
Impossibility and Feasibility Results

for Zero Knowledge with Public Keys?

Joël Alwen1, Giuseppe Persiano2, and Ivan Visconti2

1 Technical University of Vienna
A-1010 Vienna, Austria. e9926980@stud3.tuwien.ac.at

2 Dipartimento di Informatica ed Appl., Università di Salerno
84081 Baronissi (SA), Italy.

{giuper,visconti}@dia.unisa.it

Abstract. In this paper, we continue the study of the round complexity
of black-box zero knowledge in the bare public-key (BPK, for short) model
previously started by Micali and Reyzin in [11]. Specifically we show the
impossibility of 3-round concurrent (and thus resettable) black-box zero-
knowledge argument systems with sequential soundness for non-trivial
languages. In light of the previous state-of-the-art, our result completes
the analysis of the round complexity of black-box zero knowledge in the
BPK model with respect to the notions of soundness and black-box zero
knowledge.
Further we give sufficient conditions for the existence of a 3-round reset-
table zero-knowledge proof (in contrast to argument) system with concur-
rent soundness forNP in the upperbounded public-key model introduced
in [14].

1 Introduction

The classical notion of a zero-knowledge proof system has been introduced in
[1]. Roughly speaking, in a zero-knowledge proof system a prover can prove to a
verifier the validity of a statement without releasing any additional information.
Recently, starting with the work of Dwork, Naor, and Sahai [2], the concurrent
and asynchronous execution of zero-knowledge protocols has been considered. In
this setting, several concurrent executions of the same protocol take place and
a malicious adversary controls the verifiers and the scheduling of the messages.

Motivated by considerations regarding smart cards, the notion of resettable
zero knowledge (rZK, for short) was introduced in [3]. An rZK proof remains
“secure” even if the verifier is allowed to tamper with the prover and to re-
set the prover in the middle of a proof to any previous state, then asking dif-
ferent questions. It is easy to see that concurrent zero knowledge is a special
case of resettable zero knowledge and, currently, rZK is the strongest notion of
zero knowledge that has been studied when security against malicious verifiers

? The work presented in this paper has been supported in part by the European Com-
mission through the IST Programme under contract IST-2002-507932 ECRYPT.

is considered. Unfortunately, in the plain model, if we only consider black-box
zero knowledge, constant-round concurrent (and therefore resettable) zero know-
ledge is possible only for trivial languages (see [4]). Moreover, the existence of
a constant-round non-black-box concurrent zero-knowledge argument system is
currently an open question (see [5] for the main results on non-black-box zero
knowledge). An almost constant-round non-black-box concurrent zero-knowledge
argument system has been recently given in [6] by assuming the existence of only
one (stateful) prover.

Such negative results have motivated the introduction of the bare public-key
model [3] (BPK, for short). Here each possible verifier deposits a public key pk

in a public file and keeps private the associated secret information sk. From
then on, all provers interacting with such a verifier will use pk and the verifier
can not change pk from proof to proof. Note that in the BPK model there is no
interactive preprocessing stage, no trusted third party or reference string and the
public file can be completely under the control of the adversary. Consequently
the BPK model is considered a very weak set-up assumption compared to some
previously proposed models [2,7,8,9,10]. In this model, however, the notion of
soundness is more subtle. This was first noted in [11], where the existence of four
distinct and increasingly stronger notions of soundness: one-time, sequential,
concurrent and resettable soundness is shown. Moreover it was pointed out that
the constant-round rZK argument system in the BPK model of [3] did not seem
to be concurrently sound.

In [11], a 3-round one-time sound black-box rZK argument system and a
4-round sequentially sound black-box rZK argument system for NP in the BPK

model are given. Moreover it is shown that in the BPK model neither zero know-
ledge in less than 3 rounds nor black-box zero-knowledge with resettable sound-
ness are possible for non-trivial languages. Two main problems were left open
in [11] (see page 553 of [11] and page 13 of [12]).

The first open problem, namely the existence of a constant-round rZK ar-
gument system with concurrent soundness in the BPK model has been recently
solved in [13] where an (optimal) 4-round protocol is presented. Before this
result, a 3-round resettable zero-knowledge argument system with concurrent
soundness has been presented by Micali and Reyzin in [14] in the upperbounded
public-key (UPK, for short) model, where the verifier has a counter and his public
key can be used only an a-priori fixed polynomial number of times.

The second open problem, namely the existence of a 3-round {resettable,
concurrent, sequential} zero-knowledge argument with sequential soundness in
the BPK, has been very partially addressed in [13] where a 3-round sequentially
sound sequential zero-knowledge argument system has been presented.

The most interesting open problem in the BPK model is therefore the exis-
tence of a 3-round resettable (or even only concurrent) zero-knowledge argument
system with sequential soundness for NP .

Our Contribution. In this paper we show that 3-round black-box concurrent (and
therefore resettable) zero-knowledge argument systems with sequential sound-
ness in the BPK model exist only for trivial languages. As a consequence, we have

that in the BPK model, sequential soundness in 3 rounds can be achieved for
non-trivial languages only when no more than black-box sequential zero know-
ledge is required. This is in contrast to both one-time soundness and concurrent
soundness where 3 rounds and 4 rounds respectively, have been shown to be both
necessary and sufficient for sequential, concurrent and resettable zero knowledge.
Our result closes the analysis on the round complexity of the BPK model with
respect to notions of soundness and zero knowledge, see Fig. 1.

