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Abstract. Recently, a lot of progress has been made in the implementa-
tion of pairings in both hardware and software. In this paper, we present
two FPGA-based high speed pairing designs using the Residue Number
System and lazy reduction. We show that by combining RNS, which is
naturally suitable for parallel architectures, and lazy reduction, which
performs one reduction for multiple multiplications, the speed of pairing
computation in hardware can be largely increased. The results show that
both designs achieve higher speed than previous designs. The fastest ver-
sion computes an optimal ate pairing at 126-bit security level in 0.573
ms, which is 2 times faster than all previous hardware implementations
at the same security level.
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1 Introduction and Motivation

Bilinear pairings on elliptic curves have been introduced in cryptography in
the middle of 90’s for cryptanalysis [18, 33]. In 2000, Joux introduced the first
constructive use of pairings with a tripartite key exchange protocol [25]. In the
last decade many pairing-based schemes such as identity-based encryption [10],
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identity-based signatures [12] and short signatures [11] have been proposed and
studied. Compared with other popular public key cryptosystems, e.g. Elliptic
Curve Cryptography (ECC) [30,34] and RSA [41], pairing computation is much
more complicated. For this reason, efficient implementation of cryptographic
pairings has received increasing interests [3, 8, 16,20,23,27,36].

The computation of a pairing can be broken down into modular operations
in the underlying fields. For example, one optimal ate pairing [44] defined on
a 256-bit Barreto-Naehrig (BN) curve [7] requires around 104 modular multi-
plications [3]. Thus, having an efficient modular multiplier is the key step to a
high performance pairing processor. In this work, we are interested in hardware
implementation of pairings over large characteristic fields. In this case one possi-
ble optimization is to use lazy reduction. Lazy reduction in pairing computation
was introduced by Scott [42] and then generalized by Aranha et al. in [3]. In
short, it performs one reduction for expressions like

∑
AiBj , where Ai, Bj ∈ Fp.

Aranha et al. have shown that lazy reduction can significantly speed up optimal
ate pairings in software [3].

As suggested by Duquesne [14], lazy reduction can be combined with the
Residue Number System (RNS) to further reduce the complexity. Besides, the
RNS distributes computation over a group of small integers, and is naturally
suitable for parallel implementations [22, 29]. In this paper, we propose two
FPGA-based pairing processors that use RNS representation and lazy reduction.
The first design, referred as Design I, is based on a general (but enhanced) RNS
data-path. Design I is scalable in terms of security level and flexible in terms
of target devices. On an Altera Stratix III FPGA, Design I computes a pairing
at 126-bit security level in 1.07 ms. The second design, referred as Design II,
has an optimized architecture for pairings over 254-bit curves. We use a set of
parameters that leads to a reduced complexity and an optimized datapath that
benefits from the reduction. Design II computes a pairing at 126-bit security level
in 0.573 ms on a Xilinx Virtex-6 FPGA. To the best of our knowledge, these are
the first hardware designs of pairing using RNS, and the designs outperform all
previous hardware implementations at a similar security level [16,19,27].

The rest of the paper is organised as follows. Section 2 and Section 3 provide
the background on optimal ate pairing and RNS, respectively. In Section 4 and
Section 5 we describe the architecture of Design I and Design II. Section 6
describes the control of the data-path and the high level scheduling. We give a
detailed analysis of the performance in Section 7. Finally, Section 8 concludes
the paper.

2 Optimal Ate Pairings

2.1 Pairings on Barreto-Naehrig Curves

A bilinear pairing is a non-degenerate map from G1 ×G2 to GT which is linear
in both components. Popular pairings such as Tate pairing [6], ate pairing [24],
R-ate pairing [32], optimal pairing [44] choose G1 and G2 to be specific cyclic
subgroups of E(Fpk), and GT to be a subgroup of F∗pk .



Let Fp be a finite field and let E be an elliptic curve defined over Fp. Let `
be a large prime dividing #E(Fp) and k the embedding degree with respect to
`, namely, the smallest positive integer k such that `|pk − 1. Small embedding
degrees can be easily obtained using supersingular curves. However, it is too small
(k ≤ 2) if large characteristic base fields are used. Thus, we use ordinary curves
with prescribed embedding degrees constructed via the complex multiplication
method as surveyed in [17]. We focus on the most popular one to date, namely
the Barreto-Naehrig curves [7]. The reason for their popularity is that they are
well-suited for 128-bit security level and they have degree 6 twist.

Let u ∈ Z such that p = 36u4 + 36u3 + 24u2 + 6u+ 1 and ` = 36u4 + 36u3 +
18u2 + 6u+ 1 are prime. A BN curve is an elliptic curve defined over Fp by

E : y2 = x3 + b,

where b 6= 0 such that #E = `, and it has 12 as an embedding degree.

In this paper, we mainly focus on the discussion of optimal ate pairing [36]
because it is the most efficient to date for BN curves. Let r = 6u+ 2, an optimal
ate pairing on BN curves is defined as follows [2, 36]:

aopt : E(Fp12) ∩Ker(πp − p)×E(Fp)[`] → F∗p12/
(
F∗p12

)`
(Q,P ) 7→

(
f(r,Q)(P ) · g(rQ,πp(Q))(P ) · g(rQ+πp(Q),−π2

p(Q))(P )
) p12−1

`

where πp is the Frobenius map on the curve (πp(x, y) = (xp, yp)), and g(Q1,Q2)

is the line through Q1 and Q2.

2.2 Pairing Computation and Parameter Selection

Pairing computation The computation consists of two main functions, f(r,Q)

and f
p12−1

` . The function f(r,Q) has the following divisor:

div(f(r,Q)) = r(Q)− (rQ)− (r − 1)(O).

