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Abstract. We initiate a complexity-theoretic treatment of hardnespldication
for collision-resistant hash functions, namely the transftion of weakly
collision-resistant hash functions into strongly cotiisiresistant ones in the
standard model of computation. We measure the level ofsiatli resistance
by the maximum probability, over the choice of the key, foriethan efficient
adversary can find a collision. The goal is to obtain consivas with short
output, short keys, small loss in adversarial complexiterated, and a good
trade-off between compression ratio and computationalpbexity. We provide
an analysis of several simple constructions, and show thayrof the parameters
achieved by our constructions are almost optimal in somsesen
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1 Introduction

Constructing collision-resistant hash functions is a i&@rgroblem in cryptography,
both from the foundational and the practical points of vigle goal is to construct
length-decreasing functions for which it is infeasible tadfitwo distinct inputs with
the same output. This problem has received much attentientbe past two decades.
Still, coming up with constructions that are efficient enloug be of use in practice
and at the same time enjoy rigorous security guaranteeslfaagd on the hardness
of some well-studied problem) has turned out to be elusive.al¥o seem unable to
construct collision-resistant functions from potentiaimpler primitives, c.f. [25]. The
problem is highlighted by the repeated attacks on the popdi24, MD5 and SHAL
hash functions (refer to [20] and references therein).
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Given this state of affairs, it is natural to ask whether oae ‘thootstrap” collision
resistance by constructing “full-fledged” collision-r&sint hash functions (CRHF)
from “weak” ones. That is, are there general mechanisms rimstorming hash
functions, for which it is “somewhat easy” (but not completeivial) to find collisions,
into one for which it is infeasible to find collisions? In atidn to providing rigorous
ways to improve the collision resistance of hash functisnsh mechanisms could in
themselves suggest methodologies for constructing hamstiduns “from scratch”.

Several works propose design principles for hash functieng. [17,4, 14, 3].
These mechanisms can indeed be regarded as “hardness eatiphfi mechanisms
for collision-resistant hash functions. However, with teeception of [4], which
concentrates on increasing the domain size of the hashidandll the analyses
provided for these mechanisms use idealized models of ctatipn, such as modeling
the underlying building blocks as random functions. Congadly, we do not currently
have constructions that are guaranteed to provide somé déwwllision resistance
in the standard model of computation, under the sole assomittat the underlying
building blocks have some weaker collision resistance @nigs. (Recently, the closely
related problem of constructing “combiners” for hash fimres has been studied in the
standard model [2, 19]; we discuss this problem in more Hetddw.)

This state of the art should be contrasted with the “sisteblem” of constructing
one-way functions. Here we have a well-established thebhaodness amplification
[27] (see also [11]). That is, we have concrete notions ofefgjth” of one-way
functions, and constructions that are guaranteed to ped'stiong” one-way functions
based on the sole assumption that the underlying buildiogkhk a “weak” one-way
function. Several lower bounds for “black-box” hardnesgbéfication are also known,
e.g. [23,15].

We note that collision resistance often exhibits very ddfe properties than one-
wayness. For one, constructing collision-resistant hastttfons calls for different
design principles (e.g. the proposed expander-based agdumction of [10] is very
bad as a collision-resistant function). Furthermore, p#ctice and theory indicate
that collision resistance is considerably harder to aehilban one-wayness, e.g. [6, 26,
25]. Still, except for some specific points highlighted withwe show that it is possible
to translate much of the analysis used in the study of amalifio of one-wayness to
the setting of collision resistance.

1.1 This work.

We initiate a study of amplification of collision resistange a standard reductionist
complexity-theoretic framework. That is, we first providengasure for the “level”

of collision resistance of hash functions. We then consgtene constructions and
quantitatively analyze the amount in which they amplify todlision resistance, along
with a number of efficiency parameters (discussed below).

Model for hash functions. Following [4], we model hash functions asfamily of
functions, where a function in the family is specified vikey Security is analyzed
for the case where the key is chosen at random (from the sgdaeys) and made
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public. We point out several advantages of this approackerRe [21] for a more
detailed discussion. First, it allows for a natural modglof the adversary as an
algorithm (a circuit) that takes for input a key identifying a functionh,; in the
family and tries to output a collisiomy # z; such thath,(zg) = he(z1). (Such
modeling is not possible for single functions since for aaggth-reducing function
there always exists an adversary that outputs a collisiotthfat function in constant
time.) Second, this approach supports a simple and natuaaliiative measure for the
level of collision resistance: the level of collision reaisce is the maximum probability,
over the choice of the key, with which an efficient adversauy find a collision. Third,
current constructions of hash functions can be naturathanded as keyed function
families. For instance, we may interpret the initializatieector (IV) in SHAO and
SHAL1 as a key. Finally, several collision-finding attackeras to depend on specific
values or properties of the key in use and work for some keystuothers. Specific
examples include Dobbertin’s attack on MD5 [6], time-meynwade-off attacks, and
attacks on Gibson’s hash function [8]. In particular, it nvegil be possible that even
“broken” functions still have a significant fraction of kef@ which attacks are less
successful. On the other hand, it may not be sufficient to lsiwipw an IV as a key,
because the IV may not be incorporated into the computatiansufficiently strong
way; see the discussion at the end of the introduction.

Parameters. We consider the following parameters for hash functions laaudiness
amplification. First and foremost s the level of collisi@sistance. The goal in hardness
amplification is to reduce the maximum probability that aficefnt adversary can find
collisions froml — ¢ to ¢, wheree andé are typicallyo(1). Another salient parameter is
the output length. Other parameters include the key sieentimber of applications of
the underlying hash function, the the running time (or, ctaxipy) of the adversaries
considered and the “compression ratio” (i.e the ratio ofiilpngth to output length).
By itself, the compression ratio is less interesting sineeway apply a transformation
due to Merkle and Damgard [17, 4] to increase the compressitio arbitrarily; this
increases the number of applications of the underlyingtfandut maintains the same
key size and output length. Our goal is to construct hashtimme with a high level of
collision resistance, while maintaining short outputfrskeys, and a good trade-off
between compression ratio and number of operations.