The intuition behind our impossibility result goes as follows. In the impossi-
bility proof of 3-round black-box zero knowledge given in [15] by Goldreich and
Krawczyk (on which our result is based) a deciding machine runs the simulator
to determine if x is in L. In case the simulator outputs an accepting transcript
even when x 6∈ L, the work of the simulator can be used by an adversarial prover
that violates the soundness of the protocol. The translation in [11] of this proof
to the BPK model works when the proof system is sound against concurrent
malicious provers (because a rewind can be simulated with a new concurrent
session). The proof in this paper observes that for 3-round black-box concurrent
zero knowledge, there is at least one proof that the simulator does not rewind
and therefore sequential soundness will suffice.

We also give some sufficient conditions for achieving 3-round resettable zero-
knowledge proof (in contrast to argument) systems with concurrent soundness
in the UPK model. Moreover, our construction does not use assumptions with
respect to superpolynomial-time algorithms (i.e., complexity leveraging).

3-Round OTS 3-Round SS 4-Round CS

sZK [MR Crypto 01] [DPV Crypto 04] Folklore
cZK [MR Crypto 01] Impossible [This Paper] [DPV Crypto 04]
rZK [MR Crypto 01] Impossible [This Paper] [DPV Crypto 04]

Fig. 1. The round complexity of black-box zero knowledge in the BPK model.

2 The Public-Key Models

Here we describe the BPK and the UPK models that we consider for our results. We
give the definitions of zero-knowledge proof and argument systems with respect
to the notions of soundness and zero knowledge that we use in the paper. For
further details, see [11,14,12].

The BPK model assumes that: 1) there exists a polynomial-size collection of
records associating identities with public keys in the public file F ; 2) an (honest)
prover is an interactive deterministic polynomial-time algorithm that takes as
input a security parameter 1k, F , an n-bit string x, such that x ∈ L where L is
an NP-language, an auxiliary input y, a reference to an entry of F and a random
tape; 3) an (honest) verifier V is an interactive deterministic polynomial-time
algorithm that works in the following two stages: 1) in a first stage on input a

security parameter 1k and a random tape, V generates a key pair (pk, sk) and
stores it’s identity associated with pk in an entry of the file F ; 2) in the second
stage, V takes as input sk, a statement x ∈ L and a random string, V performs
an interactive protocol with a prover, and outputs “accept” or “reject”; 4) the
first interaction of a prover and a verifier starts after all verifiers have completed
their first stage.

Definition 1. Given an NP-language L and its corresponding relation RL, we
say that a pair of probabilistic polynomial-time algorithms 〈P, V 〉 is complete

for L, if for all n-bit strings x ∈ L and any witness y such that (x, y) ∈ RL, the
probability that V on input x when interacting with P on input x and y, outputs
“reject” is negligible in n.

Malicious provers and attacks in the BPK model. Let s be a positive polynomial
and P ? be a probabilistic polynomial-time algorithm that takes as first input
1n.
P ? is an s-sequential malicious prover if it runs in at most s(n) stages in the

following way: in stage 1, P ? receives a public key pk and outputs an n-bit string
x1. In every even stage, P ? starts from the final configuration of the previous
stage, sends and receives messages of a single interactive protocol on input pk
and can decide to abort the stage in any moment and to start the next one.
In every odd stage i > 1, P ? starts from the final configuration of the previous
stage and outputs an n-bit string xi.
P ∗ is an s-concurrent malicious prover if on input a public key pk of V , it

can perform the following s(n) interactive protocols with V : 1) if P ∗ is already
running i protocols 0 ≤ i < s(n) it can start a new protocol with V choosing a
new statement to be proved; 2) it can output a message for any running protocol,
receive immediately the response from V and continue.

Given an s-sequential malicious prover P ? and an honest verifier V , a se-
quential attack is performed in the following way: 1) the first stage of V is run
on input 1n and a random string so that a pair (pk, sk) is obtained; 2) the first
stage of P ? is run on input 1n and pk and x1 is obtained; 3) for 1 ≤ i ≤ s(n)/2
the 2i-th stage of P ? is run letting it interact with V which receives as input
sk, xi and a random string ri, while the (2i+ 1)-th stage of P ? is run to obtain
xi.

Given an s-concurrent malicious prover P ∗ and an honest verifier V , a con-
current attack is performed in the following way: 1) the first stage of V is run on
input 1n and a random string so that a pair (pk, sk) is obtained; 2) P ∗ is run on
input 1n and pk; 3) whenever P ∗ starts a new protocol choosing a statement, V
is run on inputs the new statement, a new random string and sk.

Definition 2. Given a complete pair 〈P, V 〉 for an NP-language L in the BPK

model, then 〈P, V 〉 is a concurrently (resp., sequentially) sound interactive
argument system for L if for all positive polynomials s, for all s-concurrent
(resp., s-sequential) malicious provers P ? and for any false statement “x ∈ L”
the probability that in an execution of a concurrent (resp. sequential) attack, V
outputs “accept” for such a statement is negligible in n.

In the definition above, if the malicious prover P ? is computationally un-
bounded, then 〈P, V 〉 is a proof (and not only an argument) system.

