
Efficient Hashing using the AES Instruction Set

Joppe W. Bos1 and Onur Özen1 and Martijn Stam2

1 Laboratory for Cryptologic Algorithms, EPFL, Station 14, CH-1015 Lausanne, Switzerland
{joppe.bos, onur.ozen}@epfl.ch

2 Department of Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, United Kingdom

stam@cs.bris.ac.uk

Abstract. In this work, we provide a software benchmark for a large range of
256-bit blockcipher-based hash functions. We instantiate the underlying blockci-
pher with AES, which allows us to exploit the recent AES instruction set (AES-
NI). Since AES itself only outputs 128 bits, we consider double-block-length
constructions, as well as (single-block-length) constructions based on RIJNDAEL-
256. Although we primarily target architectures supporting AES-NI, our frame-
work has much broader applications by estimating the performance of these hash
functions on any (micro-)architecture given AES-benchmark results. As far as
we are aware, this is the first comprehensive performance comparison of multi-
block-length hash functions in software.

1 Introduction

Historically, the most popular way of constructing a hash function is to iterate a com-
pression function that itself is based on a blockcipher (this idea dates back to Ra-
bin [49]). This approach has the practical advantage—especially on resource-constrained
devices—that only a single primitive is needed to implement two functionalities (namely
encrypting and hashing). Moreover, trust in the blockcipher can be conferred to the cor-
responding hash function. The wisdom of blockcipher-based hashing is still valid today.
Indeed, the current cryptographic hash function standard SHA-2 and some of the SHA-
3 candidates are, or can be regarded as, blockcipher-based designs. In the 1980s, several
methods were proposed with an eye towards using the then-standard Data Encryption
Standard (DES) as the underlying primitive [40,28,14]. At present, the contemporary
Advanced Encryption Standard (AES [41]) is a more obvious choice instead.

A well-studied class of blockcipher-based hash functions are the PGV hash func-
tions (after Preneel, Govaerts and Vandewalle [48]), encompassing Davies–Meyer (DM)
and Matyas–Meyer–Oseas (MMO) as special cases. When based on a blockcipher op-
erating on n-bit blocks with k-bit keys, these functions compress k bits per blockcipher
call and they output an n-bit digest. The PGV hash functions are simple (low overhead)
and are provably secure in the ideal-cipher model [10]. Yet they suffer from one major
drawback: in order to achieve an acceptable level of collision resistance, one needs a
primitive operating on more than 160 bits. This rules out most existing blockciphers,
including AES (which operates on 128-bit blocks only).

As a remedy, double-block-length and more generally multi-block-length compres-
sion and hash functions were introduced. These are compression functions outputting



an rn-bit digest (for an integer r ≥ 2, r = 2 for the double-block-length case), even
though they are based on a primitive operating only on n-bit blocks. The longer digest
size opens up the possibility of collision resistance of 2n time (primitive evaluations)
even when using a relatively small primitive. Today, there is truly a wealth of suitable
blockcipher-based constructions to choose from and Table 1 gives an overview of the
constructions we consider. We do not consider all possibilities, for instance we omit
versions of GRØSTL, JH or SPONGE based on RIJNDAEL-256. As can be seen, we
instantiate the underlying blockcipher with either AES-128, AES-256 or RIJNDAEL-
256. The latter option allows us to consider single-block-length constructions achieving
a 256-bit digest (using an AES-related primitive).

Our choice of constructions includes several different design ideas and paradigms.
For years, most cryptographic hash function designs revolved around the same princi-
ple [49,40,14]: the Merkle-Damgård paradigm. In this cascaded mode of operation, the
main focus is to construct a secure and efficient compression function; these properties
are then inherited by the overall hash function. Later constructions started to deviate
from this paradigm, for instance by some form of strengthening [35,7] or by only tar-
geting security in the iteration [10,6].

A more fundamental design shift occurred in the way the blockcipher itself is used.
A blockcipher, operating on n bits with a k-bit key, can already be regarded as a com-
pressing primitive itself. This facilitates the transformation into a proper compression
function, but a disadvantage of using a blockcipher this way is that it requires frequent
re-keying, which tends to be expensive (see Section 2 for details). For this reason, there
have been substantial efforts in recent years to design permutation-based compression
functions. Obviously, given a blockcipher one can construct a permutation by simply
fixing the key (we focus on permutations with either n = 128 or 256 bits).

While the design and analysis of multi-block-length compression functions have
garnered significant attention, the focus in the literature seems squarely at security eval-
uation and theoretical notions of efficiency (expressed as the ratio of message blocks
compressed per blockcipher call). Although the latter is known to give only a coarse
indication of real-life efficiency, actual performance benchmarks, in hard- or software,
are normally left as future work. (A notable exception is the work by Bogdanov et
al. [11], who provide hardware benchmarks for some multi-block-length compression
functions in hardware using the lightweight blockcipher PRESENT as the underlying
building block.)

Our Contribution. In this work we bring together the mainly theoretical world of
compression function designs with the practical demand of fast implementations. In-
stantiating the blockcipher-based primitives with AES-128, AES-256, respectively
RIJNDAEL-256 (and their fixed-key versions to build permutations), we obtain hash
functions with a fixed 256-bit digest size. Apart from three constructions (LANE?,
LUFFA? and KNUDSEN–PRENEEL) all constructions have known proofs of security in
the ideal-cipher model (we refer to the full version of this work [12] for a more detailed
discussion on the security of our target constructions). The former SHA-3 candidates
LANE? and LUFFA? do not have security proofs, neither for collision resistance nor for
preimage resistance. We include them in our benchmark (with different building blocks)



Table 1. A brief taxonomy of the schemes considered. The number of rounds Nr is 10
for AES-128 and 14 for AES-256 and RIJNDAEL-256.

Blockcipher Variable-key Fixed-key
(dimensions) Constructions Constructions

AES-128 MDC-2, MJH, LP362
(k = 128, n = 128) PEYRIN ET AL.(I)

AES-256 ABREAST-DM, HIROSE-DBL,
(k = 256, n = 128) KNUDSEN–PRENEEL, MJH-DOUBLE, n.a.

QPB-DBL, PEYRIN ET AL.(II)

RIJNDAEL-256 DAVIES–MEYER LANE?, LUFFA?, LP231,
(k = 256, n = 256) SHRIMPTON–STAM

to illustrate their performance capabilities; KNUDSEN–PRENEEL is another exception
where a good collision resistance lower bound is still an open problem.

