
Amplifying Collision Resistance:
A Complexity-Theoretic Treatment

Ran Canetti1⋆, Ron Rivest2, Madhu Sudan2,
Luca Trevisan3⋆⋆, Salil Vadhan4⋆ ⋆ ⋆, and Hoeteck Wee3†

1 IBM Research,canetti@us.ibm.com
2 MIT CSAIL, {rivest,madhu}@mit.edu

3 UC Berkeley,{luca,hoeteck}@cs.berkeley.edu
4 Harvard University,salil@eecs.harvard.edu

Abstract. We initiate a complexity-theoretic treatment of hardness amplification
for collision-resistant hash functions, namely the transformation of weakly
collision-resistant hash functions into strongly collision-resistant ones in the
standard model of computation. We measure the level of collision resistance
by the maximum probability, over the choice of the key, for which an efficient
adversary can find a collision. The goal is to obtain constructions with short
output, short keys, small loss in adversarial complexity tolerated, and a good
trade-off between compression ratio and computational complexity. We provide
an analysis of several simple constructions, and show that many of the parameters
achieved by our constructions are almost optimal in some sense.

Keywords. collision resistance, hash functions, hardness amplification, combin-
ers

1 Introduction

Constructing collision-resistant hash functions is a central problem in cryptography,
both from the foundational and the practical points of view.The goal is to construct
length-decreasing functions for which it is infeasible to find two distinct inputs with
the same output. This problem has received much attention over the past two decades.
Still, coming up with constructions that are efficient enough to be of use in practice
and at the same time enjoy rigorous security guarantees (say, based on the hardness
of some well-studied problem) has turned out to be elusive. We also seem unable to
construct collision-resistant functions from potentially simpler primitives, c.f. [25]. The
problem is highlighted by the repeated attacks on the popular MD4, MD5 and SHA1
hash functions (refer to [20] and references therein).

⋆ Supported by NSF grants CFF-0635297 and Cybertrust 0430450.
⋆⋆ Supported by NSF grant CCF-0515231.

⋆ ⋆ ⋆ Supported by NSF grants CNS-0430336 and CCF-0133096, and ONR grant N00014-04-1-
0478.

† Work done while visiting IBM Research, IPAM and Columbia University, the latter supported
by NSF grants CCF-0515231 and CCF-0347839.

2 R. Canetti, R. Rivest, M. Sudan, L. Trevisan, S. Vadhan and H. Wee

Given this state of affairs, it is natural to ask whether one can “bootstrap” collision
resistance by constructing “full-fledged” collision-resistant hash functions (CRHF)
from “weak” ones. That is, are there general mechanisms for transforming hash
functions, for which it is “somewhat easy” (but not completely trivial) to find collisions,
into one for which it is infeasible to find collisions? In addition to providing rigorous
ways to improve the collision resistance of hash functions,such mechanisms could in
themselves suggest methodologies for constructing hash functions “from scratch”.

Several works propose design principles for hash functions, e.g. [17, 4, 14, 3].
These mechanisms can indeed be regarded as “hardness amplification” mechanisms
for collision-resistant hash functions. However, with theexception of [4], which
concentrates on increasing the domain size of the hash function, all the analyses
provided for these mechanisms use idealized models of computation, such as modeling
the underlying building blocks as random functions. Consequently, we do not currently
have constructions that are guaranteed to provide some level of collision resistance
in the standard model of computation, under the sole assumption that the underlying
building blocks have some weaker collision resistance properties. (Recently, the closely
related problem of constructing “combiners” for hash functions has been studied in the
standard model [2, 19]; we discuss this problem in more detail below.)

This state of the art should be contrasted with the “sister problem” of constructing
one-way functions. Here we have a well-established theory of hardness amplification
[27] (see also [11]). That is, we have concrete notions of “strength” of one-way
functions, and constructions that are guaranteed to provide “strong” one-way functions
based on the sole assumption that the underlying building block is a “weak” one-way
function. Several lower bounds for “black-box” hardness amplification are also known,
e.g. [23, 15].

We note that collision resistance often exhibits very different properties than one-
wayness. For one, constructing collision-resistant hash functions calls for different
design principles (e.g. the proposed expander-based one-way function of [10] is very
bad as a collision-resistant function). Furthermore, bothpractice and theory indicate
that collision resistance is considerably harder to achieve than one-wayness, e.g. [6, 26,
25]. Still, except for some specific points highlighted within, we show that it is possible
to translate much of the analysis used in the study of amplification of one-wayness to
the setting of collision resistance.

1.1 This work.

We initiate a study of amplification of collision resistance, in a standard reductionist
complexity-theoretic framework. That is, we first provide ameasure for the “level”
of collision resistance of hash functions. We then considersome constructions and
quantitatively analyze the amount in which they amplify thecollision resistance, along
with a number of efficiency parameters (discussed below).

Model for hash functions. Following [4], we model hash functions as afamily of
functions, where a function in the family is specified via akey. Security is analyzed
for the case where the key is chosen at random (from the space of keys) and made

Amplifying Collision Resistance 3

public. We point out several advantages of this approach. Refer to [21] for a more
detailed discussion. First, it allows for a natural modeling of the adversary as an
algorithm (a circuit) that takes for input a keyκ identifying a functionhκ in the
family and tries to output a collisionx0 6= x1 such thathκ(x0) = hκ(x1). (Such
modeling is not possible for single functions since for any length-reducing function
there always exists an adversary that outputs a collision for that function in constant
time.) Second, this approach supports a simple and natural quantitative measure for the
level of collision resistance: the level of collision resistance is the maximum probability,
over the choice of the key, with which an efficient adversary can find a collision. Third,
current constructions of hash functions can be naturally regarded as keyed function
families. For instance, we may interpret the initialization vector (IV) in SHA0 and
SHA1 as a key. Finally, several collision-finding attacks seems to depend on specific
values or properties of the key in use and work for some keys but not others. Specific
examples include Dobbertin’s attack on MD5 [6], time-memory trade-off attacks, and
attacks on Gibson’s hash function [8]. In particular, it maywell be possible that even
“broken” functions still have a significant fraction of keysfor which attacks are less
successful. On the other hand, it may not be sufficient to simply view an IV as a key,
because the IV may not be incorporated into the computation in a sufficiently strong
way; see the discussion at the end of the introduction.

Parameters. We consider the following parameters for hash functions andhardness
amplification. First and foremost is the level of collision resistance. The goal in hardness
amplification is to reduce the maximum probability that an efficient adversary can find
collisions from1− δ to ǫ, whereǫ andδ are typicallyo(1). Another salient parameter is
the output length. Other parameters include the key size, the number of applications of
the underlying hash function, the the running time (or, complexity) of the adversaries
considered and the “compression ratio” (i.e the ratio of input length to output length).
By itself, the compression ratio is less interesting since we may apply a transformation
due to Merkle and Damgård [17, 4] to increase the compression ratio arbitrarily; this
increases the number of applications of the underlying function but maintains the same
key size and output length. Our goal is to construct hash functions with a high level of
collision resistance, while maintaining short outputs, short keys, and a good trade-off
between compression ratio and number of operations.

Constructions. We analyze two construction for hardness amplification. Thefirst is
based on simple concatenation (possibly folklore) and the second uses error-correcting
codes and was suggested by Knudsen and Preneel [14]. Then, weanalyze two additional
constructions for reducing the key size and the output length respectively.