It is normally computed using a double-and-add method (also known as Miller’s

loop [35]). Concerning f
p12−1

` , also known as the final exponentiation, Koblitz
and Menezes show in [31] that it can be split in two steps due to the integer
factorization

p12 − 1

`
=
(
p6 − 1

) (
p2 + 1

)(p4 − p2 + 1

`

)
.

The first step is powering to p6 − 1 and to p2 + 1. This is easily obtained via
cheap Frobenius computations and an inversion. The second step is powering to
p4−p2+1

` which is called the hard part of the final exponentiation.



Parameter selection The selection of parameters has an essential impact on
the security and the performance of a pairing computation. It is explained in [39]
how to generate BN curves with nice properties. For this work we choose two
curves both with b = 2. The first one, BN126, is defined by u = −(262 + 255 + 1)
and has already been used in [2, 39]. It ensures only 126 bits of security, but
is well suited to registers on a general-purpose CPU when lazy reduction is
used. However, FPGA architectures have no such constraints, since multipliers
of larger size can always be constructed with DSP slices. Hence, we also consider
a curve BN128 defined by u = −(263+222+218+27+1) which ensures 128 bits of
security. Finally, we propose BN192, the BN curve defined by u = −(2160 +274 +
212 + 1). Optimal pairing defined on this curve provides 192 bits of security [38].

In the three cases, the extension fields are defined as follows:

– Fp2 = Fp[i]/(i2 + 1)

– Fp6 = Fp2 [β]/(β3 − (1 + i))

– Fp12 = Fp6 [Γ ]/(Γ 2 − β) = Fp2 [γ]/(γ6 − (1 + i))

This tower of extensions has many advantages, the most important being an
efficient multiplication algorithm for the canonical polynomial base.

Note that BN curves always have degree 6 twists. This means E is isomorphic
over Fp12 to a curve E′ defined by y2 = x3 + b

ζ , where ζ is neither a square nor
a cube in Fp2 . In our case we take ζ = 1 + i so that it defines both the sextic
extension of Fp2 and the twist. Then we can define twisted versions of pairings
on E′(Fp2)×E(Fp)[`]. In other words, the coordinates of Q can be written as

(xQζ
1
3 , yQζ

1
2 ) where xQ and yQ are in Fp2 . For u selected as a negative integer,

the optimal ate pairing for BN curves is computed by Algorithm 1 [2] where dbl,
add and hard-part are given in appendix.

3 Residue Number System

A Residue Number System (RNS) represents a large integer using a set of smaller
integers. Let B = {b1, b2, . . . , bn} be a set of pairwise co-prime integers, and
MB =

∏n
i=1 bi. For any integer X, 0 ≤ X < MB, there is a unique RNS

representation on B: {X}B = {x1, x2, . . . , xn}, where xi = |X|bi , 1 ≤ i ≤ n.
Throughout the paper we use |a|b to denote a mod b. Given {X}B, one can
recover X using the Chinese Remainder Theorem (CRT):

X =

∣∣∣∣∣
n∑
i=1

∣∣∣xi ·B−1i ∣∣∣
bi
·Bi

∣∣∣∣∣
MB

whereBi =
MB

bi
. (1)

The set B is also known as a base, and each element bi, 1 ≤ i ≤ n, is called an
RNS modulus or an RNS channel.

RNS representation admits efficient parallel computations. Consider two inte-
gers X,Y and their RNS representations {X}B = {x1, x2, . . . , xn} and {Y }B =
{y1, y2, . . . , yn}, then we have

{|X � Y |MB
}B = {|x1 � y1|b1 , . . . , |xn � yn|bn}, � ∈ {+,−,×, /}. (2)



Algorithm 1 Optimal ate pairing on BN curves for u < 0

Require: P ∈ E(Fp)[`], Q = (xQγ
2, yQγ

3) ∈ E(Fp12)∩Ker(πp−p) with xQ and yQ ∈
Fp2 , r = |6u+ 2| =

∑s−1
i=0 ri2

i, where u < 0.
Ensure: aopt(Q,P ) ∈ Fp12

1: T = (XTγ
2, YTγ

3, ZT )← (xQγ
2, yQγ

3, 1), f ← 1
2: for i = s− 2 downto 0 do
3: T, g ← dbl(T, P ), f ← f2 · g
4: if ri = 1 then
5: T, g ← add(T,Q, P ), f ← f · g
6: end if
7: end for
8: T ← −T, f ← fp6 (fp6 is equivalent to f−1 as noticed in [3])
9: Q1 ← πp(Q), Q2 ← −πp(Q1)

10: T, g ← add(T,Q1, P ), f ← f · g
11: T, g ← add(T,Q2, P ), f ← f · g

12: f ←
(
fp6−1

)p2+1

13: f ← hard-part(f, |u|)
14: return f

Note that the division is available only if Y is co-prime with MB. For all these
operations, computations between xi and yi have no dependency on other chan-
nels, which makes RNS naturally suitable for parallel implementations.

The computation of |X|bi is called a channel reduction. To accelerate this
operation, pseudo-Mersenne numbers of the form bi = 2w − εi, where εi <
2w/2, are typically selected as RNS moduli. Hence, the computation of |X|bi is
performed using 2 times of X ← bX/2wc · εi + (X mod 2w), and a correction
step in the end to bring the result back to the range [0, bi).

3.1 RNS Montgomery Reduction

Using RNS representation ensures efficient computation in Z/MBZ. Unfortu-
nately, it can’t be applied directly in Fp since MB is not prime. One way to
utilize RNS for field multiplication is to combine RNS and Montgomery reduc-
tion [22,29]. This is shown in Algorithm 2.