To the best of our knowledge, this is the first overview of software implementations
of the most studied and influential blockcipher- and permutation-based compression
and hash functions. The target designs (see also Table 1) have been implemented and
measured on an Intel Core i5 650 (3.20GHz) using C intrinsics to implement the var-
ious SS(S)E{2,3,4} and the recent AES instruction set (AES-NI) extensions [18,19].
Although measured on a single Intel architecture with AES-NI we expect the rela-
tive performance obtained to be representative for other Intel architecture families with
AES-NI support as well. The Intel compiler version 12.0.0 and GNU Compiler Collec-
tion (gcc) version 4.4.3 were used for code compilation. For each design we performed
specific optimizations to fully exploit AES-NI. The details are discussed in Section 3,
with Table 3 providing a summary of our findings.

The Choice for AES. Our choice for AES (and RIJNDAEL-256) is a natural one: it is
the official US and de facto world standard blockcipher. AES’ prime position has led
to a large body of research on AES, both on its security and implementation. Conse-
quently, AES runs very fast in hard- and software, making AES an obvious choice from
a performance perspective. The deal is sweetened further by the recent introduction of
AES-NI. Indeed, as reported in [19], one can achieve significant speed using the new in-
struction set (e.g. up to 1.3 cycles/byte on a single core Intel Core i7-980X for AES-128
in parallel modes). To benefit from synergy with AES and AES-NI in particular, several
SHA-3 candidates were instantiated by using some of AES’ components as well (e.g.
the AES round function), which was later demonstrated to indeed lead to fast hash-
ing [2]. Our goal here is to investigate the potential of AES-NI for fast hashing even
further by focusing on well-known blockcipher- and permutation-based (compression
function) designs that can be instantiated with AES (or more generally RIJNDAEL).

From a security perspective, AES remains unbroken as a blockcipher in the stan-
dard setting. It has survived many years of cryptanalysis and a practical break of this
cipher would have a significant impact on the cryptographic landscape. Nonetheless,
our choice for AES will not be without detractors as a consequence of recent related-
key attacks on AES [8,9]. The theoretical ramifications of a related-key attack to hash-
function security are still unclear. Any serious related-key attack undermines the as-



sumption that the blockcipher behaves ‘ideally’, but this need not lead to any deviant
behaviour of the hash function itself (especially if its proof uses the weaker unforgeable-
cipher model). Of course, in practice a related-key attack is often underpinned by some
other (well-defined) weakness and exploiting this weakness directly (ignoring the de-
rived related-key attack) might be more fruitful when attacking the hash function. For
instance, Khovratovich [24, Corollary 2] states unambiguously that “AES-256 in the
Davies–Meyer hashing mode leads to an insecure hash function” but later provides so-
lace by remarking that it is not known how the techniques used against AES-256 in
Davies–Meyer mode can be modified to attack double-block-length constructions (the
focus of this paper).

As a final remark, the timings we obtain evidently depend strongly on the number
of rounds used by AES. While one can argue that the number of rounds used should
be fine-tuned for each of the hash functions (increasing or decreasing, depending on
the perceived security margin), we believe that using AES as is will give the cleanest
comparison (and any changes might be considered contentious).

2 Preliminaries

The Blockciphers AES-128, AES-256 and RIJNDAEL-256. AES is a member of the
RIJNDAEL blockcipher suite [41]. It was standardized by the US National Institute of
Standards and Technology (NIST) after a public competition similar to the one currently
ongoing for SHA-3 [43]. AES operates on an internal state of 128 bits while supporting
128-, 192-, and 256-bit keys. The internal state is organized in a 4×4 array of 16 bytes,
which is transformed by a round function Nr times. The number of rounds is Nr = 10
for the 128-bit key, Nr = 12 for the 192-bit key, and Nr = 14 for the 256-bit key
variants. In order to encrypt, the internal state is initialized, then the first 128-bits of the
key are XORed into the state, after which the state is modifiedNr−1 times according to
the round function, followed by a slightly different final round (for the exact details see
the AES specification [41]). The larger state variant of AES, RIJNDAEL-256, operates
almost in the same way with a state size of 256 bits, a 256-bit key and Nr = 14 rounds.

Nine years after becoming the symmetric encryption standard, the only theoretical
attack on the full AES is restricted to the related key scenario and even then applies
only to the 192-bit [8] and 256-bit key versions [8,9]. So far no theoretical attacks on all
rounds of AES-128 are known. More cryptanalytic success has been achieved by using
the characteristics from the actual implementation of AES, e.g. cache attacks [60,3] can
recover an AES key in only 65 milliseconds (Tromer et al. [60] give a more detailed
survey of side-channel attacks against AES). However, side-channel analysis is far less
of a concern for hash functions (except for MACs based on hash functions, such as
HMAC) and we will blithely ignore the issue in this paper.
The AES Instruction Set (AES-NI). In the last decade, use of the single instruction,
multiple data (SIMD) paradigm has become a general trend in computer architecture
design. It enhances the speed of software implementations by offloading the compu-
tational work to special units which operate on larger data types, improving overall
throughput. In 1999, Intel introduced the streaming SIMD extensions (SSE), a SIMD
instruction set extension to the x86 architecture. One of the latest additions to these



extensions is the AES instruction set [18,19] available in the 2010 Intel Core processor
family based on the 32nm Intel micro-architecture named Westmere. This instruction
set will also be supported by AMD in their next-generation CPU “Bulldozer”. (Note
that previously several instruction set extensions have been suggested towards improv-
ing the performance of AES [58,5,59].) AES-NI does not only increase the performance
of AES (as well as any version of RIJNDAEL) but also runs in data-independent time and
by avoiding the use of any table lookups the aforementioned cache attacks are avoided.
This instruction set consists of six new instructions. At the same time, a new instruc-
tion for performing carry-less multiplication is released in the CLMUL instruction set
extension. We can summarize the new instructions as follows [18,19,20]:

• AESENC and AESDEC perform a single round of encryption, resp. decryption.
• AESENCLAST and AESDECLAST perform the last round of encryption resp. de-

cryption.
• AESKEYGENASSIST is used for generating the round keys used for encryption.
• AESIMC is used for converting the encryption round keys to a form usable for

decryption using the Equivalent Inverse Cipher.
• PCLMULQDQ performs carry-less multiplication of two 64-bit operands to an 128-

bit output.

