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Abstract. We present a new block cipher LED. While dedicated to com-
pact hardware implementation, and offering the smallest silicon footprint
among comparable block ciphers, the cipher has been designed to simul-
taneously tackle three additional goals. First, we explore the role of an
ultra-light (in fact non-existent) key schedule. Second, we consider the
resistance of ciphers, and LED in particular, to related-key attacks: we
are able to derive simple yet interesting AES-like security proofs for LED

regarding related- or single-key attacks. And third, while we provide a
block cipher that is very compact in hardware, we aim to maintain a
reasonable performance profile for software implementation.
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1 Introduction

Over past years many new cryptographic primitives have been proposed for use
in RFID tag deployments, sensor networks, and other applications characterised
by highly-constrained devices. The pervasive deployment of tiny computational
devices brings with it many interesting, and potentially difficult, security issues.

Chief among recent developments has been the evolution of lightweight block
ciphers where an accumulation of advances in algorithm design, together with
an increased awareness of the likely application, has helped provide important
developments. To some commentators the need for yet another lightweight block
cipher proposal will be open to question. However, in addition to the fact that
many proposals present some weaknesses [2, 10, 45], we feel there is still more
to be said on the subject and we observe that it is in the “second generation”
of work that designers might learn from the progress, and omissions, of “first
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generation” proposals. And while new proposals might only slightly improve on
successful initial proposals in terms of a single metric, e.g. area, they might, at
the same time, overcome other important security and performance limitations.
In this paper, therefore, we return to the design of lightweight block ciphers and
we describe Light Encryption Device, LED.

During our design, several key observations were uppermost in our mind.
Practically all modern block cipher proposals have reasonable security argu-
ments; but few offer much beyond (potentially thorough) ad hoc analysis. Here
we hope to provide a more complete security treatment than is usual. In partic-
ular, related-key attacks are often dismissed from consideration for the applica-
tion areas that typically use such constrained devices, e.g. RFID tags. In practice
this is often perfectly reasonable. However, researchers will continue to derive
cryptanalytic results in the related-key model [18, 2] and there has been some
research on how to modify or strengthen key schedules [35, 15, 39]. So having
provable levels of resistance to such attacks would be a bonus and might help
confusion developing in the cryptographic literature.

In addition, our attention is naturally focused on the performance of the
algorithm on the tag. However, there can be constraints when an algorithm is
also going to be implemented in software. This is something that has already been
discussed with the design of KLEIN [22] and in the design of LED we have aimed
at very compact hardware implementation while maintaining some software-
friendly features.

Our new block cipher is based on AES-like design principles and this allows
us to derive very simple bounds on the number of active Sboxes during a block
cipher encryption. Since the key schedule is very simple, this analysis can be done
in a related-key model as well; i.e. our bounds apply even when an attacker tries
to mount a related-key attack. And while AES-based approaches are well-suited
to software, they don’t always provide the lightest implementation in hardware.
But using techniques presented in [23] we aim to resolve this conflict.

While block ciphers are an important primitive, and arguably the most useful
in a constrained environment, there has also been much progress in the design of
stream ciphers [14, 25] and even, very recently, in lightweight hash functions [23,
4]. In fact it is this latter area of work that has provided inspiration for the block
cipher we will present here.

2 Design approach and specifications

Like so much in today’s symmetric cryptography, an AES-like design appears to
be the ideal starting point for a clean and secure design. The design of LED will
inevitably have many parallels with this established approach, and features such
as Sboxes, ShiftRows, and (a variant of) MixColumns will all feature and take
their familiar roles.

For the key schedule we chose to do-away with the “schedule”, i.e. the user-
provided key is used repeatedly as is. As well as giving obvious advantages in
hardware implementation, it allows for simple proofs to be made for the security



of the scheme even in the most challenging attack model of related keys. At first
sight the re-use of the encryption key without variation appears dangerous, cer-
tainly to those familiar with slide attacks and some of their advanced variants [7,
8]. But we note that such a simple key schedule is not without precedent [42]
though the treatment here is more complete than previously.

The LED cipher is described in Section 2.1. It is a 64-bit block cipher with two
primary instances taking 64- and 128-bit keys. The cipher state is conceptually
arranged in a (4× 4) grid where each nibble represents an element from GF(24)
with the underlying polynomial for field multiplication given by X4 +X + 1.