RNS Montgomery reduction requires two bases, B and C, with MC co-prime
to MB. The reason of including C is that division by MB is not possible in B.
Note that the size of MB and MC, compared to p, determine the upper bound
of input X. Guillermin found that if X < αp2, MB > αp and MC > 2p, then
Algorithm 2 has output S < 2p [22, Proposition 1]. This is an important principle
for base selection.

3.2 Base Extension

The operation to transform the representation in one RNS base to another base is
called Base Extension (BE). To compute {X}C = {x′1, x′2, . . . , x′n} from {X}B =



Algorithm 2 RNS Montgomery reduction [5]

Require: RNS bases B and C with MB > αp,MC > 2p, p coprime with MBMC,
{X}B and {X}C being the RNS representations of X < αp2.
Precomputed: {| − p−1|MB}B, {|M−1

B |MC}C and {p}C.
Ensure: {S}B, {S}C such that |S|p = |XM−1

B |p and S < 2p
1: {Q}B ← {X}B × {−p−1}B
2: {Q}B

Base Extension−−−−−−−−−−−→ {Q}C
3: {S}C ←

(
{X}C + {Q}C × {p}C

)
× {M−1

B }C
4: {S}B

Base Extension←−−−−−−−−−−− {S}C

{x1, x2, . . . , xn}, one can use the Posch-Posch method [40]. Given {X}B, for (1),
there must exist an integer λ < n such that:

X =

∣∣∣∣∣
n∑
i=1

∣∣∣xi ·B−1i ∣∣∣
bi
·Bi

∣∣∣∣∣
MB

=

∣∣∣∣∣
n∑
i=1

ξi ·Bi

∣∣∣∣∣
MB

=

n∑
i=1

ξi ·Bi − λ ·MB (3)

where ξi =
∣∣∣xi · B−1i ∣∣∣

bi
, 1 ≤ i ≤ n. In the Posch-Posch method, λ can be

calculated by the following equation:

λ =

⌊ n∑
i=1

ξi ·Bi
MB

⌋
=

⌊ n∑
i=1

ξi
bi

⌋
(4)

In [29], ξi/bi is further approximated by ξi/2
w as bi is chosen as a pseudo-

Mersenne number near 2w. Once λ is obtained, {X}C = {x′1, . . . , x′n} can be
computed as follows:

x′j =

∣∣∣∣ n∑
i=1

ξi ·Bi − λ ·MB

∣∣∣∣
cj

=

∣∣∣∣ n∑
i=1

ξi · |Bi|cj − λ · |MB|cj
∣∣∣∣
cj

. (5)

|Bi|cj and |MB|cj , 1 ≤ i, j ≤ n, can be precomputed once B and C are fixed.
The following algorithm describes the computation of |X|ck .

4 Design I: A Scalable Architecture

In this section we propose an enhancement of the Cox-Rower architecture first
proposed in [29] such that it is suitable for pairing computation.

4.1 Cox-Rower Architecture

The Cox-Rower architecture was first proposed by Kawamura et al. in [29]. It
was first implemented in a VLSI design of an RSA cryptosystem [37]. It was
later enhanced by Guillermin [22] to support all arithmetic operations in Fp and
fast Elliptic Curve Scalar Multiplications (ECSM).



Algorithm 3 Base extension algorithm for k-th element of X [29]

Require: |X|bi for i ∈ {1, .., n}
Ensure: |X|ck

Precomputed: |B−1
i |bi , |Bi|ck , 1 ≤ i ≤ n, |MB|ck

1: ξi ← |xi ·B−1
i |bi for i ∈ {1, .., n}

2: ψ ← 0, z ← 0
3: for i = 0 to (n− 1) do
4: ψ ← ψ + ξi
5: ρ← bψ/2wc //ρ ∈ {0, 1}
6: ψ ← |ψ|2w
7: z ← z + (ξi · |Bi|ck )− ρ · |MB|ck
8: end for
9: return z

Fig. 1 shows our Cox-Rower implementation. The top-level structure is simi-
lar to the one proposed by [29]. It is consists of n similar Rower units performing
in parallel operations in one RNS channel of B or C. The Cox unit is only used
during the base extension (Algorithm 3) to generate the ρ. The Rower unit
normally consists of a multiplier and channel reduction logic, and serves as the
workhorse of both multiplication (operation × in (2)) and reduction (step 1, 3
in Algorithm 2 and step 1, 7 in Algorithm 3). The Cox-Rower is driven by a mi-
crocoded sequencer, and the sequencer can be easily reprogrammed to provide
support for different algorithms.

While the basic structure of our design resembles the Cox-Rower architecture
in Guillermin’s ECC processor [22], our architecture has an optimized pipeline
structure and a more aggressive memory organization specifically designed for
pairing support.

4.2 Cox-Rower Parametrization for Pairing

First we need to parametrize the Cox-Rower to support the pairings on the three
curves defined in Section 2.2. Popular Altera and Xilinx FPGAs have embedded
18× 18 multipliers or even 25× 18 multipliers (Virtex-5 and higher). Moreover,
a full 36× 36 multiplier can be built by efficiently combining several such small
multipliers. It is thus natural to select w=18 or w=36. For the implementation
of BN126 or BN128, w=36 gives the best trade-off. Indeed the gain in frequency
brought by smaller multipliers and adders does not compensate the necessary
cycle surplus of reductions. The parameter n can then be set to 8 for BN126

and BN128, and 19 for BN192. Because of our chosen arithmetic (see Section 6),
the value α defined in Section 3.1 reaches 198 for all the curves. The worst case
is reached during the schoolbook multiplication in Fp12 . One can verify that,
in order to have MB > αp, w=33 is enough to support BN126 and w=34 for
both BN126 and BN128. For BN192, w is set to 35. In this architecture, we used
the same method to select bases as in [22], with pseudo-Mersennes of the form
ti = 2w − εi, ti ∈ B ∪ C and εi positive.