Definition 3. Let 〈P, V 〉 be an interactive proof or argument system for a lan-
guage L. We say that a probabilistic polynomial-time adversarial verifier V ? is
a concurrent adversary in the BPK model if on input polynomially many
values x̄ = x1, . . . , xPOLY(n), it first generates the public file F with POLY(n)
public keys and then concurrently interacts with POLY(n) number of independent
copies of P (each with a valid witness for the statement), with common input x̄
and without any restrictions over the scheduling of the messages in the different
interactions with P . Moreover we say that the transcript of such a concurrent
interaction consists of x̄ and the sequence of prover and verifier messages ex-
changed during the interaction. We refer to viewP

V ?(x̄) as the random variable
describing the content of the random tape of V ? and the transcript of the con-
current interactions between P and V ?.

Definition 4. Let 〈P, V 〉 be an interactive argument or proof system for a lan-
guage L in the BPK model. We say that 〈P, V 〉 is black-box concurrent zero
knowledge if there exists a probabilistic polynomial-time algorithm S such that
for each polynomial-time concurrent adversary V ?, let SV ?(x̄) be the output of
S on input x̄ and black-box access to V ?, then if x1, . . . , xPOLY(n) ∈ L, the en-

sembles {viewP
V ?(x̄)} and {SV ?(x̄)} are computationally indistinguishable.

Definition 5. An interactive argument system 〈P, V 〉 in the BPK model is
black-box resettable zero knowledge if there exists a probabilistic polynomial-
time algorithm S such that for all probabilistic polynomial time adversaries
V ∗, for all pairs of polynomials (s, t) and for all xi ∈ L where |xi| = n and
i = 1, . . . , s(n), V ? runs in at most t(n) steps and the following two distribu-
tions are indistinguishable:

1. the output of V ? that generates F with s(n) entries and interacts (even
concurrently) a polynomial number of times with each P (xi, yi, j, rk, F) where
yi is a witness for xi ∈ L, |xi| = n, j is the index (i.e. associated identity)
of the public key of V ? in F and rk is a random tape for 1 ≤ i, j, k ≤ s(n);

2. the output of S given black-box access to V ∗ on input x1, . . . , xs(n).

Moreover we define such an adversarial verifier V ∗ as an (s, t)-resetting ma-

licious verifier.

The definitions in the UPK model are very similar to the ones given for the
BPK model. The only interesting difference is the attack of the malicious prover.
Indeed, in the UPK model there is a bound on the number of sessions that the
malicious prover can open in order to prove a false statement. Indeed, the verifier
only uses his public key an a-priori fixed polynomial number of times and he uses
a counter (a value that is persistent between the sessions) to verify that his key
is not yet expired. For details see [12].

3 3-Round Sequentially Sound cZK in the BPK Model

In this section we will concentrate entirely on the proof of the following theorem.

Theorem 1. Any black-box concurrent zero-knowledge argument system satis-
fying sequential soundness in the BPK model for a language L outside of BPP
requires at least 4 rounds.

3.1 Techniques for Achieving the Result

In [11,12], it has been proven that in the BPK model concurrent soundness can
not be achieved in less than 4 rounds. That proof mainly follows the proof of
the following theorem by Goldreich and Krawczyk in [15]: “In the plain model,
any black-box zero-knowledge argument system for a language outside of BPP
requires at least 4 rounds”. Indeed, the proof given in [15], crucially uses the
fact that if there exists a simulator M , then the work of M can be used either
to decide the language or to violate the soundness of the protocol. Indeed, in
case the simulator outputs an accepting transcript for a false statement, an
adversarial prover can prove the same false statement by emulating the rewinds of
the simulator by means of concurrent sessions. Also in [11,12], the same analysis
is carefully repeated by using a concurrent malicious prover, thus proving that
black-box zero knowledge with concurrent soundness needs at least 4 rounds for
non-trivial languages in the BPK model.

However, when the prover can only open sequential sessions, the previously
discussed approach does not work anymore. Actually, only sequential soundness
and zero knowledge are not enough to prove the impossibility result. Indeed,
in [13], it has been shown that in the BPK model a 3-round sequential black-box
zero-knowledge argument system with sequential soundness exists. It is there-
fore vital to use the concurrent black-box zero-knowledge property along with
sequential soundness in order to obtain the desired claim. Note that the black-
box concurrent zero-knowledge property (i.e., the existence of a strong simulator
that works in an hostile setting) has been previously used in [16,17,4] to show
that black-box concurrent zero knowledge can not be achieved respectively in 4,
7 and finally in a constant number of rounds in the plain model. However these
previous results do not help at all in the BPK model, since constant-round black-
box concurrent (and even resettable) zero knowledge has been achieved in the
BPK model. In particular only 3 rounds are necessary for one-time soundness [11]
and 4 rounds for concurrent soundness [13].

Our proof of Theorem 1 therefore exploits a joined use of techniques for
proving impossibility results for 3-round black-box zero knowledge as well as
impossibility results for black-box concurrent zero knowledge in the plain model.

High-level overview. For the sake of simplifying the presentation, we now only
consider conversation-based protocols, i.e., protocols where at the end of each
proof the verifiers decides to accept or to not accept the proof without using
private data. Therefore, in a conversation-based protocol, by simply looking at

the transcript of the protocol it is possible to efficiently decide whether the
verifier accepts or not.

We will show that for any language L with a 3-round sequentially sound
black-box concurrent zero knowledge argument system Π = 〈P, V 〉 in the BPK

model , we can use the simulator M for concurrent zero knowledge as a black
box to design an efficient deciding machine D for L.