Sboxes. LED cipher re-uses the present Sbox which has been adopted in many
lightweight cryptographic algorithms. The action of this box in hexadecimal
notation is given by the following table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

MixColumnsSerial. We re-use the tactic adopted in [23] to define an MDS
matrix for linear diffusion that is suitable for compact serial implementa-
tion. The MixColumnsSerial layer can be viewed as four applications of a
hardware-friendly matrix A with the net result being equivalent to using the
MDS matrix M where

(A)4 =


0 1 0 0

0 0 1 0

0 0 0 1

4 1 2 2


4

=


4 2 1 1

8 6 5 6

B E A 9

2 2 F B

 = M.

The basic component of LED will be a sequence of four identical rounds used
without the addition of any key material. This basic unit, that we later call
“step”, makes it easy to establish security bounds for the construction.

2.1 Specification of LED

For a 64-bit plaintext m the 16 four-bit nibbles m0‖m1‖ · · · ‖m14‖m15 are ar-
ranged (conceptually) in a square array:

m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15


This is the initial value of the cipher state and note that the state (and the
key) are loaded row-wise rather than in the column-wise fashion we have come
to expect from the AES; this is a more hardware-friendly choice, as pointed out
in [38].



The key is viewed nibble-wise and loaded nibble-by-nibble into one or two
arrays, K1 and K2, depending on the key length. Our primary definition is for
64- or 128-bit keys, but other key lengths, e.g. the popular choice of 80 bits, can
be padded to give a 128-bit key thereby giving a 128-bit key array. By virtue of
the order of loading the tables, any key that is padded (with zeros) to give a 64-
or 128-bit key array will effectively set unused nibbles of the key array to 0.

k0 k1 k2 k3
k4 k5 k6 k7
k8 k9 k10 k11
k12 k13 k14 k15

 for 64-bit keys giving K1


k0 k1 k2 k3
k4 k5 k6 k7
k8 k9 k10 k11
k12 k13 k14 k15



k16 k17 k18 k19
k20 k21 k22 k23
k24 k25 k26 k27
k28 k29 k30 k31

 for 128-bit keys giving K1‖K2

The operation addRoundKey(state,Ki) combines nibbles of subkey Ki with the
state, respecting array positioning, using bitwise exclusive-or. There is no key
schedule, or rather this is the sum total of the key schedule, and the arrays K1

and, where appropriate, K2 are repeatedly used without modification. Encryp-
tion is described using the previously mentioned addRoundKey(state,Ki) and
a second operation, step(state). This is illustrated in Figure 1.
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Fig. 1. The use of key arrays K1 and K2 in LED showing both a 64-bit key array (top)
and a 128-bit key array (bottom).

The number of steps during encryption depends on whether there are one or two
key arrays.

for i = 1 to 8 do {
addRoundKey(state,K1)

step(state)
}
addRoundKey(state,K1)

for i = 1 to 6 do {
addRoundKey(state,K1)

step(state)
addRoundKey(state,K2)

step(state)
}
addRoundKey(state,K1)

for 64-bit key arrays for 128-bit key arrays



The operation step(state) consists of four rounds of encryption of the ci-
pher state. Each of these four rounds uses, in sequence, the operations AddConstants,
SubCells, ShiftRows, and MixColumnsSerial as illustrated in Figure 2.
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Fig. 2. An overview of a single round of LED.

AddConstants. A round constant is defined as follows. At each round, the six
bits (rc5, rc4, rc3, rc2, rc1, rc0) are shifted one position to the left with the
new value to rc0 being computed as rc5⊕ rc4⊕ 1. The six bits are initialised
to zero, and updated before use in a given round. The constant, when used
in a given round, is arranged into an array as follows:

0 (rc5‖rc4‖rc3) 0 0
1 (rc2‖rc1‖rc0) 0 0
2 (rc5‖rc4‖rc3) 0 0
3 (rc2‖rc1‖rc0) 0 0


The round constants are combined with the state, respecting array position-
ing, using bitwise exclusive-or.

SubCells. Each nibble in the array state is replaced by the nibble generated
after using the present Sbox.

ShiftRow. Row i of the array state is rotated i cell positions to the left, for
i = 0, 1, 2, 3.

MixColumnsSerial. Each column of the array state is viewed as a column
vector and replaced by the column vector that results after post-multiplying
the vector by the matrix M (see earlier description in this section).