Amplification via concatenation.The first construction is simple concatenation: we
hash the input using several independently chosen functions and concatenate the hash
values. Formally, given a familyH = {hκ} of hash functions, and a parameterq,
define the familyH′ = {h′

κ1,...,κq
} so thath′

κ1,...,κq
(x) = hκ1

(x) ◦ ... ◦ hκq
(x), where

κ1, ..., κq are independently chosen keys in the familyH. The analysis is essentially
the same as that for classic hardness amplification for one-way functions [27]. The

4 R. Canetti, R. Rivest, M. Sudan, L. Trevisan, S. Vadhan and H. Wee

underlying intuition is that finding collisions inh′
κ1,...,κq

is hard as long as finding
collisions in one ofhκ1

, . . . , hκq
is hard. If the initial maximal probability of finding

collisions isδ, the maximal probability of finding collisions in the new hash family
is (1 − δ)Ω(q) = e−Ω(δq). This means that the improvement in the level of collision
resistance is exponential inq whereas the output length is linear inq.

Amplification via codes.In the second construction, we first encode the input with
an error-correcting code wherein the codeword has lengthq over some large alphabet.
Next, we hash the encoded input usingq independently chosen functions (one for each
of theq symbols in the codeword) and concatenate the hash values as before. In order
to find a collision for this construction, one has to find collisions inmanyof the q
underlying hash functions (as opposed toall q functions as in the previous construction).
This construction was previously analyzed in an idealized setting in [14].

The analysis relies on the idea that finding collisions in thenew hash function is
hard as long as finding collisions inseveralof the q functions is hard (as opposed to
finding collision in just a single function). Indeed, if the initial maximal probability of
finding collisions isδ, then we expect that it is hard to find collisions inδq functions.
To exploit this, we use a code with minimum distance(1−O(δ))q, and for such codes,
we may achieve a rate ofΩ(δ). Consequently this construction allows us to hash an
input that is longer by a factor ofΘ(δq) (compared to the first construction) while still
using onlyq invocations of hash functions from the given family. When compared to
amplifying the domain size via the Merkle-Damgård transformation and then applying
the first construction, the second construction offers aΘ(δq) factor improvement in the
number of hashing operations. The price we pay for this improvement is that for the
sameδ, ǫ (i.e., for fixed levels of collision resistance in the underlying and target hash
functions), the choice ofq for the second construction is a constant multiplicative factor
larger than that for the first construction.

We remark that this analysis yields also hardness amplification for one-way
functions with a logarithmic factor improvement in the security reduction.

Reducing the key size.Next, we demonstrate how to modify both constructions so that
the key size increases only by anadditivelogarithmic term (at the price of increasing
the output length by a constant multiplicative factor). This is done by choosing theq
keys via randomness-efficient sampling using expander graphs. The sampler we require
for the concatenation construction is fairly standard (e.g. randomness-efficient samplers
were exploited in a similar manner in [5]), whereas the coding-theoretic construction
requires a modified analysis of a previous sampler [9].

Reducing the output length.Starting with a familyH of hash functions with output
lengthℓout and parameterq, the first two constructions yield a family with output length
qℓout. We show that for any∆, we may in fact reduce the output length toq·(ℓout−∆).
More generally, we show how to transform any familyH with output lengthℓout into
one with output lengthℓout−∆ with a negligible loss in the level of collision resistance.
However, the complexity of computing the function increases by a multiplicative factor
of 2∆, so the construction is only useful for logarithmic values of ∆.

Amplifying Collision Resistance 5

Limitations. We point out some of the limitations of our constructions andtry to
justify them. A first limitation is that, given a guarantee onthe resilience ofH against
adversaries of a given size, we can only guarantee resilience of the new hash family
H′ against adversaries of much smaller size. A similar limitation is shared by existing
hardness amplification results for one-way functions. Thismay be expected, given that
all our constructions, as well as all existing constructions for hardness amplification
of one-way functions are “black box”. Indeed, evidence thatsuch limitation may be
inherent in “black-box constructions” is given in [11, Chapter 2, Ex 16, p. 96]. In
addition, our constructions increase both the complexity of the hashing and the output
length. To explain the blow-up in these parameters, we provide lower bounds on the
number of hashing operations and output length:

– We establish a matching lower bound (up to multiplicative constants) on the number
of hashing operations used in our first two constructions. The bound holds for
black-box constructions that do not use the input as keys forthe underlying hash
functions. In particular, the number of hashing operationsmust have an inverse
dependency onδ, the initial maximal probability of finding collisions. Thebound
is derived from that for hardness amplification for one-way functions in [15].

– Assuming in addition some natural restrictions on the reduction used in the proof
of security, we show that the output length of the new hash function is at least
Ω(1

δ · ℓout). Our constructions achieve output lengthO(1
δ · ℓout · log 1

ǫ).

While the guarantees provided by our constructions may be too weak to be of real
practical significance, this is unfortunately the state of the art for general constructions.
Providing better guarantees remains a fascinating open problem.

Combiners. Our results pertaining to the output length (namely the fourth construction
and lower bounds thereof) build on the recent work onblack-box combiners for
collision resistance [2, 19, 12]. We briefly recall the notion and results and explain the
connection to hardness amplification.

Black-box combiners for collision resistance.A black-box combiner for collision
resistance is a procedure that givent functionsh1, . . . , ht with output lengthℓout,
computes a single functioñh with the following property: there is an efficient
transformation that given a collision for̃h, outputs collision for each ofh1, . . . , ht.
This guarantees that finding collisions onh̃ is hard as long as finding collisions onone
of h1, . . . , ht is hard. Concatenating the outputs ofh1, . . . , ht on the same input yields
a combiner with output lengtht ·ℓout. Boneh, Boyen and Pietrzak [2, 19] showed that
this trivial combiner is essentially optimal by giving at·(ℓout−O(log n)) lower bound
for deterministicblack-box combiners.

Black-box combiners for collision resistance arise naturally in the context of our
work. Indeed, our first hardness amplification constructionmay be viewed as choosing
κ1, . . . , κq at random and applying the trivial (deterministic) combiner to hκ1

, . . . , hκq
.

In addition, since we deal withfamiliesof functions rather than with single functions,
it makes sense in our model to consider alsorandomizedcombiners (still, for single
functions). We can then incorporate any randomness used by the combiner in the key of

6 R. Canetti, R. Rivest, M. Sudan, L. Trevisan, S. Vadhan and H. Wee

the new hash family. Two natural questions arise here: Can webeat the [2, 19] bound by
using randomized combiners? Alternatively, can the bound be improved by removing
the additive logarithmic factor?

We answer both questions negatively. We first extend the lower bound of [2, 19] to
derive at· (ℓout −O(log n) lower bound on the output length of randomized black-box
combiners. Our lower bound for the output length for hardness amplification builds on
this lower bound. We then construct a randomized black-box combiner with output
length t · (ℓout − Ω(log n)). This result is interesting in itself, since it is the first
non-trivial combiner that beats concatenation. Furthermore, this combiner underlies
our fourth construction mentioned above, which reduces theoutput length of hash
functions. Putting these two results together, we deduce that the optimal randomized
black-box combiner has output lengtht·(ℓout −Θ(log n)).