More precisely, instead of only working with the honest verifier (in contrast
to the proofs of [11,15]) we will first design a concurrent adversarial verifier
V ? (as well as a useful variant Ṽ ?) which D will let interact with M on input
“x ∈ L” in order to decide x ∈ L. Specifically D runs M against V ? and decides
the language based on whether M outputs an accepting transcript. To show the
correctness of D we design a V ? which opens nested sessions (which we refer to
as levels), each corresponding to a different public key. To be precise the behavior
of V ? is the following:

1. Upon receiving the first message of a session at level i, V ? initiates a new
session at level i + 1 by using the (i + 1)-th entry of the public file, until
i = POLY(k) (for some fixed polynomial POLY()) and only continues with the
session at level i once level i+ 1 has been successfully completed.

2. Before sending the second message in the 3-round protocol V ? uses a family
of pseudorandom functions indexed by its random tape and evaluated upon
V ?’s entire view of the current interaction with M (including all levels) in
order to generate a new value to be used as a source of randomness for
computing its response message for a given session.

In order to keep things as simple as possible during the proof, we will also
describe a variant of V ? called Ṽ ? which acts just as V ? except at level j (where
the value of j is specified as input at Ṽ ?’s startup). For this special level Ṽ ?

outputs all messages received from the simulator (i.e., its complete view of the
interaction at all levels with M thus far) to its output tape and responds with
messages read on its input tape. In other words Ṽ ? acts as a proxy for an external
algorithm at level j. We will use Ṽ ? to contradict the soundness of Π in case of
failure of D with a polynomially related probability.

Next we will define two mutually exclusive categories of executions of a sim-
ulator such that any possible execution of a concurrent simulator M must fall
into precisely one of the two categories. In the proof we will show that although
D only works for one of the two categories, the other can be simply ignored
as such executions would need exponential time (in the security parameter k)
and therefore can happen only with negligible probability (since the expected
running time of the simulator is polynomial in k).
D decides whether x is in the language as follows: if M outputs an accepting

transcript, D will accept x otherwise D will reject x. Notice that if x ∈ L, then
by the fact thatM is a simulator for concurrent zero knowledge, it follows that D
will accept x with overwhelming probability. The case x 6∈ L is more complex. We
will design a cheating sequential prover P ? which runs Ṽ ? againstM , using Ṽ ? as
a proxy for sessions with an honest verifier V . Then we show that for any x 6∈ L,

the probability that P ? succeeds in cheating an honest verifier V is polynomially
related to the probability of M outputting an accepting transcript for x. Here
“convinces” refers to the prover convincing the verifier of the theorem x ∈ L
in some session and ≈poly stands for polynomially related. Thus by soundness,
M will only successfully prove a false statement with a negligible probability.
Therefore we can conclude that D is a deciding machine for L contradicting the
assumption that L /∈ BPP.

Now we shall begin the detailed discussion by describing the aforementioned
adversary V ?.

3.2 The Adversarial Verifier V ?

In general V ? acts exactly as the honest verifier V would except for a few special
deviations.

Initialization Phase. Let POLY() be some fixed polynomial. V ? (honestly and
independently) generates p = POLY(k) public-private key pairs {(pki, ski)}i for
i ∈ {1, 2, .., p} placing all public keys pk = {pki}i≤p in the public file F . That is
V ? simply runs V ’s initialization algorithm p times, each time with a new uni-
formly and independently chosen random string, publishing all (public) output.

Interactive Phase. V ? maintains an internal counter i which is initialized to 1.
The counter is used to keep track of the current level, i.e. the index of the public
key in F which is to be used for that level.

We denote with a triple (ai, bi, ci) a 3-round protocol played at level i, where
ai denotes the first message of the prover to the verifier, bi the second message
of the verifier to the prover, and ci denotes the last message of the prover to the
verifier.

Upon receiving ai for i < p, V
? initiates a new session in a concurrent fashion,

at level i+ 1 requesting a proof of the same statement “x ∈ L”. Only once this
new level has been successfully completed, does it continue execution at level i.
(If i = p then V ? continues execution of the current session without initiating
any new levels.) See Fig. 2.

At level i, once V ? has received ai but before initiating the next level (and
thus before choosing and sending bi), V

? sets the string r′i = fri
(viewV ?) where:

1. ri is V
?’s random tape for this session.

2. viewV ?
i
is V ?’s view of the entire interaction at all levels so far up to level i.

3. fri
∈ {PRFr}r∈R is the pseudorandom function with the index ri where R

is the set of all possible random tapes with which V ? can be initialized.

Now for the rest of this session, V ? uses r′i as its random tape. Once the new
random string has been defined, V ? continues as the honest verifier does until
the end of the session.

c

2
2PK

Level 1
PK1

Level

pPK
p

V*

a1

a2

ap−1

ap

bp

pc

M

bp−1

cp−1

b2

c2

...
p−1PK

Levelp−1

...

...

1

b1

Level

Fig. 2. The randomness used by V ? for each reply depends on his view.

The Ṽ ? Variation. For reasons of simplicity and overview we will now describe
a related verifier algorithm Ṽ ?. The only difference between V ? and Ṽ ? is that
the latter, on initialization, reads an integer j along with a key pk, on its input
tape. Ṽ ? generates the public file just as V ? does, except for substituting (V, pk)
for the identity j. Further whenever Ṽ ? must send bj , it writes its entire view
viewṼ ?

j

to its output tape3, and pauses execution until a value for bj is written

to its input tape which it forwards to the prover as its message. Finally, upon
receiving cj , it writes cj and the same view viewṼ ?

j

it outputted when getting bj

at the beginning of this session. (Ṽ ? will later be run as a subroutine by another
algorithm which will tell it which messages to use for level j but let it act just
as V ? would at all other levels. viewṼ ?

j

can be seen as an identifier for a given

session.)