Many of the constructions targeted in this paper require the computation of more than
one call to a blockcipher (with or without a fixed-key). If these two or more calls can be
run concurrently (while possibly sharing the key expansion), a performance gain can be
expected as AES round instructions are pipelined and can be dispatched theoretically
every 1-2 CPU clock cycles, provided that all data is available on time and there is no
dependency between such subsequent calls [18]. Since the latency of a single round
instruction is 5 cycles [17], running multiple independent blockciphers increases the
overall throughput. The same reasoning holds when implementing a single RIJNDAEL-
256 component. This sibling of AES works on an internal state of 256 bits and it is
implemented using two data-independent calls to AESENC.

In the context of encryption, several performance results of AES exploiting AES-
NI have been presented [19,20,37]. These works show that using AES-NI tends to give
very fast implementations when multiple blockcipher calls can be made in parallel (in-
cidentally, they also show that the optimal way to interleave the instructions is hard
to pin down). However, they are of limited use to predict the runtimes of AES-based
hash functions as re-keying tends to be far more frequent in the hashing scenario than
in the encryption one. Indeed, for blockcipher-based compression functions considered
in this paper, the key-scheduling needs to be performed for every compression function
evaluation and that results in a significant overhead. For this reason, we start with a
detailed performance overview of AES and RIJNDAEL-256 that takes re-keying into
account. Table 2 contains performance details when running multiple key expansions,
encryptions or a combination of the two. In order to conduct these experiments we
created a code generator which, when given a number of x key expansions and y en-
cryptions, tries different strategies to implement these functionalities. The performance
numbers presented in Table 2 are an average over millions of runs. For comparison, we
also included timings from Gueron’s hand-crafted assembly code [19,20] as used in the
Intel AES-NI sample library. (Note that, roughly speaking, our measure 1E coincides



Table 2. Our experimental results on the encryption and key expansion routines for
AES-128 (A128), AES-256 (A256) and RIJNDAEL-256 (R256). The entries show the
results in cycles per operation together with the compiler, icc (i) or gcc (g), resulting
in the fastest code. In the table K and E denote the key expansion and the encryption
respectively. The upper part of the table shows the results of several independent key
expansions and encryption operations that are called in parallel. In the lower part, xKyE
denotes x independent key schedules followed by y independent encryptions. If x = 1
all encryptions use the same expanded key, if x = y all encryptions use a different
expanded key. For comparison, the performance details of the Intel AES-NI sample
library on our platform are stated as well.

Operation
1K 2K 3K 4K 1E 2E 3E 4E

A128 97.7 (g) 126.1 (g) 163.4 (g) 226.7 (i) 60.2 (i) 60.6 (i) 67.7 (i) 84.7 (i)
A256 125.5 (g) 147.2 (g) 202.6 (i) 287.2 (i) 82.0 (i) 83.0 (i) 93.6 (i) 113.9 (i)
R256 291.6 (g) 316.6 (g) 412.6 (g) 570.3 (i) 182.9 (i) 219.2 (g) 281.4 (i) 352.6 (g)

1K1E 2K2E 3K3E 4K4E 1K2E 1K3E 1K4E
A128 107.4 (g) 149.2 (g) 200.0 (g) 269.9 (g) 120.1 (g) 135.3 (g) 137.8 (g)
A256 152.8 (g) 178.1 (g) 249.7 (g) 337.9 (g) 154.0 (g) 158.4 (g) 164.9 (g)
R256 285.3 (i) 407.5 (i) 620.5 (i) 867.3 (i) 312.0 (g) 373.3 (i) 463.7 (g)

Intel AES-NI Sample Library
1K 1E 4E 1K 1E 4E

A128 98.8 62.1 79.6 A256 124.4 84.6 108.8

with AES run in a chaining mode such as CBC or CFB, whereas AES run in a parallel
mode such as CTR or ECB is closer to the best time we get for xE, see Table 2 for the
performance details).

Finite Field Arithmetic (F2m Full/Scalar Multiplication). Some of the compression
function designs we consider require finite field multiplication, in particular in F2128 and
F2256 . There is some freedom in how to represent the fields—the security proofs for the
hash functions are independent of this choice—so we opt for the usual representation
of elements in F2m as polynomials over F2 reduced modulo an irreducible polynomial
of degree m. We use x128 + x7 + x2 + x + 1 as irreducible polynomial for m = 128
and x256 + x10 + x5 + x2 + 1 for m = 256.

Multiplication in F2128 is implemented using the code examples as described in [20]
in the setting of implementing the Galois counter mode. This is realized by using the
new instruction PCLMULQDQ to implement the multiplication; this instruction calcu-
lates the carry-less product of the two 64-bit input to an 128-bit output. Note that this
instruction has a latency of 12 cycles and can be dispatched every 8 cycles [17]. Hence,
compared to other SSE instructions, some of which can be dispatched in pairs of three
every clock cycle, this instruction might not always be the optimal choice from a perfor-
mance perspective. An example where the usage of the PCLMULQDQ instruction might
not lead to a speed-up is in the case of (field) multiplication by x. This can be com-
puted by shifting the input one position to the left (the polynomial multiplication by x)
and performing a conditional XOR with the reduction polynomial (depending on the bit



shifted out). Unfortunately, the SSE instruction set has no bit shift operation shifting the
full 128-bit vector. Shifting the two 64-bit, four 32-bit or eight 16-bit in SIMD fashion
is possible but the bits shifted out locally are lost. We outline a novel approach (with
the SSE instruction in parentheses) to obtain the desired result in the setting of F2128

where we exploit the fact that the second largest exponent of the reduction polynomial
is < 32 (which also holds in the setting of F2256). Given an input A we

1. swap the two 64 bit halves of A to t (PSHUFD),
2. create a mask m (either all ones or zeros in each 64-bit half) depending if bits 63

and 127 of t are set (PCMPGTQ),
3. use m to extract the correct 64-bit parts of a precomputed constant [1, R] in t

(PAND),
4. shift both 64-bit parts of A left by one bit and store this in s (PSLLQ),
5. perform the reduction plus restoring the local carry bit by combining s and t (PXOR).