Combiners for families of hash functions.So far, we’ve discussed the relationship be-
tween combiners for single functions and hardness amplification for function families.
In addition, one may directly study combiners forfamiliesof functions: Givent families
of hash functions with output lengthℓout, construct a single family of hash functions that
is collision-resistant as long as one of thet families is collision-resistant. We note that
it is possible to construct a combiner having output lengtht · (ℓout − O(log n)) using
our randomized black-box combiner. The concurrent work of Fischlin and Lehmann
[7] studies a very similar problem, albeit in an idealized model that only admits generic
attacks on the hash functions.

Extensions. Our positive results for hardness amplification of collision resistance may
be extended to several other variants of collision resistance. Details of these extensions
are deferred to the final version of the paper.

Resistance to correlations.As noted in previous work (e.g. [1]), collision resistance
can be regarded as a special case of “resistance to finding correlations.” That is, for a
givenk-ary relationR, say that a family of functionsH isR-resistant if it is hard given a
randomh ∈ H to findx1, ...xk such thatR(h(x1), ..., h(xk)) holds. In this terminology,
collision resistance is simplyReq-resistance whereReq(y1, y2) iff y1 = y2. CanR-
resistance be amplified for other relations? Can collision resistance be derived from (or
imply) R-resistance for other relationsR? These are interesting questions.

As a small step in this direction, we consider amplification for the “near collision”
relation Rnear, whereRnear(y1, y2) iff the Hamming distance betweeny1 and y2 is
small (see e.g. [16, Sec 9.2.6]). We observe that by encodingthe hash value with
an error-correcting code, we may transform a standard collision-resistant hash family
to a near-collision-resistant hash family. Conversely, given a near-collision-resistant
hash family, one can construct a standard collision-resistant hash family with shorter
output by “decoding” the hash value to the nearest codeword of a covering code. This
yields an amplification theorem for resistance to near-collisions, as a corollary of our
amplification theorems for collision resistance.

Target collision resistance.Our results extend also to the related notion of target
collision resistance (namely, universal one-way hash functions [18]). Here we may

Amplifying Collision Resistance 7

use the same constructions as for collision resistance, except to replace the Merkle-
Damgård domain expansion with that of Shoup [24], and the same analysis goes
through. We stress that the extension should not be taken forgranted, because
techniques for collision resistance do not always extend readily to target collision
resistance; domain expansion is a good example.

Discussion. We discuss some additional aspects of the analysis in this work. First,
we address only collision resistance, which is one out of many desired properties of
“cryptographic hash functions”. In fact, we do not even address properties such as
resistance to finding additional collisions, once a collision is found. Concentrating on
plain collision resistance allows for clearer understanding. In fact, constructing hash
functions achieving even this specific property seems to be challenging enough, as
evidenced by the attacks on MD5 and SHA1.

Another point worth highlighting is that our analysis can beviewed as a demonstra-
tion of the benefits in havingfamiliesof hash functions, where there is some assurance
that finding collisions in one function in the family does notrender other functions in the
family completely insecure. This may suggest a methodologyfor constructingpractical
collision-resistant functions: Design such functions as keyed functions, where the key
is intimately incorporated in the evaluation of the function. This might give some hope
that finding collisions for one value of the key might not helpmuch in finding collisions
for other values of the key. Then, apply a generic amplification mechanism such as
the ones studied here to guarantee strong collision resistanceeven when a significant
fraction of the keys result in weak functions.We stress that, in order to be of value,
the key has to be incorporated in the computation of the function in a strong way. This
fact is exemplified (in the negative) by the MD/SHA line of functions: Although these
functions are often modeled as families of functions that are keyed via the IV, the actual
constructions do not incorporate the IV in the computation in a strong way. And, indeed,
the very recent attacks against such functions (e.g. [26]) seem to work equally well for
all values of the IV. Similarly suspect are related methods for creating a hash function
family from a fixed hash function by treating a portion of the input as key.

Finally, we stress that even though we use asymptotic notation to make our results
more readable, they actually provide concrete bounds on theparameters achieved.
Moreover, we provide uniform reductions in all of our proofsof security, so even though
the positive results are stated for nonuniform adversaries, it is easy to derive an analogue
of those results for uniform adversaries.

Organization. We begin with by reviewing quantitative definitions of collision
resistance for CRHFs in Section 2. We present all of our constructions for hardness
amplification, key size reduction and output length reduction in Section 3, and our lower
bounds in Section 4. Given that randomized black-box combiners are a recurring tool
in this paper, we define them in Section 2 and present the construction in Section 3 and
the matching lower bound in Section 4.

8 R. Canetti, R. Rivest, M. Sudan, L. Trevisan, S. Vadhan and H. Wee

2 Preliminaries

2.1 Quantitative definitions of collision resistance

A family of hash functions is a collection of polynomial-time computable functions
H = {Hn : {0, 1}ℓkey(n) × {0, 1}ℓin(n) → {0, 1}ℓout(n)}, wheren is the security
parameter, satisfyingℓout(n) < ℓin(n). We refer toℓin, ℓout, ℓkey as the input length,
output length and key size of the hash function. We usehκ : {0, 1}ℓin(n) → {0, 1}ℓout(n)

to denote the functionHn(κ, ·) associated with the keyκ ∈ {0, 1}ℓkey(n). We call a pair
(x0, x1) satisfyingx0 6= x1 andhκ(x0) = hκ(x1) a collision forhκ.

For anyn, we say thatHn is an(s, ǫ)-CRHF (collision-resistant hash function) if
for every nonuniformA of sizes,

Pr[κ← {0, 1}ℓkey(n); A(κ) outputs a collision forhκ] < ǫ

(The quantityǫ is what we refer to in the introduction as the level of collision resistance.)
For notational simplicity, we omit references ton whenever the context is clear (e.g.
H : {0, 1}ℓkey × {0, 1}ℓin → {0, 1}ℓout).

We will also refer to asymptotic notions of CRHFs. As with one-way functions, we
want to consider the entire class of nonuniform polynomial-time adversaries (although
we do provide uniform reductions in our proofs of security).Formally, we say that
H is a strong CRHF if for every polynomialp(·) and every sufficiently largen, H
is a (p(n), 1

p(n))-CRHF. Similarly, we say thatH is a weak CRHF if there exists a
constantc such that for every polynomialp(·) and every sufficiently largen, H is a
(p(n), 1 − 1

nc)-CRHF. Standard cryptographic applications of hash functions actually
require strong CRHFs, so whenever the strength of the CRHF isnot qualified, we will
refer to strong CRHFs.

Public-coin vs. secret-coin hash functions.As noted in [13], a distinction needs to
be made between public-coin and secret-coin hash functions. In a public-coin hash
function, the key corresponds to a uniformly generated random string and the key
generation algorithm computes the identity function. In a secret-coin hash function,
the distribution of the key may be any samplable distribution. For simplicity and clarity,
our definition and exposition refer to public-coin hash functions. It is easy to see that
all of our constructions (Constructions 1, 2 and 4) apart from the reduction in key size
using randomness-efficient sampling extend to secret-coinhash functions.

2.2 Black-box combiners for collision resistance

We generalize the notion of black-box combiners from [2, 19]so as allow randomized
constructions.