Constructions. We analyze two construction for hardness amplification. fiitsé is
based on simple concatenation (possibly folklore) and ¢eersd uses error-correcting
codes and was suggested by Knudsen and Preneel [14]. Thanalyee two additional
constructions for reducing the key size and the output leregpectively.

Amplification via concatenationThe first construction is simple concatenation: we
hash the input using several independently chosen furectiod concatenate the hash
values. Formally, given a famil}t = {h,} of hash functions, and a parametgr
define the family’ = {h, . }sothathi, . (z)=hy (z)o...0hs, (z), where
K1, ..., Kq are independently chosen keys in the fantfily The analysis is essentially
the same as that for classic hardness amplification for anefunctions [27]. The

.....
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underlying intuition is that finding collisions ih’m.wq is hard as long as finding
collisions in one ofh,, ..., hs, is hard. If the initial maximal probability of finding
collisions isd, the maximal probability of finding collisions in the new haiamily

is (1 — 6)2@ = e ©04), This means that the improvement in the level of collision
resistance is exponential inwhereas the output length is lineargn

Amplification via codes.In the second construction, we first encode the input with
an error-correcting code wherein the codeword has lepgier some large alphabet.
Next, we hash the encoded input usinmdependently chosen functions (one for each
of the ¢ symbols in the codeword) and concatenate the hash valuef@® bin order

to find a collision for this construction, one has to find citins inmanyof the ¢
underlying hash functions (as opposedlig; functions as in the previous construction).
This construction was previously analyzed in an idealiztirgy in [14].

The analysis relies on the idea that finding collisions innbes hash function is
hard as long as finding collisions Beveralof the ¢ functions is hard (as opposed to
finding collision in just a single function). Indeed, if tha@tial maximal probability of
finding collisions isd, then we expect that it is hard to find collisionsdip functions.

To exploit this, we use a code with minimum distarite- O(¢))q, and for such codes,
we may achieve a rate @ (d). Consequently this construction allows us to hash an
input that is longer by a factor @(5¢) (compared to the first construction) while still
using onlyq invocations of hash functions from the given family. Whemgared to
amplifying the domain size via the Merkle-Damgard tramsfation and then applying
the first construction, the second construction offé8g &y) factor improvementin the
number of hashing operations. The price we pay for this iwgment is that for the
samed, e (i.e., for fixed levels of collision resistance in the ungterty and target hash
functions), the choice af for the second construction is a constant multiplicativeda
larger than that for the first construction.

We remark that this analysis yields also hardness amplditafior one-way
functions with a logarithmic factor improvement in the seigureduction.

Reducing the key sizélext, we demonstrate how to modify both constructions sb tha
the key size increases only by additivelogarithmic term (at the price of increasing
the output length by a constant multiplicative factor). S'ls done by choosing the
keys via randomness-efficient sampling using expandehgramhe sampler we require
for the concatenation construction is fairly standard.(@gdomness-efficient samplers
were exploited in a similar manner in [5]), whereas the cgdimeoretic construction
requires a modified analysis of a previous sampler [9].

Reducing the output lengthStarting with a family{ of hash functions with output
length/,,; and parametey, the first two constructions yield a family with output lehgt
q%out- We show that for any\, we may in fact reduce the output lengthgt¢/o.. — A).
More generally, we show how to transform any fanftfywith output length?,,: into
one with output lengtli,; — A with a negligible loss in the level of collision resistance.
However, the complexity of computing the function incresalsg a multiplicative factor
of 24, so the construction is only useful for logarithmic valuéso
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Limitations. We point out some of the limitations of our constructions arydto
justify them. A first limitation is that, given a guarantee thie resilience of{ against
adversaries of a given size, we can only guarantee resdliehthe new hash family
‘H' against adversaries of much smaller size. A similar linatats shared by existing
hardness amplification results for one-way functions. Ty be expected, given that
all our constructions, as well as all existing construdidéor hardness amplification
of one-way functions are “black box”. Indeed, evidence thath limitation may be
inherent in “black-box constructions” is given in [11, Chep2, Ex 16, p. 96]. In
addition, our constructions increase both the compleXityhe hashing and the output
length. To explain the blow-up in these parameters, we gelower bounds on the
number of hashing operations and output length:

— We establish a matching lower bound (up to multiplicativestants) on the number
of hashing operations used in our first two constructionse Bbund holds for
black-box constructions that do not use the input as keythfounderlying hash
functions. In particular, the number of hashing operationsst have an inverse
dependency on, the initial maximal probability of finding collisions. THeound
is derived from that for hardness amplification for one-waydtions in [15].

— Assuming in addition some natural restrictions on the rédanaised in the proof
of security, we show that the output length of the new haslctian is at least
Q(% - Lout). Our constructions achieve output lengits - lou: - log 1).

While the guarantees provided by our constructions may benteak to be of real
practical significance, this is unfortunately the statehefart for general constructions.
Providing better guarantees remains a fascinating opdsigaro

Combiners. Our results pertaining to the output length (namely thetfooonstruction
and lower bounds thereof) build on the recent work lack-box combiners for
collision resistance [2,19, 12]. We briefly recall the natand results and explain the
connection to hardness amplification.

Black-box combiners for collision resistancé\ black-box combiner for collision
resistance is a procedure that givefunctionsh!, ..., ht with output lengthloy:,
computes a single functioh with the following property: there is an efficient
transformation that given a collision fdr, outputs collision for each of!, ..., A’
This guarantees that finding collisions biis hard as long as finding collisions one
of h',..., h'is hard. Concatenating the outputsidf . . ., h* on the same input yields
a combiner with output length ¢,,;. Boneh, Boyen and Pietrzak [2, 19] showed that
this trivial combiner is essentially optimal by giving &4,,: — O(logn)) lower bound
for deterministidblack-box combiners.