Here R denotes the hexadecimal representation of the reduction polynomial, excluding
the term with the highest exponent, stored in a 64-bit word. Note that this computation
might be sped up, depending on the setting, in the following way. Replace step 1 by a
byte shuffle (PSHUFD) which moves bits 63 and 127 to bit position 95 and 31 respec-
tively and set the other 14 bytes to zero. The resulting vector, viewed as four 32-bit
signed integers, contains two 32-bit words where only the sign bit may be set. Now step
2 can be replaced by using an arithmetic right shift of 31 positions (PSRAD) creating
the mask by using the fact that this instruction shifts in the sign bit. In order to over-
come this instruction set limitation (no 128-bit single-bit shift instruction) we tried if
field multiplication by x8 is faster. Now the input needs to be shifted eight bits, which
can be performed using a single byte-shuffle instruction. The reduction, a subtraction
by i · R, where 0 ≤ i < 28, depends on the eight bits shifted out. Since the reduction
polynomial is constant we can precompute the 256 multiples and use the shifted-out
byte as in index for this look-up table. We found that, using our implementation of both
approaches, the performance of both field multiplications, by x and x8, are comparable
with a slight advantage when multiplying by x.

3 Implementations of the Target Algorithms

Table 3 contains an overview of the benchmarks we obtained. The measurements have
been carried out analogously to [19]; i.e. with the help of the time stamp counter which
is read using the RDTSC instruction. The presented performance results are an average
over thousands of times compressing a random 4KB message. In the sequel, we pro-
vide separate treatments for constructions based on a (variable-key) blockcipher versus
a permutation (in which case we fix the key of the blockcipher). Due to space limita-
tions, we refer to the original works for exact specifications of the various algorithms
(references, including those relevant for security results, are given in Table 3; see also
the full version [12] for a more detailed analysis and illustrated specifications).

Two of the designs considered are based on past SHA-3 candidates. For those,
we instantiate the underlying permutation by (fixed-key) RIJNDAEL-256, rather than
the originally submitted permutation. For compression functions supporting more than



Table 3. The achieved speeds (in cycles per byte) using the AES-NI for the designs
considered in this work. Also mentioned are the number of b bytes which are absorbed
per compression function call and how many unique key scheduling calls are made (see
Table 1 for the primitives employed). Predicted speed estimates are based on the results
from Table 2. The last column provides additional references.

Algorithm b
Key

Scheduling
Predicted

Speed Range
Achieved

Speed
Security

Reference
ABREAST-DM [28] 16 two 11.1 + ε 11.21 [16,29,33]
DM [39] 32 one [6.8, 10.2] 8.69 [48,10]
HIROSE-DBL [21] 16 one, shared 9.6 9.82 [21,27]
KNUDSEN–PRENEEL [26] 32 four 10.6 10.58 [44,46]
LANE? (Sec. 3) 64 fixed 11.7 11.71 [22]
LP231 [51,52] 32 fixed 12.6 + ε 13.04 [51,52,30]
LP362 [51,52] 16 fixed 11.8 + ε 12.09 [51,52,31]
LUFFA? (Sec. 3) 32 fixed 8.8 + ε 10.22 [15]
MDC-2 [13] 16 two [9.3, 11.7] + ε 10.00 [57,25]
MJH [32] 16 one, shared 6.6 + ε 7.45 [32]
MJH-DOUBLE [32] 32 one, shared 4.1 + ε 4.82 [32]
QPB-DBL [55] 16 one 9.5 + ε 14.12 [55]
PEYRIN ET AL.(I) [47] 16 three, shared [12.5, 16.3] 15.09 [53]
PEYRIN ET AL.(II) [47] 32 three, shared [7.8, 10.7] 8.75 [53]
SHRIMPTON–STAM [54] 32 fixed 12.6 12.39 [54]

256-bit output (e.g. KNUDSEN–PRENEEL and LUFFA?) an output transformation (af-
ter MD-iteration) can be used to reduce the final output to 256-bit, however we neither
implemented nor timed this.

3.1 Blockcipher-Based Constructions

Davies–Meyer (DM). Davies–Meyer (DM) [39] is a single-block-length compression
function design. It is one of the most popular ways of creating a secure hash func-
tion using a blockcipher: many cryptographic hash functions, including MD5 [50] (for
n = 128, k = 512) and SHA-256 [42] (for n = 256, k = 512), follow the DM de-
sign philosophy. DM is one of the most efficient PGV-type compression functions as
it allows to run several key schedules independently in the MD-iteration. In our im-
plementations, we exploit this feature; yet we also study other possible optimizations.
Namely, these are the three flavors of DM that we have considered in our benchmark:

1. Standard iterative approach: compression function calls are made sequentially for
each step in the MD-iteration. The compression function evaluation starts with the
key schedule and continues with the encryption call. Independent key schedule and
encryption rounds are interleaved to get more efficient results.

2. Partially pipelined: the encryption call of the current round and the key schedule of
the next round are being processed concurrently.

3. Fully pipelined: j key schedules are called in parallel for some (integer) j > 1
followed by j iterative encryption calls . Several experiments were run for varying j



and the best result is obtained for j = 4. Note that this approach allows to interleave
the first encryption round calls with the key scheduling stage to hide latencies and
obtain faster results.

Among the three approaches the fully pipelined version gives the best result and is the
one reported in Table 3. We included a prediction of the performance of DM based on
the vanilla timings of RIJNDAEL-256 provided in Section 2. Here the timing for 4K4E
serves as a lower bound, as it makes the encryption calls in parallel. The timing for
4K plus four times 1E serves as an upper bound for DM because the first encryption
can be scheduled during the four key scheduling stages hiding the instruction depen-
dencies in the encryption improving the overall throughput. (Similar strategies are used
for the constructions discussed subsequently. If the predictions in Table 3 include an ε,
this indicates that certain computations, for instance finite field multiplications, are not
considered in the prediction.)

ABREAST-DM. ABREAST-DM and its sister design TANDEM-DM, both proposed in
the early 90s [28], are two of the classical examples of double-block-length compres-
sion/hash function designs. We only consider ABREAST-DM instantiated with AES-
256 for our benchmark. We expect that TANDEM-DM has a slightly worse performance
compared to ABREAST-DM due to its sequential structure. In our implementations, we
make extensive use of the parallelism inside the ABREAST-DM compression function
by calling two key schedules in parallel followed by two concurrent encryption calls
(where the ‘follow’ is on a fine-grained per AES-round basis). Hence, the prediction
for ABREAST-DM is based on the performance numbers for AES-256 in the 2K2E
setting (see also [12] for the discussion on another alternative yet slower method to
implement ABREAST-DM).