Definition 1. We say that(C, R) is a randomized black-box (t′, t)-combiner for
collision resistance if C, R are deterministic poly-time oracle TMs, and there exists
some negligible functionν(·) such that for allh1, . . . , ht : {0, 1}ℓin → {0, 1}ℓout:

Amplifying Collision Resistance 9

CONSTRUCTION. For every r, Ch1,...,ht

(r, ·) computes a functioñhr :
{0, 1}ℓin

′

→ {0, 1}ℓout
′

, whereℓin
′ > ℓout

′.

REDUCTION. With probability1 − ν(n) overr: if (x̃0, x̃1) is a collision for
h̃r, thenRh1,...,ht

(r, x̃0, x̃1) outputst pairs(x1
0, x

1
1), . . . , (x

t
0, x

t
1) such that for

at leastt− t′ + 1 valuesi ∈ {1, . . . , t}, (xi
0, x

i
1) is a collision forhi.

Intuitively, the guarantee is that if it is hard to find collisions on somet′ of the functions
h1, . . . , ht, then with overwhelming probability overr, it is hard to find collisions on
h̃r. Our definition generalizes that in [2, 19] in that we provideboth C andR with
additional “randomness”r, which is interpreted as a key. Specifically, in the previous
definitions,C computes a single function, whereas in our definitionC computes a
family of functions{h̃r}. In our construction,R is deterministic, whereas our lower
bound (as with previous work) extends to randomized reductionsR.

3 Constructions

The goal of hardness amplification is to deduce the existenceof strong CRHFs from
weak CRHFs. Fix a security parametern. The parameters for the new CRHFH′ will
be different from those for the starting CRHFH: we useℓin, ℓout, ℓkey to denote the
parameters for a(s, 1 − δ)-CRHF that we start with, andℓin

′, ℓout
′, ℓkey

′ to denote the
parameters for the(s′, ǫ)-CRHF that we are about to construct. Typical values of the
parameters areδ = 1

poly(n) andǫ = neg(n). As outlined in the introduction, we begin
two basic constructions for hardness amplification (Sections 3.1 and 3.2) and then show
how to reduce the key size (Section 3.3) and output length (Section 3.4). A summary of
the parameters is given in Fig 1.

Domain expansion.We compensate the loss in compression ratio in our constructions
by first applying Merkle-Damgård domain expansion [4, 17],noting that domain
expansion for collision resistance preserves the hardnessparameter.

Proposition 0 ([4, 17]).Fix some security parametern. Suppose there exists a(s, ǫ)-
CRHF Hn from {0, 1}ℓkey × {0, 1}ℓin to {0, 1}ℓout computable in timeT . Then,
Construction 0 yields an(s′, ǫ)-CRHFH′

n from {0, 1}ℓkey
′

× {0, 1}ℓin
′

to {0, 1}ℓout
′

with the following parameters:

– ℓout
′ = ℓout andℓkey

′ = ℓkey

– # hash calls =ℓin
′−ℓin

ℓout−ℓin

– security reduction :s′ = s− ℓin
′ · T

3.1 Amplification via concatenation

We begin with a description and the analysis of the basic concatenation construction.
The analysis we provide is very similar to that for hardness amplification for one-way
functions via direct product [27, 11]. The presentations issomewhat simpler. We also
make a small modification to the analysis that facilitates the analysis of the coding-
theoretic construction, discussed in the next section.

10 R. Canetti, R. Rivest, M. Sudan, L. Trevisan, S. Vadhan andH. Wee

Construction 1 (basic).Pick q = ⌈ 2δ ln 2
ǫ ⌉ independent keysκ1, . . . , κq. On inputx ∈

{0, 1}ℓin, outputhκ1
(x) ◦ hκ2

(x) ◦ · · · ◦ hκq
(x)

In using the same input to the hash functions under all of theq keysκ1, . . . , κq,
we ensure that a collisionx0, x1 for the key(κ1, . . . , κq) is also a collision for the
underlying hash function on each of the keysκ1, . . . , κq.

Proposition 1 (Construction 1).Fix some security parametern. Suppose there exists
a (s, 1 − δ)-CRHFHn from {0, 1}ℓkey × {0, 1}ℓin to {0, 1}ℓout. Then, Construction 1
yields an(s′, ǫ)-CRHFH′

n from {0, 1}ℓkey
′

× {0, 1}ℓin
′

to {0, 1}ℓout
′

with the following
parameters:

– ℓin
′ = ℓin andℓout

′ = Θ(ℓout

δ log 1
ǫ) andℓkey = Θ(

ℓkey

δ log 1
ǫ)

– # hash calls =Θ(ℓin
′

δℓin
log 1

ǫ)

– security reduction :s′ = s · Θ(1
ǫ log 1

ǫ log 1
δ)−1

Proof. SupposeA finds collisions onH′
n with probability at leastǫ, and consider the

following algorithmA′ for finding collisions onHn: on inputκ,

1. choosesκ1, . . . , κq at random,i ∈ [q] at random, and setsκi = κ.
2. runsA(κ1, . . . , κq) to obtainx0, x1, and outputsx0, x1.

To analyze the success probability forA′, first fix any setS of keysκ of density δ
2 .

Intuitively, S represents the set of keys for which it is hard forA′ to find a collision.

Pr
κ1,...,κq

[A(κ1, . . . , κq) outputs a collision
∧

at least one of theκj ’s lies inS]

≥ ǫ− (1 − δ
2)q ≥ ǫ

2

Hence,

Pr
κ1,...,κq,i

[A(κ1, . . . , κq) outputs a collision
∧

κi ∈ S] ≥ ǫ
2q

On the other hand,

Pr
κ1,...,κq,i

[A(κ1, . . . , κq) outputs a collision
∧

κi ∈ S]

= δ
2 · Pr

κ∈S
Pr[A′(κ) outputs a collision forhκ]

≤ δ
2 ·max

κ∈S
Pr[A′(κ) outputs a collision forhκ]

This implies that for any setS of densityδ
2 ,

max
κ∈S

Pr[A′(κ) outputs a collision forhκ] ≥ ǫ
δq

Hence,

Pr
κ

[

Pr[A′(κ) outputs a collision forhκ] ≥ ǫ
δq

]

≥ 1− δ
2

By runningA′ a total of δq
ǫ log 1

δ = O(1
ǫ log 1

ǫ log 1
δ) times, we find collisions onHn

for a 1 − δ
2 fraction of keys with probability1 − δ

2 . This means we find collisions on
Hn for a random key with probability at least1− δ. ⊓⊔

Amplifying Collision Resistance 11

3.2 Amplification via codes

Note how the basic construction loses anO(q) factor in the compression ratio because
we repeat the same input for each of theq keys. The following work-around was
suggested in [14]. We first encode the inputx using an error-correcting codeC to obtain
q symbolsC(x)1, . . . , C(x)q ∈ {0, 1}ℓin, and then we hash each of theq blocks with
independently chosen hash functionshκ1

, . . . , hκq
and output the concatenation. Note

that the adversary may upon receiving theq keys only produce collisions wherein the
codewords disagree only on the “easy” keys. For the analysisto go through, we argue
that w.h.p., aδ

4 fraction of the keys (and not just one key) must be “hard”. If we pick
C to be a code with relative distance1 − δ

8 , we are guaranteed there is aδ
8 fraction of

positions wherein the codewords disagree and the corresponding keys are “hard”.