Black-box combiners for collision resistance arise ndlyiia the context of our
work. Indeed, our first hardness amplification constructi@y be viewed as choosing
K1,...,kq atrandom and applying the trivial (deterministic) combitwehy,, , . . ., by, .

In addition, since we deal witfamiliesof functions rather than with single functions,
it makes sense in our model to consider aisndomizedcombiners (still, for single
functions). We can then incorporate any randomness usdtetyombiner in the key of
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the new hash family. Two natural questions arise here: Cdoeatthe [2, 19] bound by
using randomized combiners? Alternatively, can the bouwndrproved by removing
the additive logarithmic factor?

We answer both questions negatively. We first extend therlbawend of [2, 19] to
derive at- (¢o,: — O(log n) lower bound on the output length of randomized black-box
combiners. Our lower bound for the output length for hardraaplification builds on
this lower bound. We then construct a randomized black-lmxbiner with output
length¢- (¢our — Q(logn)). This result is interesting in itself, since it is the first
non-trivial combiner that beats concatenation. Furtheemthis combiner underlies
our fourth construction mentioned above, which reducesotltput length of hash
functions. Putting these two results together, we deduaettte optimal randomized
black-box combiner has output lengtf{/,,: — ©(logn)).

Combiners for families of hash functionSo far, we've discussed the relationship be-
tween combiners for single functions and hardness ampgiditdor function families.

In addition, one may directly study combiners familiesof functions: Givert families

of hash functions with output length,:, construct a single family of hash functions that
is collision-resistant as long as one of thiamilies is collision-resistant. We note that
it is possible to construct a combiner having output lengtf,,. — O(logn)) using
our randomized black-box combiner. The concurrent workis€flin and Lehmann
[7] studies a very similar problem, albeit in an idealizedd®idhat only admits generic
attacks on the hash functions.

Extensions. Our positive results for hardness amplification of collisiesistance may
be extended to several other variants of collision resigtaDetails of these extensions
are deferred to the final version of the paper.

Resistance to correlationsAs noted in previous work (e.g. [1]), collision resistance
can be regarded as a special case of “resistance to findinglatoons.” That is, for a
givenk-ary relationR, say that a family of functior® is R-resistant if it is hard given a
randomh € H to findxy, ...z, suchthatR(h(z1), ..., h(xy)) holds. In this terminology,
collision resistance is simplyReq-resistance wher&e, (y1,y2) iff y1 = y2. CanR-
resistance be amplified for other relations? Can collisgmistance be derived from (or
imply) R-resistance for other relatior&? These are interesting questions.

As a small step in this direction, we consider amplificationthe “near collision”
relation Rpear, Where Rpear (y1,y2) iff the Hamming distance between andy; is
small (see e.g. [16, Sec 9.2.6]). We observe that by encatlieédhash value with
an error-correcting code, we may transform a standardsamiliresistant hash family
to a near-collision-resistant hash family. Converselyegia near-collision-resistant
hash family, one can construct a standard collision-r@sidtash family with shorter
output by “decoding” the hash value to the nearest codewbadcovering code. This
yields an amplification theorem for resistance to neaiisiolts, as a corollary of our
amplification theorems for collision resistance.

Target collision resistance.Our results extend also to the related notion of target
collision resistance (namely, universal one-way hash tfans [18]). Here we may
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use the same constructions as for collision resistancepeto replace the Merkle-
Damgard domain expansion with that of Shoup [24], and thmesanalysis goes
through. We stress that the extension should not be takergramted, because
techniques for collision resistance do not always exteradlihg to target collision

resistance; domain expansion is a good example.

Discussion. We discuss some additional aspects of the analysis in thik.viFrst,
we address only collision resistance, which is one out ofyrdasired properties of
“cryptographic hash functions”. In fact, we do not even addrproperties such as
resistance to finding additional collisions, once a callisis found. Concentrating on
plain collision resistance allows for clearer understagdin fact, constructing hash
functions achieving even this specific property seems toHadlenging enough, as
evidenced by the attacks on MD5 and SHAL.

Another point worth highlighting is that our analysis canMimwved as a demonstra-
tion of the benefits in havinfamiliesof hash functions, where there is some assurance
that finding collisions in one function in the family does netder other functions in the
family completely insecure. This may suggest a methodologyonstructingpractical
collision-resistant functions: Design such functions agdd functions, where the key
is intimately incorporated in the evaluation of the funati@ his might give some hope
that finding collisions for one value of the key might not helpch in finding collisions
for other values of the key. Then, apply a generic amplificatinechanism such as
the ones studied here to guarantee strong collision raesistven when a significant
fraction of the keys result in weak functioMe stress that, in order to be of value,
the key has to be incorporated in the computation of the fandt a strong way. This
fact is exemplified (in the negative) by the MD/SHA line of fiions: Although these
functions are often modeled as families of functions thatyed via the IV, the actual
constructions do notincorporate the IV in the computatioa strong way. And, indeed,
the very recent attacks against such functions (e.g. [2@)sto work equally well for
all values of the IV. Similarly suspect are related methadscfeating a hash function
family from a fixed hash function by treating a portion of theut as key.

Finally, we stress that even though we use asymptotic otédi make our results
more readable, they actually provide concrete bounds orpénameters achieved.
Moreover, we provide uniform reductions in all of our proofsecurity, so even though
the positive results are stated for nonuniform adversdtis®asy to derive an analogue
of those results for uniform adversaries.

Organization. We begin with by reviewing quantitative definitions of csitin
resistance for CRHFs in Section 2. We present all of our coosons for hardness
amplification, key size reduction and output length redrcitn Section 3, and our lower
bounds in Section 4. Given that randomized black-box comBiare a recurring tool
in this paper, we define them in Section 2 and present thertmtisin in Section 3 and
the matching lower bound in Section 4.