HIROSE-DBL. ABREAST-DM suffers from a performance drawback that, although
run in parallel, the underlying blockciphers require separate key schedule routines.
Hirose’s construction [21] overcomes this problem by sharing the key scheduling for
the two blockcipher calls. In our implementations, we apply the same approach as for
ABREAST-DM to HIROSE-DBL and our results are in accordance with the predicted
speed based on the 1K2E setting for AES-256. Our timings also demonstrate that Hi-
rose’s scheme is indeed faster than ABREAST-DM.

MDC-2. MDC-2 [13] is one of the oldest double-block-length hash functions available
and it has been specified in the ANSI X9.31 and ISO/IEC 10118-2 standards [1,23].
Although originally designed for use with DES, we consider the obvious generalization
where one can use two calls to a single-key blockcipher (where k = n with AES-
128). Since MDC-2 is based on MMO, it is difficult to pipeline multiple MDC-2
compression function calls in the MD-iteration (as we did for DM). Yet, one can benefit
from the parallelism naturally present within a single compression function evaluation
by making the two blockcipher calls concurrently (corresponding to 2K2E). This is
indeed how we have achieved our best result, matching the predicted speed.

MJH. Recently, an alternative construction called MJH was proposed by Lee and
Stam [32]. It is inspired by the compression function of JH [61] (one of the SHA-3 final-
ists). The main design rationale behind MJH is to reduce the number of key-schedules
required in a single compression function evaluation—as in HIROSE-DBL—and call



several key schedules in parallel in multiple iterations—as in DM. Obviously, this re-
sults in an efficient design. More interestingly, the security of the construction still holds
once the message block (size) to the compression function is doubled (this is what we
call MJH-DOUBLE). This leads to a significantly more efficient scheme, although the
cost of key set-up increases. We investigate the performance of MJH in accordance
with our optimizations on DM and HIROSE-DBL. Based on our results, we note that
MJH-DOUBLE has achieved the best cycle count in our benchmark. We implemented
different strategies when interleaving 1 ≤ i ≤ 8 iterations of the compression function,
the best results are obtained with i = 2. Hence, the predictions are based on the setting
2K2E+2E, ignoring the cost of the finite field (scalar) multiplications.

KNUDSEN–PRENEEL. One of the classical examples of multi-block-length compres-
sion functions is provided by Knudsen and Preneel [26] who proposed several construc-
tions with multiple blockcipher calls in parallel using the generator matrices of various
linear error correcting codes. We consider one of their proposals, which is based on a
[4, 2, 3] linear code over F23 , to show its performance capabilities with AES-NI. When
based on AES-256, this gives rise to a 6n → 4n bit compression function with secu-
rity expected to be at least that of a 2n-bit compression function. We base our exact
specification on the later analysis by Özen et al. [44]. One of the nice features of this
construction is that one can call four independent key schedules followed by four in-
dependent encryptions where one can interleave the rounds of both operations to hide
latencies. This makes it much easier to give an accurate performance estimate since this
scenario is exactly the 4K4E case for AES-256.

PEYRIN ET AL.-DBL. All the designs considered so far follow a very similar ap-
proach: there exist linear pre- and post-processing functions that operate on the blocks
of data, interacting with the underlying primitives. Based on this general model, Peyrin
et al. [47] determined, under a very general attack-based approach (i.e. only consid-
ering time-complexity upper bounds), necessary conditions to have a secure compres-
sion function (where they used smaller ideal 2n → n and 3n → n bits compression
functions as underlying primitives which are replaced by single-key, resp. double-key,
blockciphers in DM mode in our framework). To investigate the performance using
AES-NI, we consider their two concrete proposals: one uses five AES-128 calls and
leads to a 3n → 2n bit compression function, the other uses five AES-256 calls
for a 4n → 2n bit compression function. In our implementations, we make use of
the high parallelism inside a single compression function evaluation by calling sev-
eral shared key-schedules. In both scenarios the predicted time corresponds to 3K5E,
since among the five encryptions two keys are used twice. This case is not considered
in Table 2 and we estimate the performance by considering the performance interval
[3K3E, 3K3E+2E] for AES-128 and AES-256 instead.

QPB-DBL. We finish this section with the interesting scenario of constructing a 2n-
bit digest while making only a single call to the blockcipher (theoretically, this would
provide optimal efficiency). Lucks [36] provided the first construction of this type, al-
though it is secure only in the iteration (see [45] for a detailed discussion of the security
of Lucks’ construction). The main practical overhead in Lucks’ construction are the
costly finite field multiplications that are bound to be performed sequentially. Later,
Stam [55] gave another, more practical, construction in the public random function



model using a quadratic-polynomial based design (hence the name QPB-DBL). This
construction was generalized [56,34] to the ideal cipher model by replacing the random
function with a double-length-key blockcipher running in DM mode. For our bench-
marks, we use a slightly modified compression function, in that we shuffle the inputs
slightly. This allows us to benefit from increased parallelism in the iteration, without
violating the security proof. As already argued, in the QPB-DBL compression func-
tion the main overhead consists of costly finite field multiplications (which we try to
minimize by using the features of the new PCLMULQDQ instruction). Our tweak allows
us to interleave the key-scheduling of round i + 1 with the two (sequential) finite field
multiplications of round i. The predicted performance of QPB-DBL is based on the
1K1E setting for AES-256 and ignores the relatively high cost of the two (full) finite
field multiplications.

3.2 Permutation-Based Constructions

Rogaway and Steinberger’s LP and SHRIMPTON–STAM. Rogaway and Steinberger
introduced a class of linearly-determined, permutation-based compression functions
{0, 1}mn → {0, 1}rn making k calls to the different permutations πi for i ∈ {1, . . . , k}
(hence the notation LPmkr throughout). Let (xi, yi) denote the input-output pair cor-
responding to the permutation πi. The main ingredient of Rogaway and Steinberger’s
LP design is a (k + r) × (k + m) matrix A over F2n . This matrix determines the
block-wise interaction between the inputs to the compression function (V,M), (xi, yi)
pairs and the output Z of the compression function in the following way: for the row
vector ai (of A), the inputs to the underlying permutations are determined by the
scalar product xi = ai · (V1, . . . , Vr,M1, . . . ,Mm−r, y1, . . . , yi−1, 0

k−i) whereas the
output Z (which is treated as a concatenation of r n-bit blocks Zi) is computed by
Zi = ak+i · (V1, . . . , Vr,M1, . . . ,Mm−r, y1, . . . , yk). There is considerable choice for
the matrices A, as long as a certain independence criterion is satisfied [51,52]). For op-
timal performance, we use the matrices A′ over F2256 (suggested in [30]), and A′′ over
F2128 (taken from [31]) as given in Fig. 1 for LP231, respectively LP362.

