample attacks with paral-
lelism, no masking.

Fig. 9. Single sample attacks with paral-
lelism, masking order 1.
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easy to guess for adversaries. Hence, ruling out multi-sample attacks in this case
implies to rely on “security by obscurity” in an excessive manner.

6.2 Attacking the masking

An interesting feature of our extractor implementation is that its homomorphic
property allows efficient masking of unusually large orders (compared, e.g. to
the AES Rijndael). However, as previously discussed, the impact of masks can
be strongly reduced in multi-sample attacks, as an adversary can theoretically
bias the mask using all the available samples. In this section, we discuss the
feasibility of such a biasing in a non-profiled attack setting.

Biasing the mask. As detailed in Section 5.2, biasing the masks is straight-
forward in profiled side-channel attacks. The adversary just has to launch a
template attack on the masks, prior to the attack, and can use the resulting dis-
tribution of the masks when launching the same template attack on the secret
key. By contrast, when moving to a non-profiled attack setting, such a mask
biasing becomes more difficult to exploit. The natural approach would again be
to launch a DPA (e.g. correlation-based) on the mask extraction 〈x · Ai,m〉. If
the measurements are quite informative, then this DPA can lead to a complete
recovery of the masks (i.e. the masked implementation becomes as easy to break
as the unprotected one). But when measurements become noisy, the adversary
ends up with a vector of key candidates ranked according to the output of the
DPA distinguisher, e.g. a correlation coefficient. Exploiting this information in
a non-profiled attack has to be based on one of the following approaches:

1. If only a couple of mask candidates remain likely after the biasing process,
one solution is to test them exhaustively. But this strategy becomes inten-
sive when combining multiple plaintexts, as the number of such tests scales
exponentially in the number of plaintexts in the attack.

2. If the mask distribution obtained after the observation of a trace is not
enough biased, or if the number of plaintexts required to perform a success-
ful key recovery is too high, one then has to rely on heuristics. For example,
one solution would be to normalize the correlation coefficient obtained af-
ter the DPA against the masks, and to interpret them as probabilities. As
detailed in [18], this heuristic already implies significant efficiency losses com-
pared to the application of a template attack. In addition, one then needs to
exploit this vector of mask “probabilities” in the high-order attack against
the extractor implementation, which is again not trivial. For example, one
could try to exploit this information to improve the combination function
used in a second-order DPA, as suggested in [13]. But it usually results in
quite involved techniques that may not be easy to apply in practical settings.

As in the previous subsection, it is interesting to observe that the evaluation
of the extractor implementation crucially relies on the strategy adopted by the
adversary. But while the multi-sample approach is quite realistic in a hardware
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Fig. 10. Information leakage without mask biasing (p=8, t=16).

implementation context, even for non-profiled attacks, the biasing of the masks
becomes much less realistic when profiling the chip and taking advantage of
Bayesian key recovery is not possible. In fact, a more practical adversary will
probably perform a higher-order DPA directly on the different time samples
provided by the traces (for instance by performing a Pearson-correlation based
attack after applying the normalized product combining function [9] or by di-
rectly using a multivariate distinguisher like MIA [5]). Interestingly, one can
easily evaluate the information loss caused by this strategy, by replacing the last
factor in Equation (10) by:

Pr[k|x, l11, l21, . . . , lt1, l12, l22, . . . , lt2] =

∏t
i=1

∑
m Pr[m|x, li1] Pr[k|x,m, li2]∑

k′
∏t
i=1

∑
m Pr[m|x, li1] Pr[k′|x,m, li2]

.

The result of such an evaluation for t = 16 and a parallelization of 8 is plot-
ted in Figure 10. Intuitively, it represents the upper bound for the informa-
tion which can be retrieved by a non-biased DPA attack. In a typical scenario
where an adversary attacks 8 out of 128 bits at once, the SNR can be com-
puted as 10 log10(8/120) = −11.761. It can be seen from the figure that this is
approximately the point where a profiled adversary does not gain more informa-
tion from a multi-sample attack on the 3rd-order masked extractor than from a
single-sample attack on a 1st-order masked S-box.

Higher-order DPA attacks. Eventually, it is interesting to evaluate how
efficiently a standard higher-order DPA against the masked extractor imple-
mentation can take advantage of the information leakage in Figure 10. For this
purpose, and based on the fact that our implementation exhibits a perfect Ham-
ming weight leakage model, it is natural to apply a DPA based on Pearson’s
correlation coefficient, and using a normalized-product combining function. In
Figure 11, we compare a 1st-order masked S-box and a 3rd-order masked ex-
tractor for SNRs of 0 and 10. One can observe that the results of this security
evaluation do not directly reflect the outcome of the IT analysis. Namely, even
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Fig. 11. Multi-sample correlation attacks
against masked implementations, normal-
ized product combining.

Fig. 12. Single-sample correlation at-
tacks against unprotected implementa-
tions, with an SNR=-0.3.

in the low noise scenario, the multi-sample attack on the extractor is almost
a magnitude less efficient than the single-sample attack on the S-box, due to
the information loss caused by the normalized-product combining. Interestingly,
even in an unprotected context, the sub-optimality of DPA attacks can be high-
lighted, e.g. in Figure 12, where parallelism always improves security2.

We finally note that, more than the results of specific adversarial strategies
used in this section (which may be suboptimal), it is the very observation that
these strategies play a central role in the security evaluation of cryptographic
devices that is interesting. Especially, if the leakage of the analyzed primitive
has flavors unknown from block ciphers, such as multiple samples per plaintext
and inherent mask re-use, special care has to be taken during the evaluation and
the interpretation of the results.

7 Conclusions

This paper first shows the interest of implementing randomness extractors in
hardware. By taking advantage of different design tradeoffs (namely, parallelism,
re-keying and re-masking), such implementations allow improving the security
against side-channel attacks, in particular when compared to their software coun-
terpart. Next, our results put forward the strong impact of adversarial strategies
in the evaluation of extractor implementations (and leaking devices in general).
Depending on the capabilities of an adversary, the information leakage provided
by the extractor implementations considered in this paper range from large (in
Figure 5) to much more limited (in Figure 10) and is sometimes difficult to ex-
ploit with standard DPA attacks (in Figure 11). From a methodological point
of view, this observation suggests to always consider different capabilities in an
evaluation, in order to avoid overestimating (or underestimating) the security of
an implementation. Our results also show that the order of an attack, defined

2 In contrast with the result given in Section 5.3, Figure 8.
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as the number of samples per trace, may not be a good indication of security if
these samples do not corresponds to the different shares of a masking scheme. As
a scope for further research, we notice that the main weakness of the extractor
investigated in this paper derives from the ability to predict many intermedi-
ate computations from a small key guess, which reduces the interest in its nice
homomorphic property. As a result, it would be interesting to design an extrac-
tor limiting this weakness, e.g. by introducing a type of “key-scheduling” in the
algorithm, in order to add some diffusion during the extraction process.
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