8 R. Canetti, R. Rivest, M. Sudan, L. Trevisan, S. Vadhan and/ét
2 Preliminaries

2.1 Quantitative definitions of collision resistance

A family of hash functions is a collection of polynomial-incomputable functions
H = {H, : {01} x {0,110 — {0,1}%=(")}, wheren is the security
parameter, satisfyingo,:(n) < fin(n). We refer toliy, lout, lkey @s the input length,
output length and key size of the hash function. Welyse {0, 1}%r(™) — {0, 1}‘eu:(n)
to denote the functioft,, (x, -) associated with the key € {0, 1}%(™), We call a pair
(x0, 1) satisfyingzg # x1 andh, (o) = h(x1) a collision forh,.

For anyn, we say that,, is an(s, ¢)-CRHF (collision-resistant hash function) if
for every nonuniformA of sizes,

Pr[k — {0,1}% (™). A(x) outputs a collision fok,.] < e

(The quantity is what we refer to in the introduction as the level of coflisresistance.)
For notational simplicity, we omit references#owhenever the context is clear (e.g.
H {0, 1} o x {0, 1} — {0, 1}Fon).

We will also refer to asymptotic notions of CRHFs. As with emay functions, we
want to consider the entire class of nonuniform polynortirak adversaries (although
we do provide uniform reductions in our proofs of securifyprmally, we say that
H is a strong CRHF if for every polynomial(-) and every sufficiently large, H
is a(p(n), ﬁ)-CRHF. Similarly, we say that{ is a weak CRHF if there exists a
constantc such that for every polynomial(-) and every sufficiently large, H is a
(p(n),1 — #)-CRHF. Standard cryptographic applications of hash femstiactually
require strong CRHFs, so whenever the strength of the CRIABtigualified, we will
refer to strong CRHFs.

Public-coin vs. secret-coin hash functionAds noted in [13], a distinction needs to
be made between public-coin and secret-coin hash functlans public-coin hash
function, the key corresponds to a uniformly generated sandtring and the key
generation algorithm computes the identity function. Inearst-coin hash function,
the distribution of the key may be any samplable distributfeor simplicity and clarity,
our definition and exposition refer to public-coin hash fimns. It is easy to see that
all of our constructions (Constructions 1, 2 and 4) aparnftbe reduction in key size
using randomness-efficient sampling extend to secretfw@sh functions.

2.2 Black-box combiners for collision resistance

We generalize the notion of black-box combiners from [2,4®hs allow randomized
constructions.

Definition 1. We say that(C, R) is a randomized black-box (t',t)-combiner for
collision resistance if C, R are deterministic poly-time oracle TMs, and there exists
some negligible function(-) such that for allk?, ..., ht : {0, 1}5 — {0, 1}fu:
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CONSTRUCTION For everyr, C""""(r.) computes a functiorh,
{0,1}60" — {0, 1}’ whereli,” > loyt'.

ReDuUCTION. With probabilityl — v(n) overr: if (Zo, 1) is a collision for
h, thenRM =" (v &, &) outputst pairs (z3, z1), . .., (z}, 2%) such that for
atleastt — t' + 1 valuesi € {1,...,t}, (z§,z}) is a collision forh®.

Intuitively, the guarantee is that if it is hard to find caitins on some’ of the functions
R, ..., Rt then with overwhelming probability ovet; it is hard to find collisions on
h,.. Our definition generalizes that in [2,19] in that we provisteth C' and R with
additional “randomness?, which is interpreted as a key. Specifically, in the previous
definitions,C' computes a single function, whereas in our definitt@rcomputes a
family of functions{h,}. In our constructionR is deterministic, whereas our lower
bound (as with previous work) extends to randomized reduost.

3 Constructions

The goal of hardness amplification is to deduce the existeherong CRHFs from
weak CRHFs. Fix a security parameterThe parameters for the new CRHE will

be different from those for the starting CRHE we useli,, fout, fkey 10 denote the
parameters for &s, 1 — §)-CRHF that we start with, anél,’, fou’, lke,” to denote the
parameters for thés’, ¢)-CRHF that we are about to construct. Typical values of the
parameters aré = m ande = neg(n). As outlined in the introduction, we begin
two basic constructions for hardness amplification (Sest&1 and 3.2) and then show
how to reduce the key size (Section 3.3) and output lengttti@e3.4). A summary of

the parameters is given in Fig 1.

Domain expansionWe compensate the loss in compression ratio in our conginsct
by first applying Merkle-Damgard domain expansion [4, 1i@dting that domain
expansion for collision resistance preserves the harqrassneter.

Proposition 0 ([4,17]).Fix some security parametar Suppose there exists(a, ¢)-
CRHF H,, from {0,1}% x {0,1}% to {0,1}%« computable in timeT. Then,
Construction 0 yields affis’, €)-CRHF H/, from {0,1}%«" x {0,1}/" to {0,1}
with the following parameters:

I !
- éout = éout andgkey = gkey

. ,7 .
— # hash calls Z=—4~
out

in

— security reductions’ = s — 4,/ - T

3.1 Amplification via concatenation

We begin with a description and the analysis of the basic @@mation construction.
The analysis we provide is very similar to that for hardnesgldication for one-way
functions via direct product [27,11]. The presentationsasmewhat simpler. We also
make a small modification to the analysis that facilitates ahalysis of the coding-
theoretic construction, discussed in the next section.
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Construction 1 (basic).Pickq = [% In %] independentkeys, . .., ky. Oninputr €
{0,1}%, outputh,, () o hy,(z) 0 -+ 0 hy ()

In using the same input to the hash functions under all ofgtkeys«x, ..., kq,
we ensure that a collisiong, z; for the key(ki,...,xq) is also a collision for the
underlying hash function on each of the keys. . ., x,.