In independent work, Shrimpton and Stam [54] proved security for a compression
function (SS) that can be regarded as an LP231 scheme (based on matrix Ã), even
though their matrix does not satisfy the independence criterion imposed by Rogaway
and Steinberger.

There are multiple ways how one can implement these constructions in practice. We
chose to implement LP231 in three stages where we first run two permutations and a
field multiplication by x in parallel, followed by one permutation and field multiplica-
tion by x and x2 and finally the remaining multiplication by x2. This corresponds to
the setting 2E+1E + ε for RIJNDAEL-256 on which we base our performance predic-
tion. After experimenting with different strategies we settled on the following regarding
LP362. Again three stages are used where we do three, two and one permutation in par-
allel in every stage. The multiplications are calculated in the last two stages in order to
hide the relatively high latencies of especially the single permutation. Hence, the pre-
dicted performance is based on the 3E+2E+1E+ε setting for AES-128. The implemen-
tation of SS is straightforward corresponding to the setting 2E+1E for RIJNDAEL-256,



A′ =


1 0 0 0 0
0 1 0 0 0
1 2 1 1 0
1 1 2 4 2

, Ã =


1 0 0 0 0
0 1 0 0 0
1 1 1 1 0
1 0 1 0 1

 and A′′ =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 0 0 1 1 0 0
1 1 1 1 1 1 1 0 1
1 2 4 1 2 4 0 1 0


Fig. 1. The matrices used for LP231, LP362 and SS. The field elements denoted 1, 2
and 4 correspond to polynomials 1, x and x2, respectively (see Section 2).

note that this is the only case where the actual construction (slightly) outperforms the
predicted speed. This anomaly might be explained by the fact that SS has to load (store)
the input (output) only once for both operations while in the performance benchmark
setting this has to be done twice.

LANE?. LANE [22] is a permutation-based hash function design submitted to the SHA-
3 competition by Indesteege (supported by the COSIC research group). For our pur-
poses, we consider the LANE compression function with 256-bit digest size which is
instantiated by eight calls to the fixed-key RIJNDAEL-256 and denoted by LANE?. Al-
though some weaknesses have been exploited [38] for the original proposal, it is not
immediate that the attacks carry over to LANE? as the attacks exploit weaknesses in
the original permutations (in particular the relatively low number of rounds). In our
implementations, we exploit the high parallelism inside a single compression function
evaluation by running several permutation calls in parallel. Although possible, we did
not investigate further pipelining options along the MD-iteration due to sufficient num-
ber of independent permutation calls in a single compression function evaluation. The
predicted speed for LANE? is based on the setting of 6E+2E for RIJNDAEL-256. Note
that the original version of LANE, performs significantly faster (4.3 cycles per byte) on
our platform due to the relatively light permutations given in the submitted version.

LUFFA?. LUFFA [15] is a second round permutation-based SHA-3 candidate designed
by De Cannière and Watanabe which can possibly benefit from the AES-NI once the
underlying permutations are modified accordingly. To this end, we instantiate the three
underlying permutations of LUFFA-256 with fixed-key RIJNDAEL-256 and denote this
version by LUFFA?. In the implementation of LUFFA?, we follow a standard approach:
first the multiplications required in the message injection step are computed (see [15]
for a description of how to implement these efficiently), followed by the computation
of the three independent permutations. The predicted performance results (3E+ ε using
RIJNDAEL-256) is too optimistic, the ε incorporates the cost of the multiple polynomial
multiplications. Note that our implementation is slightly faster then the original version
of LUFFA (which runs at 10.49 cycles per byte) using the fastest implementation (called
SSSE3-PS-2) submitted to eBASH [4].



4 Discussion and Conclusion

In this work, we presented the first comprehensive performance comparison of many
multi-block-length hash functions (old and new alike) in software on a modern archi-
tecture supporting AES-NI. Our results are summarized in Table 3 in conjunction with
speed predictions based on the vanilla AES timings from Table 2. Based on these re-
sults, we can draw the following conclusions:

1. Our major conclusion is that, when assuming that the underlying primitives behave
ideally, one can obtain fast and provably secure blockcipher-based hash functions
on soon to be mainstream architectures supporting AES-NI. Indeed, the algorithms
studied provide reasonable collision and preimage resistance and require between 4
and 15 cycles per byte on our target platform, so in this sense almost all of them out-
perform SHA-256 while several of them are faster than SHA-512.1 As discussed
in the introductions, our results are obtained with the original number of rounds
for AES and RIJNDAEL-256. Relative performance results follow by increasing or
decreasing the number of rounds, depending on the security margin.

2. Among the blockcipher-based compression functions, DM is the fastest algorithm
when optimal security (in terms of proven collision resistance lower bound) is de-
sired. For practical security levels, MJH-DOUBLE significantly outperforms the
others (including the permutation-based designs). Note that both constructions re-
quire only one key schedule call inside a single compression function evaluation.

3. In the permutation-based setting, the LUFFA? compression function is the fastest,
but it is being outperformed by many blockcipher-based constructions. This is
partly due to the higher number of primitive calls, but one can argue that our
methodology (use AES as is) results in a relatively more conservative security mar-
gin for fixed-key constructions. Among the provably secure constructions LP362
performs the best, showing the possibility of achieving higher speed despite the
increased number of primitive calls.

Finally, we remark that all the constructions we consider are generic in the sense that
they can be instantiated with any secure blockcipher (or permutation, where relevant).
Hence, it is well possible that one can achieve better performance with different block-
ciphers or permutations. In particular, any AES-inspired yet more efficient primitive,
for instance a round-reduced version or a tweaked version with more secure and effi-
cient key-scheduling, would result in a faster scheme on our target platform. We believe
that our benchmark provides a valuable toolbox to see the relative performance figures
for a majority of blockcipher- and permutation-based compression and hash functions.
Acknowledgements. This work was supported by the Swiss National Science Foun-
dation under grant numbers 200020-132160, 200021-119776, and 200021-122162 and
by the European Commission through the ICT programme under contract ICT-2007-
216676 ECRYPT II. We gratefully acknowledge Çağdaş Çalık and Institute of Applied
Mathematics at Middle East Technical University for granting us access to the Intel i5

1 Compared SHA-256 and SHA-512 speeds (13.90 and 10.47 respectively) are based on the
fastest publicly available implementation on eBACS [4] run on Intel Core i5 M 520 (2.4 GHz
with AES-NI).



with AES-NI to benchmark our programs and Thorsten Kleinjung for useful discus-
sions on how to optimize the SSE field multiplication by x. We would like to thank the
anonymous reviewers for their useful comments and suggestions.