3.3 The Executions of the Simulator

Next we consider two (mutually exclusive) categories of executions of a simulator.

Definition 6. Let M be the simulator that is guaranteed to exists for a black-
box concurrent zero knowledge protocol Π = 〈P, V, 〉 and let V ? be a probabilistic

3 This view (which includes the random tape assigned by M) is the exact same view
which V ? uses as the argument to its pseudorandom function when creating r′

j .

polynomial-time interactive algorithm. Then when M interacts with V ?, if there
exists a level j, j ≤ p with the following properties:

1. Let {V iewsV ?
j
} be the set of all of views seen so far by V ? during the entire

interaction when at level j. Then viewV ?
j
, the view of V ? just before playing

bj (at level j), is a new one, i.e. viewV ?
j
/∈ {V iewsV ?

j
}. Notice that the view

at level j includes all messages ai at levels i for i ≤ j (see Fig. 2).
2. From when bj has been sent until when cj has been sent, V ? never has a

new view view′V ?
j
/∈ {V iewsV ?

j
}. In other words after receiving bj but before

sending cj for a given session at level j, M does not request a rewind such
that V ? reaches a point where it sends a b′j such that it has a view view′V ?

j

which it has never had before.

then we call this execution of M a j-deciding execution for V ?.

Comments:

– If we consider a simulator M running against the adversarial verifier V ?

specified above then the views considered in the definition are exactly those
used as arguments to the pseudorandom function when setting r′j .

– We use the term “j-deciding” because the simulator’s j-th session will help
to prove that it can be used to decide that language efficiently.

Definition 7. Let M and V ? be as above. If there exists no j as above (that
is, in order to complete every session resulting in an accepting view of V ?, M
requires at least one sequence of events (including a rewind) resulting in a new
V iew′V ? at level j) then we call this execution of M a hard execution for V ?.

Comments and Examples. First we note that it is clear from the definition that
given an execution of M , it must be either a j-deciding or hard for V ? but
never both since either at least one such j exists or not. In order to clarify the
two definitions we now give a simple example of a V ? with only one level of
interaction with M .

Suppose A = (a, b, c) and B = (a′, b′, c′) are the accepting transcripts of two
different sessions (of the same protocol) and let R stand for “M rewinds V ?”.
Now suppose M and V ? interact as follows:

(a, b, R, a′, b′, R, a, b, c) = (m1,m2,m3,m4,m5,m6,m7,m8,m9)

In this case the triple (a, b, c) does not fulfill the requirement to make this ex-
ecution of M a 1-deciding execution for V ? because although (m1,m2,m9) is
an accepting transcript, between m2 and m9 being received by V ?, M rewinds
V ? and causes it to have a new view (with messages m3,m4 and m5) which
violates the second point of the definition. Further although (m7,m8,m9) is a
transcript started and successfully completed without any rewind at all, this
sequence violates the first point of the definition of a j-deciding execution since
before playing m8, V

? now has an old view: specifically that which it had before

playing m2. Therefore this is an hard execution for V ?. If, on the other hand, the
interaction began only with m4, or if the last message were a message m6′ = c′

instead of m6 then M would be a 1-deciding simulator for V ?.
The intuition behind the crucial part of the proof is to show that if an

execution of M when interacting with a specially designed adversarial verifier
is a hard execution then M must perform an exponential number of rewinds in
order to finish which implies that all hard executions with this verifier can only
happen with negligible probability. If however they are j-deciding then in case
the execution resulted in a false proof (i.e. if x /∈ L) then the execution can be
used by a specially designed malicious prover to break soundness. This is used
to establish the correctness of a deciding machine which uses the simulator and
an adversarial verifier as subroutines.

We now have all tools we need and can begin with the main proof.

3.4 The Proof of Theorem 1

Proof. Assume, by contradiction, there exists a language L /∈ BPP with a 3-
round black-box concurrent zero-knowledge argument system 〈P, V 〉 in the BPK

model enjoying sequential soundness, and let V ? and Ṽ ? be the adversarial
verifiers as defined above. Then by the concurrent zero-knowledge property of
〈P, V 〉, there exists an expected polynomial-time simulatorM which, given oracle
access to any concurrent verifier V ? will, for any true statement x ∈ L, output a
transcript indistinguishable from that of V ? interacting with the honest prover
P .

In order to reach the contradiction we construct an efficient deciding algo-
rithm D which, on input x, decides membership in the language L which would
imply L ∈ BPP. To decide whether x is in L, D runs M while simulating V ? to
it. If M outputs an accepting transcript, D will output x ∈ L, otherwise D will
output x /∈ L. Thus we will need to prove that with overwhelming probability
M will output an accepting transcript if and only if x ∈ L.

Proposition 1. If x ∈ L then D will accept the proof with overwhelming prob-
ability.

Proof. A session with a verifier using a pseudorandom tape looks the same as
one with a verifier using a random tape, otherwise it is possible to break the
randomness property of PRF . Since V ?, after setting its random tape, uses the
same algorithm as V for the rest of the interaction, V ? would, by completeness
of 〈P, V 〉, when interacting with P , accept for any given session at any level.
Since there are only polynomially many sessions, but each has an overwhelming
probability of resulting in an accepting view of V ?, with overwhelming proba-
bility they will all result in an accepting view of V ?. Thus with overwhelming
probability V ? will accept when interacting with P . Therefore by the concurrent
zero-knowledge property of 〈P, V 〉, given a true statement as common input M
will, with overwhelming probability, outputs an accepting view.