Construction 2 (coding-theoretic).Pick q = ⌈ 16δ ln 2
ǫ ⌉ independent keysκ1, . . . , κq.

Let C : {0, 1}ℓin
′

→ ({0, 1}ℓin)q be an error-correcting code with minimum relative
distance1 − δ

8 (e.g., the Reed-Solomon code), whereℓin
′ = Θ(δqℓin). On inputx ∈

{0, 1}ℓin
′

, outputhκ1
(C(x)1) ◦ hκ2

(C(x)2) ◦ · · · ◦ hκq
(C(x)q).

Proposition 2 (Construction 2).Fix some security parametern. Suppose there exists
a (s, 1 − δ)-CRHFHn from {0, 1}ℓkey × {0, 1}ℓin to {0, 1}ℓout. Then, Construction 2
yields an(s′, ǫ)-CRHFH′

n from {0, 1}ℓkey
′

× {0, 1}ℓin
′

to {0, 1}ℓout
′

with the following
parameters:

– ℓin
′ = Θ(ℓin log 1

ǫ) andℓout
′ = Θ(ℓout

δ log 1
ǫ) andℓkey

′ = Θ(
ℓkey

δ log 1
ǫ)

– # hash calls =Θ(1
δ log 1

ǫ)

– security reduction :s′ = s · Θ(1
ǫ log 1

δ)−1

Proof. SupposeA finds collisions onH′
n with probability at leastǫ, and consider the

following algorithmA′ for finding collisions onHn: on inputκ,

1. choosesκ1, . . . , κq at random,i ∈ [q] at random, and setsκi = κ.
2. runsA(κ1, . . . , κq) to obtainx0, x1, and outputsC(x0)i, C(x1)i.

To analyze the success probability forA′, first fix any setS of keysκ of densityδ
2 . By

a Chernoff bound (the multiplicative variant), we have

Pr
κ1,...,κq

[A(κ1, . . . , κq) outputs a collision(x0, x1)
∧

at leastδ4 fraction ofκj ’s lies inS]

≥ ǫ− e−δq/16 ≥ ǫ
2

Conditioned on the above event, for aδ8 fraction of j’s in {1, 2, . . . , q}, we have
C(x0)j 6= C(x1)j andκj ∈ S (since the former occurs for a1 − δ

8 fraction of j’s
and the latter occurs for aδ4 fraction ofj’s). Hence,

Pr
κ1,...,κq,i

[A(κ1, . . . , κq) outputs a collision(x0, x1) ∧ κi ∈ S ∧C(x0)i 6= C(x1)i] ≥
δǫ
16

12 R. Canetti, R. Rivest, M. Sudan, L. Trevisan, S. Vadhan andH. Wee

On the other hand,

Pr
κ1,...,κq,i

[A(κ1, . . . , κq) outputs a collision(x0, x1) ∧ κi ∈ S ∧ C(x0)i 6= C(x1)i]

= δ
2 · Pr

κ∈S
Pr[A′(κ) outputs a collision forhκ]

≤ δ
2 ·max

κ∈S
Pr[A′(κ) outputs a collision forhκ]

This implies that for any setS of densityδ
2 ,

max
κ∈S

Pr[A′(κ) outputs a collision forhκ] ≥ ǫ
8

Hence,

Pr
κ

[

Pr[A′(κ) outputs a collision forhκ] ≥ ǫ
8

]

≥ 1− δ
2

Again by runningA′ a total ofO(1
ǫ log 1

δ) times, we can find collisions onHn with
probability1− δ. ⊓⊔

3.3 Reducing the key size

From a theoretical point of view, it is useful to have hash functions with short
descriptions (i.e. short keys). Short keys may also be of interest from a practical point
of view, although for the most common application of collision-resistant hash functions
(digital signatures) the key would be standardized and onlydistributed once. Starting
with a 160-bit key, the above transformations could yield a key that ismuch longer.
Fortunately, there is no inherent cause for this blow-up: wemay reduce the key size in
each of the above constructions using randomness-efficientsampling [9], namely, we
want to sampleq keys in{0, 1}ℓkey usingr bits of randomness, wherer ≪ qℓkey.

To accomplish this, we will use the randomness-efficient hitter in [9, Appendix C],
with a slightly different analysis showing that for the parameters we are interested in,
the construction satisfies a stronger sampler-like property. The weaker hitter guarantee
is sufficient to reduce the key size for Construction 1, whereas the stronger sampler-like
property is necessary for Construction 2. For our application, we will also require that
that the hitter satisfy a certain reconstructibility property, previously used in [5]. This
is used in the security reduction to generate challenges forthe adversary breakingH′

given a key forH.
We stress here that for specific concrete parameters, we may use different choices

of hitters and samplers for ease of implementation and optimality for those specific
parameters.

Lemma 1. There exists a constantc such that for everyδ, ǫ > 0, there is an efficient
randomized procedureG : {0, 1}r → ({0, 1}ℓkey)q with the following properties:

— (sampler) for every subsetS ⊆ {0, 1}ℓkey of densityδ, with probability at least1−ǫ,
at leastδq

2c of the strings output byG lie in S.
— (complexity) the randomness complexityr is ℓkey + O(log 1

ǫ) and the sample
complexityq is O(1

δ log 1
ǫ).

Amplifying Collision Resistance 13

— (reconstructible) there exists an efficient algorithm that on input(i, x), outputs a
uniformly random element from the set{σ | G(σ)i = x}.

Proof (sketch).The construction (based on that in [9]) proceeds in three stages:

– First, we construct a hitter that generatesc
δ samples in{0, 1}ℓkey usingℓkey random

bits with the following property: for every subsetS of {0, 1}ℓkey with densityδ,
with probability at least23 , at least one sample lies inS. We may obtain such a
hitter using Ramanujan graphs of degreec

δ and vertex set{0, 1}ℓkey, wherein we
pick a random vertexv, and the samples are the indices of the neighbors ofv [9].

– Next, we construct a sampler that generatesd = O(log 1
ǫ) samples in{0, 1}ℓkey

usingℓkey + O(d) random bits with the following property: for every subsetS′ of
{0, 1}ℓkey with density2

3 , with probability at least1− ǫ, at least12 of the samples lie
in S′. We may obtain such a sampler by taking a random walk of lengthd− 1 on a
constant-degree expander with vertex set{0, 1}ℓkey [9].

– Finally, we compose the sampler and the hitter as follows: weconsider a random
walk of lengthd−1 on the expander, and use each of thed vertices along the path as
random coins for the hitter. Overall, we will run the hitterd times, which generate
a total ofq = d · c

δ samples using a total ofℓkey + O(d) random bits. This yields
the desired query and randomness complexity.

The sampler guarantee follows fairly readily. FixS of densityδ. Let S′ be the set of
random coins for the hitter such that at least one sample liesin S, soS′ has density
at least23 . We know that with probability at least1 − ǫ (over the random walk), we
generate at leastd2 samples inS′, which in turn yieldsd

2 = δq
2c samples that lie inS.