The final value of the state provides the ciphertext with nibbles of the
“array” being unpacked in the obvious way. Test vectors for LED are provided at
https://sites.google.com/site/ledblockcipher/.

3 Security Analysis

The LED block cipher is simple to analyze and this allows us to precisely evaluate
the necessary number of rounds to ensure proper security.

Our scheme is meant to be resistant to classical attacks, but also to the type
of related-key attacks that have been effective against AES-256 [9] and other



ciphers [2]. We will even study the security of LED in a hash function setting, i.e.
when it is used in a Davies-Meyer or similar construction with a compression
function based on a block cipher. In other words, we will consider attackers that
have full access to the key(s) and try to distinguish the fixed permutations from
randomly chosen ones. While this analysis provides additional confidence in the
security of LED, it is not our intent to propose a hash function construction.

We chose a conservative number of rounds for LED. For example, when using a
64-bit key array we use 32 AES-like rounds that are grouped as eight “big” add-
key/apply-permutation steps that are each composed of four AES-like rounds.
Further, our security margins are even more conservative if one definitively dis-
regards related-key attacks; as will be seen with the following proofs.

3.1 The key schedule

The LED key schedule has been chosen for its simplicity and security. Because it
is very simple to analyze, it allows us to directly derive a bound on the minimal
number of active Sboxes, even in the scenario of related-key attacks. The idea is
to first compute a bound on the number of active big steps (each composed of
4 AES-like rounds). Then, using the well known 4-round proofs for the AES, one
can show that one active big step will contain at least 25 active Sboxes. Note
that this bound is tight as we know 4-round differential paths containing exactly
this number of active Sboxes.

When not considering related-key attacks, we directly obtain that any differ-
ential path for LED will contain at least br/4c · 25 active Sboxes. For related-key
attacks, we have to distinguish between the different key-size versions.

64-bit key version. If we assume that differences are inserted in the key
input, then every subkey K1 in the 64-bit key variant of LED will be active.
Therefore, one can easily see that it is impossible to force two consecutive non-
active big steps and we are ensured that for every two big steps at least one
is active. Overall, this shows that any related-key differential path contains at
least br/8c · 25 active Sboxes.

128-bit key version. If we assume that differences are inserted in the key
input, then we have to separate two cases. If the two independent parts K1 and
K2 composing the key both contain a difference, then we end up with exactly the
same reasoning as for the 64-bit key variant: at least br/8c ·25 active Sboxes will
be active. If only one of the two independent parts composing the key contains a
difference, then subkeys with and without differences are alternatively incorpo-
rated after each big step. The non-active subkeys impact on the differential paths
is completely void and thus in this case one can view LED as being composed
of even bigger steps of 8 AES-like rounds instead. The very same reasoning then
applies again: it is impossible to force two consecutive of these new bigger steps
to be inactive and therefore we have at least br/16c · 50 active Sboxes ensured
for any differential path (since the best differential path for 8 rounds trivially
contains 50 active Sboxes).



Table 1. Minimal number of active Sboxes and upper bounds on the best differential
path and linear approximation probability for the 64-bit key array and 128-bit key
array versions of LED (in both the single-key (SK) and related-key (RK) settings).

LED-64 SK LED-64 RK LED-128 SK LED-128 RK

minimal no. of active Sboxes 200 100 300 150

differential path probability 2−400 2−200 2−600 2−300

linear approx. probability 2−400 2−200 2−600 2−300

We summarize in Table 1 the results obtained for the two main versions of
LED, both for single-key attacks and related-key attacks. Note that the bounds
on the number of active Sboxes are tight as we know differential paths meeting
them (for example the truncated differential path for each active big step can
simply be any of the 4-round path for AES-128 with 25 active Sboxes).

For LED-128, since we are using two independent key parts one can peel off
the first and last key addition (which is always the first key part K1). Thus,
an attacker can remove one big step on each side of the cipher, for a total of 8
rounds, with a complexity of 264 tries on K1. This partially explains why the
versions of LED using two independent key parts have 16 more rounds than for
LED-64.

3.2 Differential/Linear cryptanalysis

Since LED is an AES-like cipher, one can directly reuse extensive work that has
been done on the AES. We will compute a bound on the best differential path
probability (where all differences on the input and output of all rounds are
specified) or even the best differential probability (where only the input and
output differences are specified), in both single- and related-key settings.