References

1. American National Standards Institute: Public key cryptography using reversible algorithms
for the financial services industry. American National Standards Institute (1998)

2. Benadjila, R., Billet, O., Gueron, S., Robshaw, M.J.B.: The Intel AES instructions set and
the SHA-3 candidates. In: Matsui, M. (ed.) Asiacrypt 2009. LNCS, vol. 5912, pp. 162–178.
Springer, Heidelberg (2009)

3. Bernstein, D.J.: Cache-timing attacks on AES (2005), http://cr.yp.to/papers.
html#cachetiming

4. Bernstein, D.J., Lange, (editors), T.: eBACS: ECRYPT Benchmarking of Cryptographic Sys-
tems. http://bench.cr.yp.to (2010)

5. Bertoni, G., Breveglieri, L., Farina, R., Regazzoni, F.: Speeding up AES by extending a 32
bit processor instruction set. In: Application-specific Systems, Architectures and Processors.
pp. 275–282. IEEE Computer Society (2006)

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of the sponge
construction. In: Smart, N. (ed.) Eurocrypt 2008. LNCS, vol. 4965, pp. 181–197. Springer,
Heidelberg (2008)

7. Biham, E., Dunkelman, O.: A framework for iterative hash functions – HAIFA. Presented at
Second NIST Cryptographic Hash Workshop, 2006, Santa Barbara, USA.

8. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and AES-
256. In: Matsui, M. (ed.) Asiacrypt 2009. LNCS, vol. 5912, pp. 1–18. Springer, Heidelberg
(2009)

9. Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and related-key attack on the full
AES-256. In: Halevi, S. (ed.) Crypto 2009. LNCS, vol. 5677, pp. 231–249. Springer, Hei-
delberg (2009)

10. Black, J., Rogaway, P., Shrimpton, T., Stam, M.: An analysis of the blockcipher-based hash
functions from PGV. Journal of Cryptology 23(4), 519–545 (2010)

11. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y.: Hash
functions and RFID tags: Mind the gap. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS,
vol. 5154, pp. 283–299. Springer, Heidelberg (2008)

12. Bos, J.W., Özen, O., Stam, M.: Efficient hashing using the AES instruction set. Cryptology
ePrint Archive, Report 2010/576 (2010)

13. Brachtl, B., Coppersmith, D., Hyden, M., Matyas, S., Jr., Meyer, C., Oseas, J., Pilpel, S.,
Schilling, M.: Data authentication using modification detection codes based on a public one-
way encryption function. U.S. Patent No 4,908,861 (1990)

14. Damgård, I.: A design principle for hash functions. In: Brassard, G. (ed.) Crypto 1989.
LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

15. De Cannière, C., Sato, H., Watanabe, D.: Hash function Luffa: Supporting document. Sub-
mission to NIST (Round 2) (2009), http://www.sdl.hitachi.co.jp/crypto/
luffa/Luffa_v2_SupportingDocument_20090915.pdf

16. Fleischmann, E., Gorski, M., Lucks, S.: Security of cyclic double block length hash func-
tions. In: Parker, M. (ed.) Cryptography and Coding 2009. LNCS, vol. 5921, pp. 153–175.
Springer, Heidelberg (2009)

17. Fog, A.: Instruction tables, lists of instruction latencies, throughputs and microoperation
breakdowns for Intel, AMD and VIA CPUs. http://www.agner.org/optimize/
(2010)

http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
http://bench.cr.yp.to
http://www.sdl.hitachi.co.jp/crypto/luffa/Luffa_v2_SupportingDocument_20090915.pdf
http://www.sdl.hitachi.co.jp/crypto/luffa/Luffa_v2_SupportingDocument_20090915.pdf
http://www.agner.org/optimize/


18. Gueron, S.: Intel’s new AES instructions for enhanced performance and security. In: Dunkel-
man, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 51–66. Springer, Heidelberg (2009)

19. Gueron, S.: Intel advanced encryption standard (AES) instructions set. Tech. rep., Intel
(2010), http://software.intel.com/file/24917

20. Gueron, S., Kounavis, M.E.: Intel carry-less multiplication instruction and its usage for
computing the GCM mode. Tech. rep., Intel (2010), http://software.intel.com/
file/24918

21. Hirose, S.: Some plausible constructions of double-block-length hash functions. In: Rob-
shaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidelberg (2006)

22. Indesteege, S.: The LANE hash function. Submission to NIST (2008), http://www.
cosic.esat.kuleuven.be/publications/article-1181.pdf

23. International Organization for Standardization: ISO/IEC 10118-2: hash functions using an
n-bit block cipher (2010)

24. Khovratovich, D.: New Approaches to the Cryptanalysis of Symmetric Primitives. Ph.D.
thesis, University of Luxembourg (2010)

25. Knudsen, L.R., Mendel, F., Rechberger, C., Thomsen, S.S.: Cryptanalysis of MDC-2. In:
Joux, A. (ed.) Eurocrypt 2009. LNCS, vol. 5479, pp. 106–120. Springer, Heidelberg (2009)

26. Knudsen, L.R., Preneel, B.: Construction of secure and fast hash functions using nonbinary
error-correcting codes. IEEE Transactions on Information Theory 48(9), 2524–2539 (2002)

27. Krause, M., Armknecht, F., Fleischmann, E.: Preimage resistance beyond the birthday barrier
– the case of blockcipher based hashing. Cryptology ePrint Archive, Report 2010/519 (2010)

28. Lai, X., Massey, J.L.: Hash functions based on block ciphers. In: Rueppel, R. (ed.) Eurocrypt
1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

29. Lee, J., Kwon, D.: The security of Abreast-DM in the ideal cipher model. Cryptology ePrint
Archive, Report 2009/225 (2009)

30. Lee, J., Park, J.H.: Adaptive preimage resistance and permutation-based hash functions.
Cryptology ePrint Archive, Report 2009/066 (2009)

31. Lee, J., Park, J.H.: Preimage resistance of LPmkr with r = m− 1. Information Processing
Letters 110(14-15), 602–608 (2010)