Proposition 1 (Construction 1).Fix some security parameter. Suppose there exists
a (s,1 — §)-CRHF H,, from {0,1}% x {0,1}%" to {0, 1}%=. Then, Construction 1
yields an(s’, €)-CRHF 1/, from {0, 1}%" x {0, 1} to {0, 1}%+" with the following
parameters:

~ ' = lip andloy’ = O(%* log 1) andliey = Ot jog 1)
— #hash calls =9(5-log 1)
— security reduction 5’ = s - ©(2 log L log +)~*

Proof. SupposeA finds collisions orf], with probability at least, and consider the
following algorithm A’ for finding collisions oriH,,: on inputx,

1. chooses, ..., kq atrandomj € [¢] at random, and seis = .
2. runsA(k1, ..., kq) to obtainzg, z1, and outputs:y, z.

To analyze the success probability faf, first fix any setS of keysk of densityg.
Intuitively, S represents the set of keys for which it is hard frto find a collision.

Pr [A(k1,...,kq) outputs a collision)\ at least one of the;’s lies in S]

K1,...,Kq

>e—(1-9)7>

(Gl

Pr [A(k1,...,kq) outputs a collision\ x; € S] > =

K1,..,Rq,? 2q
On the other hand,

Pr [A(ki,...,kq) outputs a collision\ «; € S|

K1,..0sKq,t

. PGrS Pr[A’(k) outputs a collision fok,,]

IN

- max Pr[A’(x) outputs a collision foh,,]
KE

This implies that for any sef of densityg,

max Pr[A’(x) outputs a collision foh,;] > 3
KE

Hence,

[

Pr [Pr[A’(m) outputs a collision fok,;] > 6—2} >1-

By running A’ a total of %4 log 1 = O(% log L log 1) times, we find collisions oft,,
foral — g fraction of keys with probability — g This means we find collisions on
H,, for a random key with probability at least— 6. O
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3.2 Amplification via codes

Note how the basic construction loses@fy) factor in the compression ratio because
we repeat the same input for each of théeys. The following work-around was
suggested in [14]. We first encode the inputsing an error-correcting codeto obtain

q symbolsC(z)1,...,C(x), € {0,1}%, and then we hash each of thdlocks with
independently chosen hash functidnsg, .. ., h., and output the concatenation. Note
that the adversary may upon receiving thkeys only produce collisions wherein the
codewords disagree only on the “easy” keys. For the analggi® through, we argue
that w.h.p., afI fraction of the keys (and not just one key) must be “hard”. & pick

C to be a code with relative distante- g we are guaranteed there i% draction of
positions wherein the codewords disagree and the correampkeys are “hard”.

Construction 2 (coding-theoretic).Pick g = [17;6 In %1 independent keys, . . ., kq.
LetC : {0,1}%" — ({0,1}")? be an error-correcting code with minimum relative
distancel — g (e.g., the Reed-Solomon code), whésé = O(dqli,). On inputz €
{0, 134", outputh,, (C()1) © iy (C(x)2) 0 -+ - 0 hye (C(2)).

Proposition 2 (Construction 2).Fix some security parameter. Suppose there exists
a (s,1 — §)-CRHF H,, from {0, 1}% x {0,1}%" to {0, 1}%=. Then, Construction 2
yields an(s’, €)-CRHF 1/, from {0, 1}%" x {0,1}%" to {0, 1}%+" with the following
parameters:

— b = O(lin log %) and/lo,’ = @(% log %) andlye,” = @(szey log %)
— #hash calls =9(} log 1)
— security reduction 5’ = s - (1 log $) !

€

Proof. SupposeA finds collisions orf], with probability at least, and consider the
following algorithm A’ for finding collisions oriH,,: on inputx,

1. chooses, ..., k, atrandomj € [¢] at random, and sets = k.
2. runsA(kq, . .., Kkq) to obtainzg, z1, and output€'(z);, C(z1);-

To analyze the success probability féf, first fix any setS of keysx of densityg. By
a Chernoff bound (the multiplicative variant), we have

Pr [A(k1,...,Kq) outputs a collisior{zg, z1) A at Ieast% fraction ofx;’s lies in S]
> E_eféq/IG > %

Conditioned on the above event, for‘—gafraction of j's in {1,2,...,q}, we have
C(wo); # C(z1); andk; € S (since the former occurs for a— 2 fraction of j's
and the latter occurs for?fraction ofj’s). Hence,

Pr [A(k1,..., kg) outputs a collisiorfzg, z1) A k; € S A Clxg); # Cla1);] > 25

K1,..,Kq,?
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On the other hand,

Pr [A(ki,...,kq) outputs a collisior(zg, z1) A k; € S A C(xg); # C(21)i]

Ki1,...,Rq,t

=1. Pr Pr[4’(x) outputs a collision foh,
RE

< ¢ -maxPr[A’() outputs a collision fo,]

KES
This implies that for any se§ of densityg,

max Pr[A’(x) outputs a collision fok,.] > £
KE

Hence,
Pr [Pr[A’(m) outputs a collision fok,,] > g} >1-$

Again by running4’ a total of O(% log }) times, we can find collisions of,, with
probability1 — 4. O

3.3 Reducing the key size

From a theoretical point of view, it is useful to have hashctions with short
descriptions (i.e. short keys). Short keys may also be efést from a practical point
of view, although for the most common application of collisiresistant hash functions
(digital signatures) the key would be standardized and didiributed once. Starting
with a 160-bit key, the above transformations could yield a key thanisch longer.
Fortunately, there is no inherent cause for this blow-upnveg reduce the key size in
each of the above constructions using randomness-effisganpling [9], namely, we
want to sample keys in{0, 1}% usingr bits of randomness, where< /.

To accomplish this, we will use the randomness-efficietéhin [9, Appendix C],
with a slightly different analysis showing that for the paeters we are interested in,
the construction satisfies a stronger sampler-like prgp€he weaker hitter guarantee
is sufficient to reduce the key size for Construction 1, whstle stronger sampler-like
property is necessary for Construction 2. For our applicative will also require that
that the hitter satisfy a certain reconstructibility prdgepreviously used in [5]. This
is used in the security reduction to generate challengethéoadversary breakiny’
given a key forH.