As the best differential transition probability of the PRESENT Sbox is 2−2,
using the previously proven minimal number of active Sboxes we deduce that
the best differential path probability on 4 active rounds of LED is upper bounded
by 2−2·25 = 2−50. By adapting the work from [40], the maximum differential
probability for 4 active rounds of LED is upper bounded by

max

 max
1≤u≤15

15∑
j=1

{DPS(u, j)}5, max
1≤u≤15

15∑
j=1

{DPS(j, u)}5


4

= 2−32

where DPS(i, j) stands for the differential probability of the Sbox to map the
difference i to j. The duality between linear and differential attacks allows us
to similarly apply the same approaches to compute a bound on the best linear
approximation. Over four rounds the best linear approximation probability is
upper bounded by 2−50 and the best linear hull probability is upper bounded
by 2−32.

Since we previously proved that all rounds will be active in the single-key
scenario and half of them will be active in the related-key scenario, we can easily



compute the upper bounds on the best differential path probability and the
best linear approximation probability for each version of LED (see Table 1). Note
that this requires that random subkeys be used at each round to make the Sbox
inputs independant. In the case of LED the subkeys are simulated by the addition
of round constants and the derived bounds give a very good indication of the
quality of the LED internal permutation with regards to linear and differential
cryptanalysis.

3.3 Cube testers and algebraic attacks

We applied the most recent developed cube testers [3] and its zero-sum distin-
guishers to the LED fixed-key permutation, the best we could find within practical
time complexity is at most three rounds (with the potential to be doubled un-
der a meet-in-the-middle scenario). Note, in case of AES, “zero-sum” property is
also referred as “balanced”, found by the AES designers [16], in which 3-round
balanced property is shown. To the best of our knowledge, there is no balanced
property found for more than 3 AES rounds.

The PRESENT Sbox used in LED has algebraic degree 3 and one can check
that 3 · br/4c · 25 ≫ 64 for all LED variants. Moreover, the PRESENT Sbox is
described by e = 21 quadratic equations in the v = 8 input/output-bit variables
over GF (2). The entire system for a fixed-key LED permutation therefore consists
of (16 · r · e) quadratic equations in (16 · r · v) variables. For example, in the case
of the 64-bit key version, we end up with 10752 equations in 4096 variables. In
comparison, the entire system for a fixed-key AES permutation consists of 6400
equations in 2560 variables. While the applicability of algebraic attacks on AES

remains unclear, those numbers tends to indicate that LED offers a higher level
of protection.

3.4 Other cryptanalysis

The slide attack is a block cipher cryptanalysis technique [7] that exploits the
degree of self-similarity of a permutation. In the case of LED, all rounds are
made different thanks to the round-dependent constants addition, which makes
the slide attack impossible to perform.

Integral cryptanalysis is a technique first applied on SQUARE [17] that is par-
ticularly efficient against block ciphers based on substitution-permutation net-
works, like AES or LED. The idea is to study the propagation of sums of values;
something which is quite powerful on ciphers that only use bijective compo-
nents. As for AES, the best integral property can be found on three rounds, or
four rounds with the last mixing layer removed. Thus, two big LED steps avoid
any such observation. Considering the large number of rounds of LED, we believe
integrals attacks are very unlikely to be a threat.

Rotational cryptanalysis [28] studies the evolution of a rotated variant of
some input words through the round process. It was proven to be quite successful
against some Addition-Rotation-XOR (ARX) block ciphers and hash functions.
LED is an Sbox-oriented block cipher and any rotation property in a cell will be



directly removed by the application of the Sbox layer. Even if one looks for a
rotation property of cell positions, this is unlikely to lead to an attack since the
constants used in a LED round are all distinct and any position rotation property
between columns or lines is removed after the application of two rounds.

Methods to find better bounds on the algebraic degree were recently pub-
lished in [12]. With the first two rounds combined as Super-Sboxes, the best
algebraic degree we can find for fixed-key LED permutation and its inverse are
3, 11, 33, 53, 60, 62, for r rounds with r = 1, . . . , 6. Using this technique, one can
distinguish up to 12 rounds with complexity bounded by 263, in the known key
model.