Finally, we check each of the two components in our construction is reconstructible,
from which it follows that the combined construction is alsoreconstructible. For the
expander-based hitter, this means that giveni, x, we need to compute the vertexv whose
i’th neighbor is labeledx. For the expander-based sampler, we need to giveni, x, sample
a start vertex and a path such that thei’th vertex on the path is labeledx. Indeed, both
properties are readily satisfied for standard explicit constructions of constant-degree
expanders. ⊓⊔

The next construction is obtained from Construction 2 by replacing independent
sampling of theq keys with randomness-efficient sampling usingG, and using a code
with slightly different parameters:

Construction 3 (reduced key size).RunG to obtainq keysκ1, . . . , κq ∈ {0, 1}ℓkey.
Let C : {0, 1}ℓin

′

→ ({0, 1}ℓin)q be an error-correcting code with minimum relative
distance1 − δ

4c (e.g., the Reed-Solomon code), whereℓin
′ = Θ(δqℓin). On inputx ∈

{0, 1}ℓin
′

, outputhκ1
(C(x)1) ◦ hκ2

(C(x)2) ◦ · · · ◦ hκq
(C(x)q).

It is straight-forward to verify that an analogue of Proposition 2 holds for Con-
struction 3 if the CRHF is public-coin, and with essentiallythe same parameters except
that the key size is now reduced toℓkey + O(log 1

ǫ) (i.e., the randomness complexity
of G). We now state our main result for hardness amplification of collision-resistance,
which is essentially a restatement of Proposition 2 for independent sampling and for
randomness-efficient sampling:

14 R. Canetti, R. Rivest, M. Sudan, L. Trevisan, S. Vadhan andH. Wee

Parameters Construction 0 Construction 1 Construction 2 Construction 4

input length ℓin
′

ℓin Θ(ℓin log 1

ǫ
) ℓin − ∆ − log ℓin

output length ℓout Θ(ℓout

δ
log 1

ǫ
) Θ(ℓout

δ
log 1

ǫ
) ℓout − ∆

hash calls ℓin
′−ℓin

ℓout−ℓin
Θ(1

δ
log 1

ǫ
) Θ(1

δ
log 1

ǫ
) Θ(2∆

ℓin)

key size ℓkey Θ(
ℓkey

δ
log 1

ǫ
) Θ(

ℓkey

δ
log 1

ǫ
) Θ(ℓin

2 + ∆)

(public-coin) ℓkey ℓkey + Θ(log 1

ǫ
) ℓkey + Θ(log 1

ǫ
) Θ(ℓin

2 + ∆)

Fig. 1. Summary of parameters for Constructions 0, 1, 2, & 4. In orderto compare constructions
1 and 2 on inputs of the same length, we could apply the Merkle-Damgård transformation first, in
which case the latter offers aΘ(log 1

ǫ
) factor improvement in the number of hashing operations.

For the key size, the second line refers that achieved using Construction 3 for public-coin hash
functions.

Theorem 1. Fix some security parametern. Suppose there exists a(s, 1 − δ)-CRHF
Hn from{0, 1}ℓkey × {0, 1}ℓin to {0, 1}ℓout. Then, there exists an(s′, ǫ)-CRHFH′

n from
{0, 1}ℓkey

′

× {0, 1}ℓin
′

to {0, 1}ℓout
′

with the following parameters:

– ℓin
′ = Θ(ℓin log 1

ǫ) andℓout
′ = Θ(ℓout

δ log 1
ǫ) andℓkey

′ = Θ(
ℓkey

δ log 1
ǫ)

– # hash calls =Θ(1
δ log 1

ǫ)
– security reduction :s′ = s · Θ(1

ǫ log 1
δ)−1

Moreover, if the CRHF is public-coin, then we may reduceℓkey
′ to ℓkey + Θ(log 1

ǫ).

3.4 Reducing the output length

We show that it is possible to reduce the output size of any CRHF by an additive factor
of ∆, with a negligible loss in the the probability of finding collisions, but at the price
of an exponential (in∆) multiplicative increase in the complexity of the function, along
with a similar decrease in the size of adversaries tolerated. This imposes a limitation of
∆ = O(log n) for all reasonable settings.

Proposition 3. Suppose there exists a(s, ǫ)-CRHFH from {0, 1}ℓin to {0, 1}ℓout. Let
∆ = O(log n). Then, there exists a(s − poly(2∆, n), ǫ + 2−Ω(ℓin))-CRHF from
{0, 1}ℓin−∆−log ℓin−2 to {0, 1}ℓout−∆. The complexity of the new CRHF is increases by
a factorpoly(2∆, ℓin).

This result follows the randomized black-box combiner in the following theorem,
settingt′ = t = 1.

Theorem 2. There is a randomized black-box(t′, t)-combiner(C, R) achieving pa-
rametersℓin

′ = ℓin−∆− log ℓin−2 andℓout
′ = (t− t′ +1)·(ℓout−∆) for any positive

∆ such thatℓin
′ > ℓout

′ > 0. The running times ofC andR are polynomial inn and
2∆ and the randomness complexity ofC is O(ℓin

2 + ∆).

Amplifying Collision Resistance 15

We may in fact use this combiner instead of the trivial combiner for our hardness
amplification constructions. However, since we do not optimize on the output length
of our hardness amplification within constant multiplicative factors, it does not make
sense to try to cut down on the additive terms.

Overview of combiner.We begin with the caset′ = t = 1 and supposeh = h1

is “highly regular”, and we have a partition of{0, 1}ℓin into 2ℓin−∆ sets{Sx̃ | y ∈
{0, 1}ℓin−∆} each of size2t with the following property: for everỹx, Sx̃ contains a
unique stringx such thath(x) has prefix0∆. Then, we definẽh(x̃) to be the(ℓout−∆)-
bit suffix of h(x). It is easy to see how every collision(x̃, x̃′) for h̃ yields a collision
(x0, x1) for h. To arrive at the general construction (which is where randomness plays
a role),

– We replace0∆ with a stringz ∈ {0, 1}∆ that is relatively popular in the sense
that it occurs in at least anΩ(1/2∆) fraction of the images ofh. Such az can be
identified by evaluatingh onO(ℓin · 2

2∆) random inputs. To bring the randomness
complexity down toO(ℓin + ∆), we choose these inputs using the randomness-
efficient Boolean sampler for approximating the mean withinan additive error of
1
2 · 2

−∆ with probability1− 2−2ℓin in [9].
– We replace the fixed partitioning with a random partitioninginduced by a family
G of ℓin-wise independent functions from{0, 1}ℓin to {0, 1}ℓin−∆−log ℓin−2. Given
g ∈ G, we takeSx̃ = g−1(x̃). This gives us a partition of{0, 1}ℓin into sets each
of sizeÕ(2∆ℓin). With overwhelming probability overg, for everyx̃, there exists
x ∈ Sx̃ such thath(x) has prefixz (we setx to be the lexicographically first string
with this property).

Construction and analysis.We formally state the construction fort′ = t = 1. For
simplicity, we present the construction using independentsamplesui and defer the
randomness-efficient version to the full version.

Construction 4. Let G = {g : {0, 1}ℓin → {0, 1}ℓin−∆−log ℓin−2} be a family of6ℓin-
wise independent hash functions that such that giveny, the setg−1(y) is computable in
timepoly(2∆, n). (This can be achieved using univariate polynomials of degree6ℓin).
On inputx̃ ∈ {0, 1}ℓin−∆−log ℓin−2 and randomnessr ∈ {0, 1}O(∆+ℓin

2), we compute
h̃r(x̃) ∈ {0, 1}ℓout−∆ as follows:

1. Parser asg ∈ G andu1, . . . , um ∈ {0, 1}ℓin, wherem = Θ(22∆ℓin).
2. Let z ∈ {0, 1}∆ be the lexicographically first string that occurs at least a1/2∆

fraction of times as a prefix amongh(u1), . . . , h(um) (whereh = h1);
3. ComputeSx̃ = g−1(x̃) in order to find a stringx in Sx̃ such thath(x) has prefixz.