Proposition 2. Given x 6∈ L then D will reject x with overwhelming probability.

Proof. To show this we will design a malicious prover P ? which can use M to
prove any statement with a polynomially related probability to the probability
of M outputting an accepting transcript for the same statement. We can then
conclude that M outputs an accepting transcript for x 6∈ L with negligible
probability since otherwise the soundness of 〈P, V 〉 is violated. However P ? will
only work for j-deciding executions, so we will also show that an execution of
M can be hard for V ? only with negligible probability.

We define P ? to be a polynomial-time algorithm with black-box access to
M . Given x as input, P ? interacts with the honest verifier V with the goal of
convincing V of the false statement “x ∈ L”. It does this by running Ṽ ? with a
random guess j′ for j and the public key produced by V on its input, against
M with the statement “x ∈ L”. P ? then acts as a man-in-the-middle between
Ṽ ? and V for all interaction at level j, and maintains a set of pairs: the views
outputted by Ṽ ? and the corresponding response supplied by V . If Ṽ ? outputs a
previously seen view then P ? does not forward the query to V , instead it simply
answers by using the response previously stored in his memory. Further whenever
P ? initiates a session with V (in order to get a response bj for a session), P ?

stores in a registry the view given in the output by Ṽ ?. Thus when M outputs
the message cj of a session along with a view, P ? checks the value of the registry
to see whether cj corresponds to the currently open session with V . If this is the
case then P ? forwards cj to V thereby completing its current interaction with
V . In other words the registry is used to store what is in essence, a unique ID
for a session, namely the view which V ? would use as an argument when setting
its pseudorandom tape r′. For a detailed description of P ? see Fig. 3.

Lemma 1. When interacting with P ?, M will act as when interacting with V ?

with overwhelming probability.

Proof. We must show thatM can not tell the difference between interacting with
V ? and with P ?. Since P ? has oracle access to Ṽ ? it has complete control over
its input including its random tape and can, in particular, perform all necessary
rewinds and secret key operations. Thus it suffices to consider level j ′. Because
V and V ? follow the same algorithm in deciding the message b, apart from what
they use as a random tape, the only concerns are rewinds and the fact that V ’s
tapes are truly random and not chosen depending on any variables such as its
view. Specifically:

1. M noticing that V is not being rewound when M requests a rewind to an
old view.

2. M noticing that V is not being rewound whenM requests a rewind to a new
view (but in fact V simply uses a new random tape).

3. M noticing that V is not basing its randomness on the entire view at all
levels.

The first concern is easily taken care of by pointing out in such a case P ?

responds from memory, i.e. exactly as it did last time, as is expected, thus main-
taining M ’s view. For the second concern, if M were able to tell the difference

between P ? and V ? in such a situation, this would imply that it can tell the dif-
ference between a new random tape being used and a new pseudorandom tape.
However such an M could then be used as a black box to create a distinguishing
algorithm for the PRF family which contradicts the families randomness prop-
erty. This leaves the third concern which is dealt with by pointing out that a new
session with V (where V will thus have a new random tape) resulting in a new
response b is only requested by P ? upon receiving a new view. In other words the
random tape used in generating the response b whichM receives for a session, is
created new only if the view at the beginning of a session is new. If the view is
old then the old response (stored in memory by P ?) is used, which implies (from
M ’s point of view) that the same random tape was used to generate b. Thus
the random tape used to produce the message received by M depends only and
completely upon the view before playing b.

As we will show below P ? will succeed in its goal if and only if the execution
of M is j-deciding for V ? and if it guesses the value of j correctly.

Lemma 2. An execution of M is j-deciding for V ? with overwhelming proba-
bility.

Proof. Suppose, by contradiction, that an execution ofM is hard for V ?. In this
case we will show through analysis of the interaction between M and V ? that
this execution of M needs exponential time. Specifically we show, by induction
on the level i, that M must perform exponentially (in k) many rewinds.

By definition of a hard execution for V ?,M must perform at least one rewind
for each session it solves when interacting with V ?. In particular this means that
for any new session at level i = p, M must rewind. The same holds true at level
i−1. Now since this is a hard simulator, for every level at least one of the rewinds
leads to a new view upon receiving ai−1. This implies that when V ? initiates a
session at level i it will also have a new view, compared to all previous sessions
at level i, and thus will use a new random string r′i. In other words this will be
a new session and will therefore require M to rewind again since this is a hard
execution for V ?.

Again since this is a hard execution for V ?, there must be a rewind after bi−1

has been received which leads to a new view at level i− 1, which means at least
2 new sessions at level i will need to be solved. Therefore at least 2 rewinds are
required to solve all sessions at level i. The first rewind being used to solve the
first session which must be successfully completed before bi−1 is sent, and the
second rewind being used to solve the new session (with the new view) created
after the rewind at level i− 1.

Thus by induction M must perform at least:
∑p

i=1 2
i−1 = 2p − 1 rewinds.

Since the expected polynomial-time of M is polynomial in k and p = POLY(k), a
hard execution for V ? can only happen with negligible probability.

Result. Since by Lemma 2, the execution of M is j-deciding for V ? and by
lemma 1, M essentially acts the same when interacting with P ? in the setup

described in P ?’s definition, we can conclude that an execution ofM is j-deciding
for P ? as well with overwhelming probability.