3.5 LED in a hash function setting

Studying a block cipher in a hash function setting is a good security test since
it is very advantageous for the attacker. In this scenario he will have full control
on all inputs. In the so-called known-key [29] or chosen-key models, the attacker
can have access or even choose the key(s) used, and its goal is then to find some
input/output pairs having a certain property with a complexity lower than what
is expected for randomly chosen permutation(s). Typically, the property is that
the input and output differences or values are fixed to a certain subset of the
whole domain.

While we conduct an analysis of the security of LED in a hash function setting,
we would like to emphasize that our goal is not to build a secure hash function.
However, we believe that this section adds further confidence in the quality of
our block cipher proposal.

Rebound and Super-Sbox attacks. The recent rebound attack [37] and
its improved variants (start-from-the-middle attack [36] and Super-Sbox crypt-
analysis [21, 31]) have much improved the best known attacks on many hash
functions, especially for AES-based schemes. The attacker will first prepare a
differential path and then use the available freedom degrees to the most costly
part of the trail (often in the middle) so as to reduce the overall complexity.
The costly part is called the controlled rounds, while the rest of the trail are the
uncontrolled rounds and they are verified probabilistically. The rebound attack
and its variants allows the attacker to nicely use the freedom degrees so that
the controlled part is as big as possible. At the present time, the most powerful
technique in the known-key setting allows the attacker to control three rounds
and no method is known to control more rounds, even if the key is chosen by
the attacker.

In order to ease the analysis, we assume pessimistically that the attacker can
control four rounds, that is one full active big step, with a negligible computa-
tion/memory cost (even if one finds a method to control four AES-like rounds
in the chosen-key model, it will not apply here since no key is inserted during
four consecutive rounds). In the case of 64-bit key LED, the attacker can control
two independent active big steps and later merge them by freely fixing the key



value. However, even in this advantageous scenario for the attacker we are en-
sured that at least two big steps will be active and uncontrolled, and this seems
sufficient to resist distinguishing attacks. Indeed, for two active big steps of LED,
the upper bound for the best differential path probability and the best linear
approximation probability (respectively the best differential probability and the
best linear hull probability) is 2−100 (respectively 2−64).

For the 128-bit key version, we can again imagine that the attacker to control
and merge two active big steps with a negligible computation/memory cost.
Even if so, with the same reasoning we are ensured that at least four big steps
will be active and uncontrolled, and again this seems sufficient since for four
active big steps of LED, the upper bound for the best differential path probability
and the best linear approximation probability (respectively the best differential
probability and the best linear hull probability) is 2−200 (respectively 2−128).

Integral attacks. One can directly adapt the known-key variant of integral
attacks from [29] to the LED internal permutation. However, this attack can
only reach seven rounds with complexity 228, which is worse than what can be
obtained with previous rebound-style attacks.

4 Performance and Comparison

4.1 Hardware implementation

We used Mentor Graphics ModelSimXE 6.4b and Synopsys DesignCompiler A-
2007.12-SP1 for functional simulation and synthesis of the designs to the Vir-
tual Silicon (VST) standard cell library UMCL18G212T3, which is based on
the UMC L180 0.18µm 1P6M logic process with a typical voltage of 1.8 V.
For synthesis and for power estimation (using Synopsys Power Compiler version
A-2007.12-SP1 ) we advised the compiler to keep the hierarchy and use a clock
frequency of 100 KHz, which is a widely cited operating frequency for RFID
applications. Note that the wire-load model used, though it is the smallest avail-
able for this library, still simulates the typical wire-load of a circuit with a size
of around 10, 000 GE.

To substantiate our claims on the hardware efficiency of our LED family, we
have implemented LED-64 and LED-128 in VHDL and simulated their post-synthesis
performance. As can be seen in Figure 3, our serialized design consists of seven
modules: MCS, State, AK, AC, SC, Controller, and Key State.

State comprises a 4 · 4 array of flip-flop cells storing 4 bits each. Every
row constitutes a shift-register using the output of the last stage, i.e. column
0, as the input to the first stage (column 3) of the same row and the next
row. Using this feedback functionality ShiftRows can be performed in 3 clock
cycles with no additional hardware costs. Further, since MixColumnsSerial is
performed on column 0, also a vertical shifting direction is required for this
column. Consequently, columns 0 and 3 consist of flip-flop cells with two inputs
(6 GE), while columns 1 and 2 can be realized with flip-flop cells with only one
input (4.67 GE).
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Fig. 3. Serial hardware architecture of LED (left) and A with its sub-components (right).