An adaptation of Guillermin’s architecture is necessary to provide pairing
support. As the number of local variables and precomputations is much larger
for pairings than that of ECSM (in fact, the Miller’s loop has a built-in ECSM),
we use a single triple port RAM of 256 words instead of the ROM and a group of
16 registers to store precomputed values and temporary results. This is enough
to support all curves listed in Section 2.2.

Fig. 1. Design I: architecture of the Cox-Rower and its pipeline structure
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4.3 Pipeline Architecture

Our goal is to keep the maximal frequency already available in [22]. Additive
hardware must be carefully introduced, to keep the critical path under control.
On the other hand, we can easily raise the pipeline depth without a lot of cycle
loss. Indeed, pairing computation has more parallelizable operations than classi-
cal elliptic curve scalar multiplication over Fp. The architecture in [37] and [22]
uses 2-stage and 5-stage pipelines, respectively. For the implementation of pair-
ings, we found that a pipeline of up to 10 stages can still be efficiently filled
during the whole pairing computation except for Fp inversion.

Based on Guillermin’s architecture, two accumulators are included in the
pipeline to efficiently support pairing computation. Fig. 1 shows the adapted
pipeline architecture. The first 4 stages perform |a×b|ti , where ti ∈ B∪C. We also
introduce shift and MUX units in the first 4 stages to compute |2×a×b|ti , which
are utilized to accelerate squarings in the extension fields. Three multipliers
(w ×w, w×(q+1) and (q+1)×q) are used, where q=dlog2 εie.

In the 6th stage we implemented two independent accumulators. They are
preceded by a subtracter (which computes |−a×b|ti) and a MUX in the 5th stage.
The output of the first 4 stages can then be independently added, subtracted
or ignored by both accumulators. These two accumulators, together with the
use of tower extensions, save a lot of cycles during the pairing computation. See
Section 6 for details.

On this architecture, an RNS multiplication costs 2 cycles and the results can
be accumulated immediately. An RNS reduction costs 2n+3 cycles as previously
described in [22].

5 Design II: Hardware/Algorithm Co-optimization

In this section, we propose an optimized design that achieves an even higher
throughput. The improvement comes mainly from two tricks: a set of good bases
that admits a less-expensive base extension, and a fine-tuned pipeline structure
that allows a higher frequency.

5.1 Base Selection Revisited

The core observation here is that the complexity of base extension can be reduced
if the moduli in the two bases are close to each other. The base extension is the
most computational expensive operation in the RNS Montgomery algorithm. It
requires n2 times of w×w multiplications. Indeed, (5) can be written as a matrix
multiplication below. x′1

...
x′n

 ≡
 |B1|c1 · · · |Bn|c1

...
. . .

...
|B1|cn · · · |Bn|cn


 ξ1

...
ξn

− γ
 |MB|c1

...
|MB|cn

 (6)



Note that the elements in the matrix, |Bi|cj , 1 ≤ i, j ≤ n, are constants and
are generated as follows:

|Bi|cj =

∣∣∣∣ n∏
k=1,k 6=i

bk

∣∣∣∣
cj

=

∣∣∣∣ n∏
k=1,k 6=i

(bk − cj)
∣∣∣∣
cj

(7)

Define B̃i,j :=
∏n
k=1,k 6=i(bk − cj). When bk and cj are close to each other,

the difference bk− cj is small. In practice, |B̃i,j | could be much smaller than |cj |
if n is relatively small. Note that using |Bi|cj or B̃i,j makes no difference in the
final results due to the channel reduction on the products.

Furthermore, B̃i,j for 1 ≤ i, j ≤ n will be predictably divisible by 2n−2 if cj
is odd. Consider the two bases B = {b1, b2, · · · , bn} and C = {c1, c2, · · · , cn}.
Since there is at most one even number in B∪C, (bi− cj) is divided by 2 unless

bi or cj is even. In practice, B̃i,j can have more than n− 2 zero bits in the least
significant bits (LSBs). To shrink the operand size of the matrix multiplications,
we can use truncate the least significant zeros of B̃i,j , and restore the correct

results by a simple left-shift. We denote B̃′i,j the B̃i,j after truncation.
Considering the size of p and the Cox-Rower architecture, we again select

n = 8 and thus bi (and cj) close to 233. The selection of moduli also takes into

account the size of B̃′i,j for 1 ≤ i, j ≤ n. The following 16 moduli (w = 33) were
selected as the bases.

B = {2w − 1, 2w − 9, 2w + 3, 2w + 11, 2w + 5, 2w + 9, 2w − 31, 2w + 15},
C = {2w, 2w + 1, 2w − 3, 2w + 17, 2w − 13, 2w − 21, 2w − 25, 2w − 33}.

After applying the truncation of zero bits, we manage to reduce the bitlength of
all |Bi,j | (actually, B̃′i,j) from standard 34 to 25. While this complexity reduc-
tion seems negligible, it admits notable savings in hardware design. A detailed
analysis of the base selection is given in Appendix A.2.

5.2 A Fine-tuned Rower for Pairing Computation

Our refinement focuses solely on the design of Rowers. Fig. 2(c) shows the
overview of a Rower. It consists of a dual mode multiplier, 3 accumulators,
a channel reduction module, a channel adder, a triple port RAM for multiplier
inputs and a RAM for adder inputs.