Now P ? has a (non-negligible) probability 1
p
of correctly guessing j′ = j and

in such a case, by the definition of a j-deciding execution there will be at least one
session where M causes no new view between beginning and end of (aj , bj , cj)
when it is solved for the first time. (Specifically there will be at least one session
where Ṽ ? outputs (cj′ , viewṼ ?) such that the registry V iew = viewṼ ? .) This
means that P ? will successfully complete at least one session with V . Therefore
by soundness of 〈P, V 〉 we have shown that on input a false statement, M will
with overwhelming probability output a reject transcript.

To conclude that we have now a deciding algorithm D we need to first deal
with the small matter of M running in expected polynomial-time rather then
strict polynomial-time. This is dealt with in the same way as in [15] (remark
6.1), namely D simply terminates the execution of M after a fixed polynomial
number of steps, chosen in such a way that M has a good chance of simulating
the conversation.

Thus with proposition 1 and proposition 2 we have shown the efficient al-
gorithm D will, with overwhelming probability, decide correctly contradicting
L /∈ BPP.

Extension. As we have pointed out, the proof presented in this paper only applies
to conversation-based argument systems. We remark that all argument systems
known to us are indeed conversation-based. We remark though that our proof
can be extended to cover all argument systems by considering an adversarial
verifier V ? that imposes a more sophisticated schedule and rejects with some
non-negligible probability the interactions.

4 3-Round RZK Proofs in the UPK model

In this section we present the first 3-round rZK proof (in contrast to argu-
ment) system with concurrent soundness for all NP in the UPK model. More-
over, our construction does not need hardness assumptions with respect to
superpolynomial-time algorithms (i.e., complexity leveraging). Similarly to the
constant-round zero-knowledge proofs in the plain model of [18], we use at the
beginning (i.e., in our case the construction of the public file) an uncondition-
ally hiding commitment scheme. Obviously this can be implemented in one
round (therefore in the UPK model) under the assumption that non-interactive
unconditionally-hiding commitments exist. This is a strong assumption since so
far no construction of non-interactive unconditionally-hiding commitments has
been given in the plain model. Therefore, according to the current state-of-the-
art, some variations of the model have to be considered. For instance a two-round
interactive preprocessing allows to commit with unconditional hiding. This can
be alternatively implemented by requiring first a non-interactive set-up stage
performed by the provers, then a non-interactive set-up stage performed by the
verifiers on input the output of the stage of the provers.

Notice that the hash-based commitment scheme used in the preprocessing
stage in [14] actually is a non-interactive unconditionally hiding commitment
scheme. However such a scheme can only achieve security with respect to uniform
adversarial verifiers [19]. In our construction by using hash-based commitments
we obtain the same security achieved in [14].

We stress that the 3-round rZK argument system with concurrent soundness
presented in [14] is not a proof system since the verifier sends to the prover a non-
interactive zero-knowledge proof of knowledge that is only computational zero
knowledge. Moreover, if the proof system of [18] is implemented in 3 rounds in
the UPKmodel, the adversarial verifier can play the second round by choosing one
of the polynomially bounded number of public keys and therefore the simulator
can not complete the proof with the same probability of the honest prover.

High-level overview. The main idea of the previous constructions of resettable
zero-knowledge argument systems in the public-key models, is that the simula-
tor obtains (by means of rewinds) the secret key (or at least the output of a
computation that needs the secret key) of the verifier and then can perform a
straight-line simulation. However, when the adversarial prover is computation-
ally unbounded, on input the public key of the verifier, the prover can compute
the secret key and then he could succeed in proving a false statement. We there-
fore use a different technique. We assume that the verifier generates a public
key that corresponds to a super-polynomial number of secret keys each with
the same probability. Moreover, we assume that no polynomial-time adversarial
verifier can compute more than a bounded polynomial-number of secret keys. A
good candidate for this component is a non-interactive unconditionally hiding
commitment scheme. Indeed, in this case a commitment corresponds to any pos-
sible message of the corresponding message space. This guarantees that even an
unbounded prover, by simply looking at the public key of the verifier, does not
get any information about the secret key of the verifier. Moreover the binding
property guarantees that the polynomial-time adversarial verifier does not find
a pair of messages that correspond to the same commitment. This is important
for the zero-knowledge property since we will use the fact that the simulator
and the verifier will know the same secret key. Indeed, the mere possession of
one valid secret key does not work since the unbounded prover can compute
any secret and therefore could use it for proving false statements. It is therefore
necessary to formalize that only knowledge of the specific secret key known by
the verifier allows one to simulate the proof without knowledge of the witness
for the statement on input.

We formalize this idea by requiring that the prover commits to the wit-
ness by means of an unconditionally binding commitment scheme, the verifier
sends his secret key and then the prover uses a one-round resettable witness-
indistinguishable proof system (e.g., using a ZAP [20], by assuming that the
verifier puts in his public key also the first message of the ZAP) for proving that
the committed witness, is either a witness for “x ∈ L” or is precisely the secret
key sent by the verifier so far (here we use the FLS-paradigm [21]). Intuitively,
the protocol is sound with respect to an unbounded prover since when the prover

commits to the witness, he has only seen an unconditionally hiding commitment.
Therefore he has no advantage for guessing the specific secret key known to the
verifier in the set of all possible secret keys. However, notice that the verifier can
not use more than once a public key. The protocol is zero-knowledge because
the simulator extracts the only secret key that the adversarial verifier knows.
Moreover, the fact that the simulator uses a different witness with respect to the
one used by the prover in the last proof is not detected by a polynomial-time
resetting adversarial verifier since the use of a different witness is plugged in a
resettable witness indistinguishable proof system.