We stress here that for specific concrete parameters, we geagliffierent choices
of hitters and samplers for ease of implementation and @itiynfor those specific
parameters.

Lemma 1. There exists a constantsuch that for every, e > 0, there is an efficient
randomized procedur@ : {0, 1}" — ({0, 1}%=)7 with the following properties:

— (sampler) for every subsgtC {0, 1}% of densitys, with probability at least —e,
at Ieast% of the strings output by lie in S.

— (complexity) the randomness complexitys f., + O(log%) and the sample
complexityy is O(5 log 1).
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— (reconstructible) there exists an efficient algorithmttba input (i, «), outputs a
uniformly random element from the det | G(o0); = «}.

Proof (sketch)The construction (based on that in [9]) proceeds in thregesta

— First, we construct a hitter that generaesamples in0, 1} % usingtye, random
bits with the following property: for every subsstof {0, 1}* with densityd,
with probability at Ieast%, at least one sample lies 5. We may obtain such a
hitter using Ramanujan graphs of degreand vertex sef0, 1}%, wherein we
pick a random vertex, and the samples are the indices of the neighbord 8F.

— Next, we construct a sampler that generates O(log 1) samples in{0, 1}
using/e, + O(d) random bits with the following property: for every subsgtof
{0, 1}% with density2, with probability at least — ¢, at least} of the samples lie
in S’. We may obtain such a sampler by taking a random walk of letigthl on a
constant-degree expander with vertex{gtl } % [9].

— Finally, we compose the sampler and the hitter as followscaresider a random
walk of lengthd—1 on the expander, and use each ofdlwertices along the path as
random coins for the hitter. Overall, we will run the hittétimes, which generate
atotal ofg = d - § samples using a total df., + O(d) random bits. This yields
the desired query and randomness complexity.

The sampler guarantee follows fairly readily. Fixof densityd. Let S’ be the set of
random coins for the hitter such that at least one sampléries so .S’ has density
at Ieast%. We know that with probability at least — ¢ (over the random walk), we
generate at Ieagt samples inS’, which in turn yields% = % samples that lie ird.
Finally, we check each of the two components in our constynds reconstructible,
from which it follows that the combined construction is alezonstructible. For the
expander-based hitter, this means that givenwe need to compute the vertexwvhose
1'th neighbor is labeled. For the expander-based sampler, we need to diversample
a start vertex and a path such that thie vertex on the path is labeled Indeed, both
properties are readily satisfied for standard explicit tmiesions of constant-degree
expanders. a

The next construction is obtained from Construction 2 bylaeipg independent
sampling of they keys with randomness-efficient sampling us@gand using a code
with slightly different parameters:

Construction 3 (reduced key size)RunG to obtaing keysk, ..., k, € {0,1}%,
LetC : {0,1}%" — ({0,1}")? be an error-correcting code with minimum relative
distancel — % (e.g., the Reed-Solomon code), whége = ©(5¢li,). On inputr €
{0, 134", outputh,, (C()1) © ey (C()2) 0 -+ - 0 hye (C(2)).

It is straight-forward to verify that an analogue of Propiosi 2 holds for Con-
struction 3 if the CRHF is public-coin, and with essentidlg same parameters except
that the key size is now reduced 4, + O(log %) (i.e., the randomness complexity
of GG). We now state our main result for hardness amplificationodifston-resistance,
which is essentially a restatement of Proposition 2 for pashelent sampling and for
randomness-efficient sampling:
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Parameters | Construction 0| Construction1 | Construction2 | Construction 4
input length bin bin O(linlog 1) bin — A — log bin
output length Lout O(fet log 1) (et log 1) lowt — A

# hash calls fu O(1ogl) O(logl) 0(22¢)
key size ley O(4er10g 1) O(%er10g 1) O(lin? + A)
(public-coin) Chey liey +O(log L) | liey +O(log 1) Ol + A)

Fig. 1. Summary of parameters for Constructions 0, 1, 2, & 4. In otd&ompare constructions

1 and 2 on inputs of the same length, we could apply the MeDkiggard transformation first, in
which case the latter offers@(log %) factor improvement in the number of hashing operations.
For the key size, the second line refers that achieved usimgt@iction 3 for public-coin hash
functions.

Theorem 1. Fix some security parameter. Suppose there exists(a 1 — 6)-CRHF
H,, from {0, 1} % x {0,1}% to {0, 1} Then, there exists a3, ¢)-CRHF !, from
{0,1}4e" % {0,1}" to {0, 1}’ with the following parameters:

— lin' = O(lin log 1) and oy’ = @(% log 1) andtye,’ = @(fgey log 1)
— #hash calls =9(} log 1)
— security reduction s’ = s - @(% log %)*1

Moreover, if the CRHF is public-coin, then we may redéigg’ to ¢y, + O(log %).

3.4 Reducing the output length

We show that it is possible to reduce the output size of any EBylan additive factor
of A, with a negligible loss in the the probability of finding dsibns, but at the price
of an exponential (imd) multiplicative increase in the complexity of the functj@ahong
with a similar decrease in the size of adversaries tolerdteid imposes a limitation of
A = O(log n) for all reasonable settings.

Proposition 3. Suppose there exists(a, ¢)-CRHF H from {0, 1}% to {0, 1}, Let

A = O(logn). Then, there exists & — poly(24,n),e + 2-))-CRHF from
{0,1}fn=A-logla=2 tg {0, 1}fx=4, The complexity of the new CRHF is increases by
afactorpoly (24, fi,).

This result follows the randomized black-box combiner ia fbllowing theorem,
settingt’ =t = 1.