Dual mode multiplier The multiplier in the Rower is built to support the
bases selected in Section 5.1. There are two types of multiplication executed
in an RNS multiplication: 34×34 multiplication (step 1, 3 of Algorithm 2) and
25×35 multiplication (step 1, 7 of Algorithm 3). The DSP slices in recent Xil-
inx FPGAs are made of a signed 25×18 bit multiplier, a 17-bit left shifter, and
an accumulator. The dual mode multiplier is built with four DSP slices, which
supports either 34×34 unsigned multiplication or two signed 35×25 multiplica-
tions in parallel. Fig. 2(a) illustrates the structure of the dual mode multiplier.



Fig. 2. The fine-tuned Rower architecture
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For pairing computation, multiplication by small constants (2, 3, 6) is widely
employed. Therefore, a constant multiplier is also included in the pipeline.

Because two multiplications are executed simultaneously in the base exten-
sion, the number of cycles to perform the Cox-Rower algorithm (Algorithm 3)
is reduced from n to n/2. This is a significant speedup of the base extension.

Other optimizations The architecture of channel reduction is shown in Fig. 2(d).
As the Hamming weights of all the εi are either equal to or less than 3 in non-
adjacent form, multiplication by εi can be realized by 4 adders instead of mul-
tipliers. In order to maintain a high operating frequency, we use a three-stage
pipeline to realize the channel reduction.

To achieve the maximum usage of the multiplier, a separate adder together
with a dedicated RAM is included. Because of the lazy reduction inside the
Rower, the write port of RAM0 is not always occupied by the multiplier. There-
fore, the addition and the multiplication can run in parallel. While most of the



additions in the pairing computation are performed by the accumulators, the
separate adder is useful in point additions and doublings.

While this architecture requires less cycles for reduction than Design I, it is
less scalable. Indeed, in order to support larger p, we need to choose larger n.
The bitlength of Bi,j increases quickly when n goes up, and two multiplications
in parallel becomes impossible on the current Rower.

6 Scheduling the Pairing Algorithm

In this section we present the implementation choices for every step of the pairing
computation.

6.1 Arithmetic in Fp2 : Back to the Schoolbook Method

Karatsuba and derived interpolation methods have been used intensively in field
operations in the literature to save the expensive multiplication [3, 8, 23, 42].
Karatsuba uses 3 instead of 4 multiplications at the cost of 3 extra additions.
In a normal positional number system, this method saves computation power,
as multiplications are much more expensive than additions. However, in RNS,
the complexities of a multiplication and an addition are the same. Hence, the
schoolbook method involves less operations (counting both additions and mul-
tiplications) and is preferred. On both architectures, a full Fp2 multiplication
finishes in 8 cycles, and a squaring in only 6 cycles.

6.2 Arithmetic in Fp12 : Interpolation with Parsimony

Let X = {x1, · · · , x12}, Y = {y1, · · · , y12} and Z = X ×Y ∈ Fp12 . To accelerate
Fp12 arithmetic, we aim to execute only once xi×yj , for all {i, j} ∈ {1, · · · , 12}2.
As i2=−1 and γ6=(1 + i), the result of xi × yj is either added to or subtracted
from at most two components of Z. This is the reason for the presence of two
independent accumulators. Moreover, the result of the multiplication can be
multiplied by 2 on the fly before it is accumulated, which speeds up the squaring
in Fp12 .

We estimate if the interpolation techniques at higher levels may save cycles
or not. We exclude the reduction step, therefore the cycle count is equivalent on
the flexible as well as the optimized design. We only consider Karatsuba in Fp12
over Fp6 which is the best case for these techniques (interpolation at other levels
Fp12/Fp4 , Fp6/Fp2 or Fp4/Fp2 would give worse results). Four different types of
multiplications and squaring are needed during pairing, each one requiring a
different algorithm:

– Squaring during the Miller loop: the operand of this squaring has no specific
structure. We propose to use schoolbook squaring. Thanks to the multipli-
cation by 2 included in the pipeline of both Design I and Design II, a squar-
ing costs 156 cycles. The interpolation on Fp12/Fp6 leads to the following



formula: (XH + ΓXL)2 =
(
(XH +XL)(XH + Γ 2XL)− (1 + Γ 2)XHXL

)
+

Γ (2XHXL) (with XH , XL ∈ Fp6). We found no method to go below 156
cycles on both designs.

– Multiplication by the line in the Miller loop: half the values of B are equal
to 0, therefore the schoolbook multiplication costs 144 cycles. Interpolation
techniques do not manage to take the advantage of the half size operand.

– Squaring during final exponentiation: during the hard part of FE, the operands
to be squared are in GΦ6

(Fp2). We use the formulae given in [21] (Algorithm
A.1). On Design I, we need 84 cycles to implement it. This approach is much
more efficient than interpolation techniques. 5

– Multiplication during final exponentiation: Without counting pipeline bub-
bles, Karatsuba requires 278 and 254 cycles on Design I and Design II,
respectively, while the schoolbook method requires 288 on both. Note that
there are only 20 such multiplications in the whole pairing for BN126, and
the savings are really limited. Because of the moderate gain and the compli-
cation brought to the sequencer, we decided not to implement it.

6.3 Fp Inversion

In the final exponentiation of pairing, an Fp12 inversion is required. It can be done
with only one inversion, 35 reductions and additional multiplications/additions
in Fp [14, 23], but the remaining inversion in Fp is very expensive. Since com-
parison in RNS is difficult, inversion through exponentiation (X−1 ≡ Xp−2 mod
p) is used. For this operation, we use a simple square and multiply algorithm
with least significant bit first. It is more memory consuming, but it allows to
perform multiplications in parallel. On a pipelined datapath, LSB-first exponen-
tiation is more efficient than the MSB-first method. In total, an inversion needs
blog(p)− 1c squarings and many multiplications, but the cost of multiplications
is hidden in the pipeline.