32. Lee, J., Stam, M.: MJH: a faster alternative to MDC-2. In: Kiayias, A. (ed.) CT-RSA 2011.
LNCS, vol. 6558, pp. 213–236. Springer, Heidelberg (2011)

33. Lee, J., Stam, M., Steinberger, J.: The collision security of Tandem-DM in the ideal cipher
model (2011)

34. Lee, J., Steinberger, J.P.: Multi-property-preserving domain extension using polynomial-
based modes of operation. In: Gilbert, H. (ed.) Eurocrypt 2010. LNCS, vol. 6110, pp. 573–
596. Springer, Heidelberg (2010)

35. Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B. (ed.) ASI-
ACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

36. Lucks, S.: A collision-resistant rate-1 double-block-length hash function. In: Symmetric
Cryptography. No. 07021 in Dagstuhl Seminar Proceedings, Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2007)

37. Manley, R., Magrath, P., Gregg, D.: Code generation for hardware accelerated AES. In:
Application-specific Systems Architectures and Processors (ASAP), 21st IEEE International
Conference on. pp. 345–348 (2010)

38. Matusiewicz, K., Naya-Plasencia, M., Nikolic, I., Sasaki, Y., Schläffer, M.: Rebound attack
on the full Lane compression function. In: Matsui, M. (ed.) Asiacrypt 2009. LNCS, vol.
5912, pp. 106–125. Springer, Heidelberg (2009)

39. Menezes, A.J., van Oorschot, P.C., Vanstone, S.: CRC-Handbook of Applied Cryptography.
CRC Press (1996)

40. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

http://software.intel.com/file/24917
http://software.intel.com/file/24918
http://software.intel.com/file/24918
http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf
http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf


41. NIST: FIPS-197: Advanced encryption standard (AES) (2001), http://www.csrc.
nist.gov/publications/fips/fips197/fips-197.pdf

42. NIST: Secure hash standard. FIPS 180-2, NIST, http://www.itl.nist.gov/
fipspubs/fip180-2.htm (August 2002)

43. NIST: Cryptographic hash algorithm competition. http://csrc.nist.gov/
groups/ST/hash/sha-3/index.html (2008)

44. Özen, O., Shrimpton, T., Stam, M.: Attacking the Knudsen-Preneel compression functions.
In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 94–115. Springer, Heidelberg
(2010)

45. Özen, O., Stam, M.: Another glance at double-length hashing. In: Parker, M. (ed.) Cryptog-
raphy and Coding 2009. LNCS, vol. 5921, pp. 176–201. Springer, Heidelberg (2009)

46. Özen, O., Stam, M.: Collision attacks against the Knudsen-Preneel compression functions.
In: Abe, M. (ed.) Asiacrypt 2010. LNCS, vol. 6477, pp. 76–93. Springer, Heidelberg (2010)

47. Peyrin, T., Gilbert, H., Muller, F., Robshaw, M.J.B.: Combining compression functions and
block cipher-based hash functions. In: Lai, X., Chen, K. (eds.) Asiacrypt 2006. LNCS, vol.
4284, pp. 315–331. Springer, Heidelberg (2006)

48. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: A syn-
thetic approach. In: Stinson, D. (ed.) Crypto 1993. LNCS, vol. 773, pp. 368–378. Springer,
Heidelberg (1994)

49. Rabin, M.O.: Digitalized signatures. In: Foundations of Secure Computations. pp. 155–166.
Academic Press (1978)

50. Rivest, R.: The MD5 message-digest algorithm, request for comments (RFC) 1320. Tech.
rep., Internet Activities Board, Internet Privacy Task Force (1992)

51. Rogaway, P., Steinberger, J.: Security/efficiency tradeoffs for permutation-based hashing. In:
Smart, N. (ed.) Eurocrypt 2008. LNCS, vol. 4965, pp. 220–236. Springer, Heidelberg (2008)

52. Rogaway, P., Steinberger, J.P.: Constructing cryptographic hash functions from fixed-key
blockciphers. In: Wagner, D. (ed.) Crypto 2008. LNCS, vol. 5157, pp. 433–450. Springer,
Heidelberg (2008)

53. Seurin, Y., Peyrin, T.: Security analysis of constructions combining FIL random oracles. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 119–136. Springer, Heidelberg (2007)

54. Shrimpton, T., Stam, M.: Building a collision-resistant compression function from non-
compressing primitives. In: Aceto, L., Damgård, I., Goldberg, L., Halldórsson, M., Ingólfs-
dóttir, A., Walukiewicz, I. (eds.) International Colloquium on Automata, Languages and Pro-
gramming 2008. LNCS, vol. 5126, pp. 643–654. Springer, Heidelberg (2008)

55. Stam, M.: Beyond uniformity: Better security/efficiency tradeoffs for compression functions.
In: Wagner, D. (ed.) Crypto 2008. LNCS, vol. 5157, pp. 397–412. Springer, Heidelberg
(2008)

56. Stam, M.: Blockcipher-based hashing revisited. In: Dunkelman, O. (ed.) FSE 2009. LNCS,
vol. 5665, pp. 67–83. Springer, Heidelberg (2009)

57. Steinberger, J.P.: The collision intractability of MDC-2 in the ideal-cipher model. In: Naor,
M. (ed.) Eurocrypt 2007. LNCS, vol. 4515, pp. 34–51. Springer, Heidelberg (2007)

58. Tillich, S., Großschädl, J.: Instruction set extensions for efficient AES implementation on 32-
bit processors. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 270–284.
Springer, Heidelberg (2006)

59. Tillich, S., Herbst, C.: Boosting AES performance on a tiny processor core. In: Malkin, T.
(ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 170–186 (2008)

60. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and countermeasures.
Journal of Cryptology 23, 37–71 (2010)

61. Wu, H.: The hash function JH. Submission to NIST (updated) (2009), http://icsd.
i2r.a-star.edu.sg/staff/hongjun/jh/jh_round2.pdf

http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.itl.nist.gov/fipspubs/fip180-2.htm
http://www.itl.nist.gov/fipspubs/fip180-2.htm
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://icsd.i2r.a-star.edu.sg/staff/hongjun/jh/jh_round2.pdf
http://icsd.i2r.a-star.edu.sg/staff/hongjun/jh/jh_round2.pdf

	Efficient Hashing using the AES Instruction Set
	Joppe W. Bos and Onur Özen and Martijn Stam