The key is stored in Key State, which comprises of a 4-bit wide simple shift
register of the appropriate length, i.e. 64 or 128. Please note that the absence
of a key-schedule of LED has two advantages: it allows 1) to use the most basic,
and thus cheapest, flip-flops (4.67 GE per bit); and 2) to hardwire the key in
case no key update is required. In the latter case additional combinational logic
is required to select the appropriate key chunk, which reduces the savings to
278 GE and 577 GE for LED-64 and LED-128, respectively. For arbitrary key
lengths the area requirements grow by 4.67 GE per bit. An LED-80 with the
same parameters as PRESENT-80 would thus require approximately 1, 040 GE
with a flexible key and around 690 GE with fixed key.

MCS calculates the last row of A in one clock cycle. The result is stored in the
State module, that is in the last row of column 0, which has been shifted up-
wards at the same time. Consequently, after 4 clock cycles the MixColumnsSerial
operation is applied to an entire column. Then the whole state array is rotated
by one position to the left and the next column is processed. As an example of
the hardware efficiency of MCS we depict A in the upper and its sub-components
in the lower right part of Figure 3. In total only 40 GE and 20 clock cycles are
required to perform MCS, which is 4 clock cycles slower but 85% smaller than a
serialized implementation of the AES MixColumns [24]. If we take into account
that AES operates on 8 bits and not like LED on 4 bits, the area savings are still
more than 40%.

AK performs the AddRoundKey operation by XORing the roundkey every
fourth round. For this reason the input to the XNOR gate is gated with a
NAND gate.

AC performs one part of the AddConstant operation by XORing the first
column of the round constant matrix (a simple arithmetic 2-bit counter) to the
first column of the state matrix. For this reason, the input to the XNOR gate is
gated with a NAND gate. In order to use a single control signal for the addition
of the round constants, which span over the first two columns, the addition of
the second column of the round constant matrix to the second column of the
state array is performed in the State module.



SC performs the SubCells operation and consists of a single instantiation
of the corresponding Sbox. We used an optimized Boolean representation of the
PRESENT Sbox,4 which only requires 22.33 GE. It takes 16 clock cycles to perform
AddConstant and SubCells on the whole state.

Controller uses a Finite State Machine (FSM) to generate all control signals
required. The FSM consists of one idle state, one init state to load the initial
values, one state for the combined execution of AC and SC, 3 states for ShR and
two states for MCS (one for processing one column and another one to rotate the
whole state to the left). Several LFSR-based counters are required: 6-bit for the
generation of the second column of the round constants matrix, 4-bit for the key
addition scheduling and 2-bit for the transition conditions of the FSM. Besides,
a 2-bit arithmetic counter is required for the generation of the first column of
the round constants matrix. Its LSB is also used to select either the 3 MSB
rc5||rc4||rc3 or the 3 LSB rc2||rc1||rc0 of the 6-bit LFSR-based counter. In total
the control logic sums up to 199 GE.

It requires 39 clock cycles to perform one round of LED, resulting in a total
latency of 1248 clock cycles for LED-64 and 1872 clock cycles for LED-128. The
estimated power consumption at a frequency of 100 KHz and a supply voltage
ov 1.8V is 1.67µW for LED-64 (1.11µW with a hard-wired key) and 2.2µW for
LED-128 (1.11µW). It is a well-known fact that at low frequencies, as typical for
low-cost applications, the power consumption is dominated by its static part,
which is proportional to the amount of transistors involved. Furthermore, the
power consumption strongly depends on the used technology and greatly varies
with the simulation method. To address these issues and to reflect the time-
area-power trade-off inherent in any hardware implementation a new figure of
merit (FOM) was proposed by [5]. In order to have a fair comparison, we omit
the power values in Table 2 and only compare cycles per block, throughput at
100 KHz (in kilo bits per second), the area requirements (in GE), and FOM (in
nano bits per clock cycle per GE squared).

Table 2 compares our results to previous work, sorted according to key flexi-
bility and increasing security levels. Note that we have not been able to include
all recent proposals and we have restricted ourselves to block ciphers for our
comparison. Other techniques such as hummingbird [19] and armadillo [5]
are of some interest in the literature, though attacks on early versions have lead
to some redesign [45, 1, 20]. As can be seen from Table 2, the block cipher LED is
the smallest when compared to other block ciphers with similar key and block
size.