6.4 Higher Level Scheduling

Based on the operation over Fp and its extension fields, we are ready to imple-
ment the whole pairing computation. The following two points are important to
efficiently utilize the datapath and to have limited memory usage:

– control of the number of local variables to limit the size of RAMs;
– control of the dependency between operations, to avoid pipeline bubbles.

For the first point, the step which requires the most live local variables is in the
hard-part of the final exponentiation. We use the algorithm described by Scott
et al. [43], which is to date the fastest way to compute the hard-part (Algo-
rithm A.1). To keep its full power while limiting the number of local variables

5 More recently, Karabina introduced a compressed form for elements in Fp12 which
require less operations to be squared [3, 28]. Unfortunately, this method involves
extra inversions so that it is not suitable for our designs.



(with a classical register allocation technique) we slightly rearranged their orig-
inal formulae. For the second point, excluding the Fp inversion where idle states
cannot be avoided, the most constrained part is the Fp2 arithmetic in the Miller
loop. Therefore we rearranged the projective coordinates addition and doubling
formulae to emphasize the inherent parallelism. Formulas can be found in Al-
gorithm 4 and 5 in appendix. On both architectures, we managed to eliminate
almost all pipeline bubbles in the Miller loop. Idle states on the multiplier re-
main less than %1 of the time on both architectures in the pairing computation,
excluding the Fp inversion.

7 Implementation Results and Analysis

7.1 Area

The prototype of the proposed pairing coprocessors were implemented on com-
mercial FPGAs. Table 1 gives the logic utilization of both designs.

Design I We synthesized the first design for n = 8 on three different FPGAs :

– EP2C35: A low cost (less than $100) 65 nm node Altera FPGA. It is designed
for industrial series production;

– EP2S30: A 65 nm node high end series of Altera. It is picked for the sake of
comparison with the Xilinx Virtex-4 used in [15].

– EP3SE50: A 40 nm node high end FPGA. Note that it is the smallest FPGA
of the series. BN192 (n = 19) is also implemented on this device.

The area consumption is given in ALM, the equivalence of the Xilinx Virtex-4
slice, and in LE for the Cyclone, which can be considered as a simple 4× 4 LUT
with carry chain and registers. We refer the reader to [1] for details.

We let the synthesizer decide how to implement multiplications (with speed
constraints). Note that this choice lead to the maximal use of DSP blocks. We
used also embedded RAMs: the RAM of each Rower is built the M4k or M9k
(depending on the FPGA). We gave no instructions to the design suite for the
implementation of the sequencer (containing 20 kB microcode), therefore they
were placed in the big available memories. The same design provides support for
the two curves defined in 2.2, with the only difference being the content of the
RAM blocks (precomputed values and the sequencer).

Design II Design II is implemented on a Xilinx Virtex-6 XC6VLX240T-2
FPGA, which embeds 25×18 DSP slices. As there are 8 Rowers and each Rower
contains 4 DSP slices, the total number of DSPs is 32. Data RAMs used in
each Rower are implemented with distributed memory blocks. The block RAMs
(BRAMs) serve as the microcode sequencer. Thanks to the fine-tuned pipeline,
the coprocessor can operate at 250MHz.



Table 1. Logic Utilization

n Device Freq. Multipliers Logic Data Sequencer
Elements Memory

Design I

Cyclone II 91 MHz 35 18-bit Mult. 14274 LE 32 M4k 35 M4k
8 Stratix II 165 MHz 72 DSP18el 4227 ALMs 32 M4k 1 M512

Stratix III 165 MHz 72 DSP18el 4233 ALMs 16 M9k 1 M144 +2 M9k
19 Stratix III 131 MHz 171 DSP18el 9910 ALMs 38 M9k 1 M144 +2 M9k

Design II 8 Virtex-6 250 MHz 32 DSP48E1s 7032 Slices - 45 18Kb BRAMs

7.2 Performance

Table 2 gives number of cycles used by the sub-functions used in optimal ate
pairing on both Design I and Design II. Due to the carefully selected bases and
dual mode multiplier, Design II achieved a lower cycle count. The improvement
mainly comes from the speedup of RNS reduction: 19 cycles on Design I com-
pared to 12 cycles on Design II when n = 8.

7.3 Comparison and Discussion

Table 3 lists the performance of software and hardware implementations re-
ported in recent literature. Both Design I and II achieve a better performance
than previous hardware implementations [16,19,27]. Due to the use of different
platforms, a fair comparison is difficult. Nevertheless, compared with the design
of [16] which also uses Virtex-6, Design II achieves a speedup of factor 2. The
software implementations achieve very high performance. Although we did not
break the software record, the speed of our design is already close to that of
software.

The speedup comes mainly from three improvements. First, RNS multiplica-
tion has lower complexity than traditional integer multiplications. For example,
an 256-bit multiplication on RNS involves 16 33×33 multiplications, while a 256-
bit integer multiplication requires 27 32×32 multiplications using Karatsuba’s
method. Second, the use of lazy reduction reduces the cost of multiplications in
extension fields. Third, RNS representation is very parallelization-friendly. In-
deed, it only involves relatively small numbers (no long carry propagation) and
always uses data in the local memory (no inter-core communication overhead).
The performance of both Design I and II has demonstrated the efficiency of RNS
in pairing implementations, and confirms with actual implementations on FPGA
the analysis of [14].

Table 2. Cycle count in one optimal pairing

Curve Mul./Red. 2T and T+Q and f2 f · g Miller’s Final Total
in Fp g(T,T )(P ) g(T,Q)(P ) Loop Exp.