Theorem 2. There is a randomized black-bd¥ , ¢)-combiner(C, R) achieving pa-
rametersl;,” = lin — A —log lin — 2 andloy’ = (t —t' +1)-(loue — A) for any positive
A such thatty,” > ¢, > 0. The running times of' and R are polynomial inn and
24 and the randomness complexity®is O(é;n2 + A).
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We may in fact use this combiner instead of the trivial corebifor our hardness
amplification constructions. However, since we do not ojainon the output length
of our hardness amplification within constant multipligatfactors, it does not make
sense to try to cut down on the additive terms.

Overview of combinerWe begin with the cas€ = t = 1 and supposé = h!
is “highly regular’, and we have a partition ¢f), 1}%" into 2/n—4 sets{S; | y €
{0,1}%»=41 each of size2® with the following property: for every, Sz contains a
unique stringe such that,(z) has prefix)2. Then, we definé(z) to be the(lo, — A)-
bit suffix of h(z). It is easy to see how every collisid, z') for h yields a collision
(xo, 1) for h. To arrive at the general construction (which is where ramgess plays
arole),

— We replaced? with a stringz € {0,1}4 that is relatively popular in the sense
that it occurs in at least a@(1/24) fraction of the images of. Such az can be
identified by evaluating on O (4, - 224) random inputs. To bring the randomness
complexity down toO(¢;, + A), we choose these inputs using the randomness-
efficient Boolean sampler for approximating the mean witminadditive error of
1. 274 with probability1 — 2724 in [9].

— We replace the fixed partitioning with a random partitioninguced by a family
G of ¢;,-wise independent functions frof, 1} to {0, 1}é—4-los =2 Gijven
g € G, we takeS; = ¢g~!(Z). This gives us a partition of0, 1} into sets each
of sizeO(2Aéin). With overwhelming probability oveg, for everyz, there exists
x € Sz such thati(z) has prefix: (we setr to be the lexicographically first string
with this property).

Construction and analysisWe formally state the construction fot = ¢ = 1. For
simplicity, we present the construction using independamplesu; and defer the
randomness-efficient version to the full version.

Construction 4. LetG = {g : {0,1}%n — {0, 1}!n—A-logtn=21 pe a family of6/;,-
wise independent hash functions that such that giyehe sety—1(y) is computable in
time poly(24, n). (This can be achieved using univariate polynomials of eegf;,).
On inputz € {0,1}%~4-lgtn—2 and randomness € {0, 1}°(A+4") we compute
h, () € {0,1}f—4 as follows:

1. Parser asg € G anduy, ..., u,, € {0,1}", wherem = ©(2244;,).

2. Letz € {0,1}4 be the lexicographically first string that occurs at least 24
fraction of times as a prefix amorgu, ), . . ., h(u,,) (Whereh = h');

3. ComputeS; = g~ 1(Z) in order to find a stringr in S; such thath(x) has prefixz.
Choose the lexicographically first string if there are mdwan 1; outputQfe::—4 if
no such string exists or |5;| > 8¢, - 24.

4. Output thelo,e — A)-bit suffix ofh(x).

For general’, t, we may simply apply the above construction to each'of . ., Bt +1

and concatenate the output; it will be clear from the analyisat we may use the
same randomnessfor all ¢ functions. Theorem 2 follows readily once we establish
the following technical claim fot’ = ¢ = 1.
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Claim. With probability 1 — 2=2¢) over r = (g,u1,...,un), the following
statements hold simultaneously:

— || > 2%=4-1 wherez is as in the construction aritd = {z € {0,1}%" | h(z)
has prefix: };

— for all &, we haveS; NT, # () (whereS; = g~ 1(%));

— for all z, we haveS;| < 84, - 24.

Suppose we have a collisiéf, z1) for h,., where the conditions in the technical claim
do hold forr. Then, we could ipoly (24, ¢;,) time computdxg, 1) € Sz, x Sz, such
thath(zg) = z o h,-(Zo) andh(z1) = z o h,-(Z1). This implies(z, x1) is a collision
for h.

Proof (of claim)By a Chernoff bound, we have that for eadkbit prefixw, if w occurs
in a p,, fraction of outputs of: as a prefix, then with probability at leakt— 224
over thew;'s, w will occur at most ap,, + % - 274 fraction of times (as a prefix)
among theh(u;)’s. Taking a union bound over all® < 2% prefixes, we see that
with probability at leastl — 2=, the prefixz must satisfyp. > 1 - 274 and thus
.| > 26n—A=1_ We assume in the rest of the proof that this is the case. Toeeach
y € {0,1}n—A-logtn=2: F[|G2 UT,|] = |T.| - 2 fntttlogtnt2 > 20 Applying a tail
bound for6/;,-wise independence [22], we obtain:

Pr[S; NT, = (] < 272
)

Taking a union bound over ajl € {0, 1}fn—4-1°e =2 we have:

Pr[ﬂy . Si N rz _ @] S 2—2&" . 2€in—A—logfin—2 _ 2—Q(fin)
)

Finally, for eachy, E[|Sz|] = 44, - 24. Again, by using the tail bound fdi?;,-wise
independence and a union bound, we hwi&y : |Sz| > 84, - 24] < 2= QW) 0

4 Limitations

We begin by presenting the class of constructions for whietprove lower bounds:

Definition 2. We say that(C, R) is a black-box (1 — 4, €)-amplifier for collision

resistance if C' = (Cley, Chash) iS @ pair of deterministic (oracle) TMs, anf =

(Rrkey, Reon) is a pair of randomized (oracle) TMs, and both pairs of TMs mutime

poly(n, 1, 1). In addition, for all = {{0, 1}%« x {0, 1} — {0, 1}fex}:
CONSTRUCTION C computeH’ = {{0,1}%" x {0,1}%" — {0,1}%"}
wherel,,.’ > ¢, as follows: given a key’ and a stringz, we runCiey (k') to

""" i (', ).