4.2 Software implementation

We have made two implementations of LED; one for reference and clarity with the
second being optimized for performance (by using table lookups). The measure-
ments were taken on an Intel(R) Core(TM) i7 CPU Q 720 clocked at 1.60GHz.

In the optimised implementation, we represent the LED state as a single 64-
bit word and we build eight lookup tables each with 256 64-bit entries. This is

4 Due to Dag Arne Osvik.



similar to many AES implementations, except we treat two consecutive nibbles
(2 × 4 bits) as a unit for the lookup table. Hence SubCells, ShiftRows and
MixColumnsSerial can all be achieved using eight table lookups and XORs.

Overall, we need to access 8 × 32 × 2 = 512 32-bit words of memory (or
8× 32 = 256 64-bit words of memory). In contrast, an AES implementation with
four tables of 256 entries would require (16+4)×10 = 200 accesses. This suggests
that LED-64 should be about 2.5 times slower than AES on 32-bit platforms with
table-based implementations, and similarly LED-128 will be 3.8 slower than AES,
while the optimized table-based implementation runs 57 and 86 cycles per byte
for LED-64 and LED-128, respectively.

Table 2. Hardware implementation results of some block ciphers. [44] also synthesized
the same architecture of PRESENT and yielded a lower gate count of 1, 000 GE. However,
the number quoted below is from the same library used here and hence is a fairer choice
for comparison. * denotes estimated values.

key block cycles/ T’put Tech. Area FOM

Algorithm Ref. size size block (@100 KHz) [µm] [GE] [ bits×109

clk·GE2 ]

Flexible Keys

DESL [32] 56 64 144 44.4 0.18 1,848 130

LED-64 64 64 1,248 5.1 0.18 966 55

KLEIN-64 [22] 64 64 207 N/A 0.18 1,220 N/A

LED-80* 80 64 1,872 3.4 0.18 1,040 32

PRESENT-80 [44] 80 64 547 11.7 0.18 1,075 101

PRESENT-80 [11] 80 64 32 200.0 0.18 1,570 811

KATAN64 [13] 80 64 255 25.1 0.13 1,054 226

KLEIN-80 [22] 80 64 271 N/A 0.18 1,478 N/A

LED-96* 96 64 1,872 3.4 0.18 1,116 27

KLEIN-96 [22] 96 64 335 N/A 0.18 1,528 N/A

mCrypton [33] 96 64 13 492.3 0.13 2,681 685

SEA [34] 96 96 93 103.0 0.13 3,758 73

LED-128 128 64 1,872 3.4 0.18 1,265 21

PRESENT-128 [41] 128 64 559 11.4 0.18 1,391 59

PRESENT-128 [11] 128 64 32 200.0 0.18 1,886 562

HIGHT [26] 128 64 34 188.0 0.25 3,048 203

AES [38] 128 128 226 56.6 0.13 2,400 98

DESXL [32] 184 64 144 44.4 0.18 2,168 95

Hard-wired Keys

LED-64 64 64 1,280 5.13 0.18 688 108

PRINTcipher-48 [30] 80 48 768 6.2 0.18 402 387

KTANTAN64 [13] 80 64 255 25.1 0.13 688 530

LED-80* 80 64 1,872 3.4 0.18 690 72

LED-96* 96 64 1,872 3,42 0.18 695 71

LED-128 128 64 1,872 3.42 0.18 700 70

PRINTcipher-96 [30] 160 96 3072 3.13 0.18 726 59



5 Conclusion

In this paper we have presented the block cipher LED. Clearly, given its novelty,
the cipher should not be used in applications until there has been sufficient
independent analysis. Nevertheless, we hope that our design is of some interest
and we have focused our attention on what seem to be the neglected areas of
key schedule design and protection against related-key attacks. Furthermore,
we have done so while working in one of the more challenging design spaces—
that of constrained hardware implementation—and we have proposed one of the
smallest block ciphers in the literature (for comparable choices of parameters)
while striving to maintain a competitive performance in software. Additional
information on LED will be made available via https://sites.google.com/

site/ledblockcipher/ and we welcome all comments and analysis.
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sis of the Reduced Grøstl Compression Function, ECHO Permutation and AES
Block Cipher. In Michael J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-
Naini, editors, Selected Areas in Cryptography, volume 5867 of LNCS, pages 16–35.
Springer, 2009.
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