BN126 2 / 19 507 581 384 372
86,530 89,581 176,111

Design I BN128 92,480 94,101 192,502
BN192 2 / 41 947 1153 648 636 401,565 388,284 789,849

Design II BN126 2 / 12 320 430 301 289 61,116 81,995 143,111



Table 3. Performance comparison of software and hardware implementations of pair-
ings

Design Pairing Security Platform Algorithm Area Freq. Cycle Delay
[bit] [MHz] [×103] [ms]

126

Altera FPGA 14274 LE
91 176 1.93

(Cyclone II) 35 mult.

Design I optimal ate
Altera FPGA RNS 4233 A

165 176 1.07
(Stratix III) Montgomery 72 DSPs

192
Altera FPGA 9910 A

131 790 6.03
(Stratix III) 171 DSPs

Design II optimal ate 126
Xilinx FPGA RNS 7032 slices

250 143 0.573
(Virtex-6) Montgomery 32 DSPs

[16]
ate

128
Xilinx FPGA Hybrid 4014 slices

210
336 1.60

optimal ate (Virtex-6) Montgomery 42 DSPs 245 1.17
Tate 1,730 34.6

[19] ate 128 Xilinx FPGA Blakley 52k Slices 50 1,207 24.2
optimal ate (Virtex-4) 821 16.4

Tate 11,627∗ 34.4
[27] ate 128 ASIC Montgomery 97 kGates 338 7,706∗ 22.8

optimal ate (130 nm) 5,340∗ 15.8

[15]
Tate over

128
Xilinx FPGA 4755 Slices

192 429 2.23F35·97 (Virtex-4) - 7 BRAMs

[2]
optimal Eta

128
Xilinx

-
4518

220 774∗ 3.52
over F2367 Virtex-4 Slices

[23]
ate

128 64-bit Core2 Montgomery
-

2400
15,000 6.25

optimal ate 10,000 4.17
[20] ate 128 64-bit Core2 Montgomery 2400 14,429 6.01
[36] optimal ate 128 Core2 Quad Hybrid Mult. - 2394 4,470 1.86
[8] optimal ate 126 Core i7 Montgomery - 2800 2,330 0.83
[3] optimal ate 126 Phenom II Montgomery - 3000 1,562 0.52

[4] ηT over F21223 128 Xeon - - 2000 3,020 1.51
[9] ηT over F3509 128 Core i7 - - 2900 5,423 1.87
[2] opt. Eta F2367 128 Core i5 - - 2530 2,440 0.96

∗ Estimated by the authors.

8 Conclusions

In this paper, we demonstrated that RNS together with lazy reduction is a really
competitive approach for pairing computation in hardware. Thanks to the use
of RNS, both datapath and memory can be nicely parallelized. The results show
that both designs we proposed achieve higher speed than all previous designs in
hardware. The fastest version computes an optimal ate pairing at 126-bit security
level in 0.573 ms, which is 2 times faster than all previous hardware implemen-
tations. Moreover, we also reported the first hardware pairing implementation
at 192-bit security level.

For future work, we would like to further optimize the pipeline structure
to achieve higher speed, particularly for 192-bit optimal pairing. We would like
implement using RNS a pairing processor that provides 256-bit security. For
these levels, BN curves may become less competitive, and have to be compared
to other approaches such like KSS curves [26]. Also, as shown in Section 5,
carefully selected RNS bases can help to reduce the complexity of RNS base
extension. However, it is not clear how much we can benefit from it when the



number of channels is relatively large, and this is definitely part of the design
exploration for the implementation of pairings at higher security levels.
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A Appendix

A.1 Sub-routines for Optimal Ate Pairing

Algorithm 4 dbl, doubling step

Require: T = (XTγ
2, YTγ

3, ZT ) ∈ E(Fp12) with XT , YT and ZT ∈ Fp2 , P =
(xP , yP ) ∈ E(Fp).

Ensure: The point 2T and the evaluation in P of the equation of the tangent line in
T to the curve up to multiplicative factors in Fp2 .

1: B ← Y 2
T , C ← 3Z2

T , D ← 2XTYT

2: F ← B + 3iC,G← B − 3iC,H ← 3C, t3 ← B + iC,A← X2
T , E ← 2YTZY

3: X2T ← DF, Y2T ← G2 + 4HC,Z2T ← 4BE, t0 ← EyP , t1 ← −3AxP
4: return (X2Tγ

2, Y2Tγ
3, Z2T ), t0 + t1γ + t3γ

3

These algorithms are specific to the BN curve y2 = x3 + 2 and the tower
of extensions given in Subsection 2.1. Jacobian coordinates are usually used for
pairing computations [8, 23, 36] but projective coordinates are more interesting



in our case [3, 13]. Using the degree 6 twist on the curve, the point Q can be
written as (xQγ

2, yQγ
3) with xQ and yQ ∈ Fp2 . The “doubling” step of the

Miller loop consists of two stages: the doubling of a temporary projective point
T = (XTγ

2, YTγ
3, ZT ) with XT , YT and ZT ∈ Fp2 and the evaluation in P of the

tangent line in T to the curve. This is given in Algorithm 4 where the classical
formulae are rearranged in a way to highlight the reductions (every temporary
result needs a reduction except F,G,H and t3), and the inherent parallelism
in the local variables (each line can be implemented in random order). This
is important to avoid idle states in Cox-Rower. The total cost of this step is 4
multiplications, 5 squarings, 8 reductions in Fp2 and 2 modular multiplications of
an element of Fp2 by an element of Fp. Note that multiplications like 2XTYT can
be transformed into squaring of (XT + YT ) at the cost of some extra additions
[3, 13], thus it is not interesting for our design. In the same way, the cost of
the addition step given by Algorithm 5 is 11 multiplications, 2 squarings, 11
reductions in Fp2 and 2 modular multiplications of an element of Fp2 by an
element of Fp.