Choose the lexicographically first string if there are more than1; output0ℓout−∆ if
no such string exists or if|Sx̃| > 8ℓin · 2

∆.
4. Output the(ℓout −∆)-bit suffix ofh(x).

For generalt′, t, we may simply apply the above construction to each ofh1, . . . , ht−t′+1

and concatenate the output; it will be clear from the analysis that we may use the
same randomnessr for all t functions. Theorem 2 follows readily once we establish
the following technical claim fort′ = t = 1.

16 R. Canetti, R. Rivest, M. Sudan, L. Trevisan, S. Vadhan andH. Wee

Claim. With probability 1 − 2−Ω(ℓin) over r = (g, u1, . . . , um), the following
statements hold simultaneously:

– |Γz| ≥ 2ℓin−∆−1, wherez is as in the construction andΓz = {x ∈ {0, 1}ℓin | h(x)
has prefixz};

– for all x̃, we haveSx̃ ∩ Γz 6= ∅ (whereSx̃ = g−1(x̃));
– for all x̃, we have|Sx̃| ≤ 8ℓin · 2∆.

Suppose we have a collision(x̃0, x̃1) for h̃r, where the conditions in the technical claim
do hold forr. Then, we could inpoly(2∆, ℓin) time compute(x0, x1) ∈ Sx̃0

×Sx̃1
such

thath(x0) = z ◦ hr(x̃0) andh(x1) = z ◦ hr(x̃1). This implies(x0, x1) is a collision
for h.

Proof (of claim).By a Chernoff bound, we have that for each∆-bit prefixw, if w occurs
in a pw fraction of outputs ofh as a prefix, then with probability at least1 − 2−2ℓin

over theui’s, w will occur at most apw + 1
2 · 2

−∆ fraction of times (as a prefix)
among theh(ui)’s. Taking a union bound over all2∆ < 2ℓin prefixes, we see that
with probability at least1 − 2−ℓin, the prefixz must satisfypz ≥

1
2 · 2

−∆ and thus
|Γz| ≥ 2ℓin−∆−1. We assume in the rest of the proof that this is the case. Then,for each
y ∈ {0, 1}ℓin−∆−log ℓin−2: E[|Sx̃ ∪ Γz|] = |Γz| · 2−ℓin+t+log ℓin+2 ≥ 2ℓin. Applying a tail
bound for6ℓin-wise independence [22], we obtain:

Pr
g

[Sx̃ ∩ Γz = ∅] ≤ 2−2ℓin

Taking a union bound over ally ∈ {0, 1}ℓin−∆−log ℓin−2, we have:

Pr
g

[∃y : Sx̃ ∩ Γz = ∅] ≤ 2−2ℓin · 2ℓin−∆−log ℓin−2 = 2−Ω(ℓin)

Finally, for eachy, E[|Sx̃|] = 4ℓin · 2∆. Again, by using the tail bound for6ℓin-wise
independence and a union bound, we havePr[∃y : |Sx̃| > 8ℓin · 2

∆] < 2−Ω(ℓin). ⊓⊔

4 Limitations

We begin by presenting the class of constructions for which we prove lower bounds:

Definition 2. We say that(C, R) is a black-box (1 − δ, ǫ)-amplifier for collision
resistance if C = (Ckey, Chash) is a pair of deterministic (oracle) TMs, andR =
(Rkey, Rcoll) is a pair of randomized (oracle) TMs, and both pairs of TMs runin time
poly(n, 1

δ , 1
ǫ). In addition, for allH = {{0, 1}ℓkey × {0, 1}ℓin → {0, 1}ℓout}:

CONSTRUCTION. C computeH′ = {{0, 1}ℓkey
′

× {0, 1}ℓin
′

→ {0, 1}ℓout
′

}
whereℓout

′ > ℓin
′ as follows: given a keyκ′ and a stringx, we runCkey(κ

′) to

obtainκ1, . . . , κq and then seth′
κ′(x) to beC

hκ1
,...,hκq

hash (κ′, x).

REDUCTION. There exists a constantc such that for every TMA that outputs
a collision onh′

κ′ with probability at leastǫ and any subsetS of {0, 1}ℓkey of
density at leastδ/2, there existsκ ∈ S such that

Pr
σ,Rcoll

[

Rkey(κ; σ) = κ′; RH
coll(i, σ, A(κ′)) outputs a collision onhκ

]

>
(δǫ

n

)c

Amplifying Collision Resistance 17

Note that a black-box amplifier should provide an efficient reduction that converts any
adversaryA that finds collisions inh′

κ′ with probability ǫ into an adversaryA′ that
finds collisions inhκ with probability1 − δ. Indeed, Definition 2 guarantees that for
a 1 − δ

2 fraction of keysκ, RA,H(κ) outputs a collision forhκ with probability(δǫ
n)c.

RunningR a total ofO((n
δǫ)

c log 1
δ) yields the desired reduction. The above reduction

is more restrictive than an arbitrary black-box reduction due to the following structural
restrictions we place on the construction and the reduction, and this makes our result
weaker.

Construction.We do not allow constructions that use the input as a key into the
underlying family hash functions. We enforce this constraint by having a key
generation algorithmCkey select the membershκ1

, . . . , hκq
of the underlying

family given only the new keyκ′, and restrict the actual computationChash to only
queryhκ1

, . . . , hκq
. We will refer toq as the query complexity of the construction,

the idea being thatChash will query each of the functionshκ1
, . . . , hκq

at least once
by havingCkey not generate extraneous keys.

Reduction.The restriction on the reduction states that the reduction only requires
a single collision fromA′ to breakH with noticeable probability. This is true
of the reductions used in our constructions and of all known reductions used
in hardness amplification for one-way functions (c.f. [15]): all these reductions
generate multiple challenges to the adversary and if the adversary successfully
answers any of the challenges, the reduction succeeds with high probability.

We present lower bounds for the query complexity of the constructionq and the output
lengthℓout

′.

Theorem 3. Suppose(C, R) is a black-box(1− δ, ǫ)-amplifier for collision resistance
with ǫ ≤ δ

2 . Then,

q ≥ Ω(1
δ log 1

ǫ) and ℓout
′ ≥ 1

δ ·
(

ℓout −O(log n + log 1
ǫ + log 1

δ)
)

− 2

The lower bound forq follows closely the lower bound in [15], by arguing that
Ckey must compute a randomness-efficient hitting sampler, and isomitted due to
lack of space. To obtain a lower bound forℓout

′, we begin with an observation of
a connection between black-box hardness amplification and randomized black-box
combiners. Intuitively, a(1 − δ)-CRHF could comprise⌊ 1δ ⌋ functions, of which it is
hard to find collisions on just one of them. In this case, the black-box(1−δ, ǫ)-amplifier
acts like a randomized black-box(1, ⌊ 1δ ⌋)-combiner. To derive a lower bound for the
latter, we use the probabilistic argument in Pietrzak’s work [19]. We also note that the
probabilistic argument is already sufficient to obtain the lower bounds for deterministic
black-box combiners, therefore simplifying the lower bounds in [2, 19] by eliminating
an additional randomization argument therein.