The formal protocol considers a bounded polynomial number of public keys
since the protocol works in the upperbounded (UPK) public-key model. Since in
each session the verifier uses a different secret key, we obtain also concurrent
soundness with only 3 rounds.

References

1. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof Systems. SIAM J. on Computing 18 (1989) 186–208

2. Dwork, C., Naor, M., Sahai, A.: Concurrent Zero-Knowledge. Proc. of STOC ’98,
ACM (1998) 409–418

3. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable Zero-Knowledge.
Proc. of STOC ’00, ACM (2000) 235–244

4. Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-Box Concurrent Zero-
Knowledge Requires ω(logn) Rounds. Proc. of STOC ’01, ACM (2001) 570–579

5. Barak, B.: How to Go Beyond the Black-Box Simulation Barrier. Proc. of FOCS
’01, (2001) 106–115

6. Persiano, G., Visconti, I.: Single-Prover Concurrent Zero Knowledge in Almost
Constant Rounds. Proc. of ICALP ’05. LNCS, Springer Verlag (2005)

7. Dwork, C., Sahai, A.: Concurrent Zero-Knowledge: Reducing the Need for Timing
Constraints. Proc. of Crypto ’98. Vol. 1462 of LNCS. (1998) 442–457

8. Goldreich, O.: Concurrent Zero-Knowledge with Timing, Revisited. Proc. of STOC
’02, ACM (2002) 332–340

9. Damgard, I.: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
Proc. of Eurocrypt ’00. Vol. 1807 of LNCS (2000) 418–430

10. Blum, M., De Santis, A., Micali, S., Persiano, G.: Non-Interactive Zero-Knowledge.
SIAM J. on Computing 20 (1991) 1084–1118

11. Micali, S., Reyzin, L.: Soundness in the Public-Key Model. Proc. of Crypto ’01.
Vol. 2139 of LNCS (2001) 542–565

12. Reyzin, L.: Zero-Knowledge with Public Keys. PhD thesis, Massachusetts Institute
of Technology (2001)

13. Di Crescenzo, G., Persiano, G., Visconti, I.: Constant-Round Resettable Zero
Knowledge with Concurrent Soundness in the Bare Public-Key Model. Proc. of
Crypto ’04. Vol. 3152 of LNCS (2004) 237–253

14. Micali, S., Reyzin, L.: Min-Round Resettable Zero-Knowledge in the Public-key
Model. Proc. of Eurocrypt ’01. Vol. 2045 of LNCS (2001) 373–393

15. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
SIAM J. on Computing 25 (1996) 169–192

16. Kilian, J., Petrank, E., Rackoff, C.: Lower Bounds for Zero Knowledge on the
Internet. Proc. of FOCS ’98. (1998) 484–492

17. Rosen, A.: A Note on the Round-Complexity of Concurrent Zero-Knowledge. Proc.
of Crypto ’00. Vol. 1880 of LNCS (2000) 451–468

18. Goldreich, O., Kahan, A.: How to Construct Constant-Round Zero-Knowledge
Proof Systems for NP. Journal of Cryptology 9 (1996) 167–190

19. Reyzin, L.: Personal communication (2005)

20. Dwork, C., Naor, M.: Zaps and their Applications. Proc. of FOCS ’00. (2000)
283–293

21. Feige, U., Lapidot, D., Shamir, A.: Multiple Non-Interactive Zero Knowledge
Proofs Under General Assumptions. SIAM J. on Computing 29 (1999) 1–28

Common input: security parameter k, public key pk and “x ∈ L”.
P ? Setup:

1. P ? chooses a random j′ ← [1, p = POLY(k)].
2. P ? initializes Ṽ ? with j′ and pk on its input tape.
3. P ? initializes M with the public file generated by Ṽ ?. Further P ? con-

nects the communication tapes of M and Ṽ ? so that they interact with
each other.

4. During the entire interaction P ? will maintain the set S =
{V iewṼ ? , bj′} of views given in output by Ṽ ? at level j′ and the corre-
sponding responses written back by V . This set is initialized as empty.

5. During the entire interaction P ? will maintain the registry V iew which
is initialized as empty. (This will be used to keep track of the defining
properties of the current open session with V .)

6. P ? initiates Ṽ ? with the statement “x ∈ L” all the while proxying
between V and Ṽ ?.

P ? Interaction:

– If Ṽ ? outputs a view V iewṼ ? (we denote by aj′ the most recent first
round for level j′ of V iewṼ ?) then P ? checks if the view is already in
S:
• TRUE: Respond with the corresponding bj′ from S.
• FALSE: Close any open session with V and begin a new one. Set the

registry V iew = V iewṼ ? . Send aj′ to V receiving bj′ in response.
Append (V iewṼ ? , bj′) to S. And finally write bj′ to Ṽ ?’s input tape.

– If Ṽ ? outputs (cj′ , V iewṼ ?), then if (aj′ , bj′ , cj′) is not an accepting
transcript then P ? sends back an abort to Ṽ ?; otherwise P ? checks if
V iew = V iewṼ ? :
• TRUE: Forward cj′ to V thus completing the session with V .
• FALSE: Drop cj′ .

Fig. 3. Using M as a black box to convince V of a false statement.