Algorithm 5 add, addition step

Require: T = (XTγ
2, YTγ

3, ZT ) ∈ E(Fp12) with XT , YT and ZT ∈ Fp2 , Q =
(xQγ

2, yQγ
3) ∈ E(Fp12), P = (xP , yP ) ∈ E(Fp).

Ensure: The point T +Q and the evaluation in P of the equation of the line passing
through T and Q up to multiplicative factors in Fp2 .

1: E ← xQZT −XT , F ← yQZT − YT

2: E2 ← E2, F2 ← F 2

3: A← F2ZT − 2XTE2 − EE2, B ← XTE2, E3 ← EE2

4: XT+Q ← AE,ZT+Q ← ZTE3, t3 ← FxQ − EyQ
5: YT+Q ← F (B −A)− yQE3, t0 ← EyP , t1 ← −FxP
6: return (XT+Qγ

2, YT+Qγ
3, ZT+Q), t0 + t1γ + t3γ

3

Algorithm 6 hard-part, hard part of the final exponentiation according [43]

Require: f ∈ Fp12 of order p4 − p2 + 1 , x = |u|.
Ensure: f (p4−p2+1)/` with p and ` as in 2.1.
{Computation of the yi}

1: y0 ← fpfp2fp3 , y1 ← fx, y3 ← yx1 , y5 ← yx3 , y4 ← yp5 , y6 ← y4y5
(

= fx3
(
fx3
)p)

2: y5 ← yp3 , y2 ← y−1
5 , y4 ← y1y2

(
= fx/

(
fx2
)p)

3: y2 ← yp5

(
=
(
fx2
)p2)

, y5 ← y−1
3

(
= 1/fx2

)
, y3 ← yp1 ((mx)p), y1 ← f−1

{Multi-addition chain for computing y0.y
2
1 .y

6
2 .y

12
3 .y

18
4 .y

30
5 .y

36
6 }

4: t0 ← y26 , t0 ← t0y4, t0 ← t0y5, t1 ← y3y5, t1 ← t1t0, t0 ← t0y2, t1 ← t21
5: t1 ← t1t0, t1 ← t21, t0 ← t1y1, t1 ← t1y0, t0 ← t20, t0 ← t0t1
6: return t0



Algorithm 7 Squaring during final exponentiation (hard-part) [21]

Require: A =
∑5

i=0 aiγ
i ∈ Fp12 with ai ∈ Fp2 , 0 ≤ i ≤ 5

Ensure: A2

A0 ← 3a20 + 3(1 + i)a23 − 2a0, A1 ← 6(1 + i)a2a5 + 2a1
A2 ← 3a21 + 3(1 + i)a24 − 2a2, A3 ← 6a0a3 + 2a3
A4 ← 3a22 + 3(1 + i)a25 − 2a4, A5 ← 6a1a4 + 2a5
return

∑5
i=0Aiγ

i

A.2 RNS Parameter Selection

Since p should be around 254 bits, we set n to be 8 and the moduli are chosen
near 233. We consider for i, j ∈[1,n] the following issues: (1) bitlength of |Bi|cj
and |Ci|bj ; (2) Hamming weight of bi and cj . A simple (bounded) exhaustive
search program returns the bases shown in Section 5.

We denote the bitlength of all B̃i,j in a length matrix, LB̃ , and the bitlength

matrix of all C̃i,j as LC̃ . For the selected bases, we have the following LB̃ and
LC̃ .

LB̃ =



23 20 21 20 21 20 18 19
22 20 22 20 21 20 18 19
25 23 23 22 23 22 21 22
25 24 25 26 25 26 23 28
29 30 28 28 28 28 28 27
32 33 32 31 31 31 33 31
32 33 32 32 32 32 34 32
33 33 33 32 33 33 37 32


, LC̃ =



24 23 23 20 21 20 20 19
25 25 26 24 26 25 24 24
26 27 25 24 24 23 23 23
30 31 30 31 29 29 29 28
28 28 27 27 26 26 26 25
30 30 30 30 29 28 28 28
27 27 27 26 28 29 29 31
30 30 30 33 29 29 29 29


After truncating the least significant zeros, we get the following bitlength, de-

noted as LB̃′ and LC̃′ . Note that we applied the same truncation parameter for
all the numbers in the same row. The number of zeros truncated is chosen as

min{z(B1,j), z(B2,j), · · · , z(Bn,j)}

where z(Bi,j) gives the number of zeros at the LSBs of Bi,j .

LB̃′ =



23 20 21 20 21 20 18 19
12 10 12 10 11 10 8 9
16 14 14 13 14 13 12 13
15 14 15 16 15 16 13 18
17 18 16 16 16 16 16 15
20 21 20 19 19 19 21 19
19 20 19 19 19 19 21 19
19 19 19 18 19 19 23 18


, LC̃′ =



14 13 13 10 11 10 10 9
15 15 16 14 16 15 14 14
16 17 15 14 14 13 13 13
20 21 20 21 19 19 19 18
20 20 19 19 18 18 18 17
21 21 21 21 20 19 19 19
17 17 17 16 18 19 19 21
20 20 20 23 19 19 19 19


Now all of B̃′i,j and C̃ ′i,j are less than 25 bits, and they fit in one operand of

an FPGA DSP slice, while the standard 34-bit operands do not. In fact, in the
implementation we do not truncate more zeros as far as all elements in that row
fit in 25 bits.