Proof. Set t to be a power of2 in the interval [1δ , 2
δ). Pick t random functions

f1, . . . , ft : {0, 1}ℓin → {0, 1}ℓout and identify{0, 1}ℓkey with {1, 2, . . . , t} andH with
{f1, . . . , ft}. Consider the following procedurẽR for finding collisions inf1, . . . , ft

given oracle access to these functions:

18 R. Canetti, R. Rivest, M. Sudan, L. Trevisan, S. Vadhan andH. Wee

— picksx′
0, x

′
1 ∈ {0, 1}ℓin

′

andκ′ ∈ {0, 1}ℓkey
′

at random;
— for eachi = 1, 2, . . . , t, sample a randomσi such thatRkey(i; σi) = κ′,

and outputRf1,...,ft

coll (i, σi, (x
′
0, x

′
1)).

We note that for allf1, . . . , ft and for all κ′, the functionh′
κ′ maps{0, 1}ℓin

′

to
{0, 1}ℓout

′

. By the standard lower bound on collision probability or a simple application
of Cauchy-Schwartz, we have

Pr
x′

0
,x′

1

[(x′
0, x

′
1) is a collision forh′

κ′] ≥ 2−ℓout
′

− 2−ℓin
′

≥ 2−ℓout
′−1

Consider a procedureA that outputs collisions on everyh′
κ′ by repeatedly choosing

(x′
0, x

′
1) at random until it finds a collision. By our choice oft, each{i} is a subset of

{0, 1}ℓkey of density1
t ≥ δ/2, for i = 1, 2, . . . , t. The reduction then guarantees that

Pr
σ,Rcoll

[

Rkey(i; σ) = κ′; RH
coll(i, σ, A(κ′)) outputs a collision onfi

]

>
(

δǫ
n

)c

In fact, the above statement is true even if we restrictA to only output collisions for
κ′ lying in some subsetS′ of {0, 1}ℓkey

′

of densityǫ. By a probabilistic argument, this
implies that for every subsetS′ of {0, 1}ℓkey

′

of densityǫ, there existsκ′ ∈ S′ such that:

Pr
[

σ ← Rkey(i; ·) = κ′; RH
coll(i, σ, A(κ′)) outputs a collision onhκ

]

>
(

δǫ
n

)c

Call such aκ′ i-good. Then, for eachi, a 1 − ǫ fraction of κ′ is i-good. By a union
bound, there exists a1− tǫ fraction ofκ′ that arei-good, for alli = 1, 2, . . . , t. Hence,

Pr
R̃

[

R̃f1,...,ft outputs collisions for each off1, . . . , ft

]

≥ (1− tǫ) · 2−ℓout
′−1 ·

(

δǫ
n

)ct

Note that the preceding inequality holds for all functionsf1, . . . , ft and thus also
holds for random functionsf1, . . . , ft. On the other hand, by the birthday paradox and
independence of thet functions, we know that the probability (over random functions)

R̃ outputs collisions in each off1, . . . , ft is at most
(

Q2

2ℓout

)t

, whereQ = poly(n, 1
δ , 1

ǫ)

is the query complexity of̃R. Comparing the two bounds and solving forℓout
′ yields

the desired bound. ⊓⊔

The above argument also yields a lower bound on the output length for (t′, t)-
combiners. The idea is to useR to find t− t′ + 1 collisions amongst random functions
f1, . . . , ft and observe that the probability is bounded by

(

t
t−t′+1

)

· (Q2

2ℓout
)t−t′+1. This

establishes the optimality of our construction in Theorem 2(up to constant factors in
theO(log n) term):

Theorem 4. Suppose(C, R) is a randomized black-box(t′, t)-combiner for CRHFs.
LetQ be an upper bound on the query complexity ofR. Then,

ℓout
′ ≥ (t− t′ + 1)(ℓout − 2 log Q)− t− 1

Acknowledgments. We would like to thank Krzysztof Pietrzak for helpful discussions
on combiners.

Amplifying Collision Resistance 19

References

1. Ross Anderson. The classification of hash functions. InCryptography and Coding ’93, 1993.
2. Dan Boneh and Xavier Boyen. On the impossibility of efficiently combining collision

resistant hash functions. InProc. Crypto ’06, 2006.
3. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-

Damgård revisited: How to construct a hash function. InProc. Crypto ’06, 2006.
4. Ivan Damgård. A design principle for hash functions. InProc. Crypto ’89, 1989.
5. Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. Randomness-optimal

characterization of two NP proof systems. InProc. Random ’02, 2002.
6. Hans Dobbertin. Cryptanalysis of MD4. InFast Software Encryption, 1996.
7. Marc Fischlin and Anja Lehmann. Security-amplifying combiners for collision-resistant

hash functions. Inthese proceedings, 2007.
8. J. K. Gibson. Discrete logarithm hash function that is collision free and one way.IEE

Proceedings - E, 138(6):407–410, 1991.
9. Oded Goldreich. A sample of samplers - a computational perspective on sampling. ECCC

TR97-020, 1997.
10. Oded Goldreich. Candidate one-way functions based on expander graphs. Cryptology ePrint

Archive, Report 2000/063, 2000.
11. Oded Goldreich.Foundations of Cryptography: Basic Tools. Cambridge University Press,

2001.
12. Amir Herzberg. Tolerant combiners: Resilient cryptographic design. Cryptology ePrint

Archive, Report 2002/135, 2002.
13. Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road, or do secure hash

functions need secret coins? InProc. Crypto ’04, 2004.
14. Lars R. Knudsen and Bart Preneel. Construction of secureand fast hash functions using

nonbinary error-correcting codes.IEEE Transactions on Information Theory, 48(9):2524–
2539, 2002.

15. Henry Lin, Luca Trevisan, and Hoeteck Wee. On hardness amplification of one-way
functions. InProc. 2nd TCC, 2005.

16. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

17. Ralph C. Merkle. One way hash functions and DES. InProc. Crypto ’89, 1989.
18. Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic

applications. InProc. 20th STOC, 1989.
19. Krzysztof Pietrzak. Non-trivial black-box combiners for collision-resistant hash-functions

don’t exist. InProc. Eurocrypt ’07, 2007. Cryptology ePrint Archive, Report 2006/348.
20. Bart Preneel. Hash functions - present state of art. ECrypt Conference on Hash Functions,

2005.
21. Phillip Rogaway. Formalizing human ignorance: Collision-resistant hashing without the

keys. InProc. Vietcrypt ’06, 2006.
22. Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-Hoeffding bounds for

applications with limited independence.SIAM J. Discrete Math, 8(2):223–250, 1995.
23. Ronen Shaltiel. Towards proving strong direct product theorems.Computational Complexity,

12(1–2):1–22, 2003.
24. Victor Shoup. A composition theorem for universal one-way hash functions. InProc.

Eurocrypt ’00, 2000.
25. Daniel R. Simon. Finding collisions on a one-way street:Can secure hash functions be based

on general assumptions? InProc. Eurocrypt ’98, 1998.
26. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-1. In

Proc. Crypto ’05, 2005.
27. Andrew Yao. Theory and applications of trapdoor functions. InProc. 23rd FOCS, 1982.