REDUCTION. There exists a constansuch that for every TM! that outputs

a collision onh’,, with probability at leask and any subse§ of {0, 1}% of
density at leasf /2, there exists: € S such that

obtainky,..., k. and then seb!, (z) to beO:a’;}]

Pr [Riey(k;0) = &' RE, (1,0, A(x)) outputs a collision otk,;] > (ﬁ)c

coll
0, Reoll n
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Note that a black-box amplifier should provide an efficiemiietion that converts any
adversaryA that finds collisions ink/, with probability e into an adversary’ that
finds collisions inh,, with probability1 — §. Indeed, Definition 2 guarantees that for
al— 3§ fraction of keyss, R4™(x) outputs a collision fo.,, with probability (2€).
RunningR a total of O((4 )¢ log ) yields the desired reduction. The above reduction
is more restrictive than an arbitrary black-box reductiae tb the following structural
restrictions we place on the construction and the reductiod this makes our result
weaker.

Construction.We do not allow constructions that use the input as a key inéo t
underlying family hash functions. We enforce this constrdiy having a key
generation algorithnCy., select the membera,,, ..., A,  of the underlying
family given only the new key:’, and restrict the actual computatioi,g, to only
queryhy,, ..., h.,. We will refer toq as the query complexity of the construction,
the idea being that',.s, will query each of the functions,, , . .., h,, atleast once
by havingCi., not generate extraneous keys.

Reduction.The restriction on the reduction states that the reductidyg cequires
a single collision fromA’ to break’ with noticeable probability. This is true
of the reductions used in our constructions and of all knoeductions used
in hardness amplification for one-way functions (c.f. [15)l these reductions
generate multiple challenges to the adversary and if theradvy successfully
answers any of the challenges, the reduction succeeds igtiphobability.

We present lower bounds for the query complexity of the qoiesibng and the output
lengthle,:’.

Theorem 3. SupposéC, R) is a black-box1 — 4, e)-amplifier for collision resistance
with e < 2. Then,

q>Q(5logl) and low' > 5 - (four — O(logn +log L +1log 3)) — 2

The lower bound forg follows closely the lower bound in [15], by arguing that
Ckey must compute a randomness-efficient hitting sampler, anoirigted due to
lack of space. To obtain a lower bound féy,.’, we begin with an observation of
a connection between black-box hardness amplification andamized black-box
combiners. Intuitively, g1 — §)-CRHF could comprise ;| functions, of which it is
hard to find collisions on just one of them. In this case, tlaekibox(1 — o, €)-amplifier
acts like a randomized black-bdx, | ; |)-combiner. To derive a lower bound for the
latter, we use the probabilistic argument in Pietrzak’skn(jd®]. We also note that the
probabilistic argument is already sufficient to obtain theédr bounds for deterministic
black-box combiners, therefore simplifying the lower bdsiin [2, 19] by eliminating
an additional randomization argument therein.

Proof. Set¢ to be a power of2 in the interval[}, 2). Pick ¢t random functions
fisoo fr o {0,135 — {0, 1} and identify{0, 1}% with {1,2,...,¢} andH with
{f1,-.., f+}. Consider the following procedut® for finding collisions inf, ..., f;
given oracle access to these functions:
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— picksz), 2} € {0,1}%" andx’ € {0,1}%" at random;
— for eachi = 1,2,...,t, sample a random; such thatRy, (i;0;) = +/,

and outputR’ 7 (i, oy, (zf, =))).

We note that for allfy,..., f; and for all ¥/, the functionh!, maps{0, 1} to
{0, 1}f°ut'. By the standard lower bound on collision probability orrasie application
of Cauchy-Schwartz, we have

. .. _ ’ g ! _ ’_
Pr [(x,}) is a collision forhy,] > 27 ‘e — 270 > g~ feu —1
ZIJ[),ZIJl

Consider a procedurd that outputs collisions on every., by repeatedly choosing
(xg, ;) at random until it finds a collision. By our choice feach{:} is a subset of
{0, 1} % of density% >¢§/2,fori =1,2,...,t. The reduction then guarantees that
Pr [Riey(is0) = /s RY, (i, 0, A(x")) outputs a collision orf;] > (2¢)°
T, Licoll
In fact, the above statement is true even if we restfico only output collisions for
x' lying in some subse$’ of {0, 1}%= of densitye. By a probabilistic argument, this
implies that for every subsét of {0, 1}* of densitye, there exists:’ € S’ such that:

Prlo « Ryey(i;-) = K'; RY, (i, 0, A(x')) outputs a collision oth,.| > (2¢)°

coll

Call such ax’ i-good. Then, for each, a1 — ¢ fraction of ' is i-good. By a union
bound, there exists B— te fraction ofx’ that arei-good, for alli = 1,2, ..., t. Hence,

Pr[R/-I* outputs collisions for each ofi, ..., f;]

> (1 — te) - 27l =1 (85)

Note that the preceding inequality holds for all functiofis..., f; and thus also
holds for random functiong,, . ..., f;. On the other hand, by the birthday paradox and
independence of thefunctions, we know that the probability (over random fuong)

~ t
R outputs collisions in each of;, . . ., f; is at most(;;?—i) , WhereQ = poly(n, +, 1)

is the query complexity of?. Comparing the two bounds and solving far,’ yields
the desired bound. O

The above argument also yields a lower bound on the outpgtHefor (¢/,¢)-
combiners. The idea is to ugeto find¢ — ¢ + 1 collisions amongst random functions

fi,..., f: and observe that the probability is bounded(pytt,ﬂ) : (2?02“ )i=t'+1, This
establishes the optimality of our construction in Theorefuj2to constant factors in
theO(log n) term):

Theorem 4. Suppos€C, R) is a randomized black-bof¢t’, t)-combiner for CRHFs.
Let@ be an upper bound on the query complexity?ofThen,

éout/ Z (t — t/ + 1)(€0ut — 210gQ) —t—-1
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