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Abstract. Wiener’s famous attack on RSA with d < N%25 shows that
using a small d for an efficient decryption process makes RSA completely
insecure. As an alternative, Wiener proposed to use the Chinese Remain-
der Theorem in the decryption phase, where d, = d mod (p — 1) and
dg = d mod (g — 1) are chosen significantly smaller than p and g. The
parameters dp, dq are called private CRT-exponents. Since Wiener’s pro-
posal in 1990, it has been a challenging open question whether there
exists a polynomial time attack on small private CRT-exponents. In this
paper, we give an affirmative answer to this question, and show that a
polynomial time attack exists if d,, and d, are smaller than N°973,
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1 Introduction

In the RSA cryptosystem, the public modulus N = pq is a product of two primes
of the same bitsize. The public and private exponent e and d satisfy

ed=1 mod (p—1)(g—1).

In many applications of RSA, either e or d is chosen to be small, for efficient
modular exponentiation in the encryption/verifying or in the decryption/signing
phase. It is well-known that it is dangerous to choose a small private exponent,
since Wiener [22] showed that the RSA scheme is insecure if d < N%2° which
was extended to d < N%292 by Boneh and Durfee [4].

** The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
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As an alternative approach, Wiener proposed to use the Chinese Remainder
Theorem (CRT) for decryption/signing as described by Quisquater and Cou-
vreur in [18], and to use small private CRT-exponents instead of a small private
exponent. In that case, the public exponent e and private CRT-exponents d,
and d, satisfy ed, = 1 mod (p — 1) and ed;, = 1 mod (¢ — 1). To obtain a
fast decryption/signing phase, d, and d, are chosen significantly smaller than p
and ¢. In time-critical applications, for instance for signing procedures on smart-
cards, this technique is especially useful. Whether there exists a polynomial time
attack on this RSA-CRT system with small d, and d, has been a challenging
open question since Wiener’s work (see also the comments in Boneh-Durfee [4],
the STORK roadmap [19], and the ECRYPT document on the hardness of the
main computational problems in cryptography [9]).

So far, the best attack on this variant is a square-root attack [3] that enables
an adversary to factor NV in time and space O(min{ \/dT,, \/ch }), which is expo-
nential in the bitsize of d), and d,. All other attacks on RSA with small private
CRT-exponents can be divided in two categories.

First, there are attacks on the special case where p and ¢ are 'unbalanced’
(not of the same bitsize). May [16] described two attacks that work up to a
smallest prime factor of N?-3%2. Recently, Bleichenbacher and May [2] improved
this to N0-468,

Secondly, there are attacks on a special case where not only d, and d,, but
also e is chosen to be small. Galbraith, Heneghan and McKee [10] and Sun and
Wu [20] have made proposals to use RSA-CRT in a way that ’'balances’ the
cost of encryption and decryption by forcing both e and d,, d, to be small.
In these articles, several attacks are described, after which the authors propose
parameters that are not affected by these attacks. Bleichenbacher and May [2]
in turn described a new attack on RSA-CRT with balanced exponents, forcing
Galbraith, Heneghan, McKee and Sun, Wu to revise their parameter suggestions
n [11] and [21], respectively.

However, the attacks in both categories are not applicable in the standard
RSA case with small CRT-exponents d, and dg, that is, when p and ¢ are ba-
lanced and e is full size. In this paper, we describe a way to extend one of the
attacks of Bleichenbacher, May [2] such that it also works in the standard RSA-
CRT case. This leads to the first polynomial time attack on standard RSA with
small private CRT-exponents. More precisely, we present the following result.

Theorem 1 (RSA-CRT with Small d,, d;). Under a well-known heuristic
assumption (as described in Section 6), for every e > 0 and sufficiently large n,
the following holds:

Let N = pq be an n-bit RSA modulus, and p, q primes of bitsize 5. Let e < ¢(N),
dp <p—1, and dy < g —1 be the public exponent and private CRT-exponents,
satisfying ed, =1 mod (p—1) and ed, = 1 mod (¢—1). Let bitsize(d,) < dn and
bitsize(dy) < dn. Then N can be factored in time polynomial in log(N) provided
that

0 < 0.0734 — €.



The rest of the paper is organized as follows. In Section 2, we give a brief
introduction to Coppersmith’s lattice-based method for finding small roots of
polynomials [5]. In Section 3, we recall the Bleichenbacher-May attack [2]. In
Section 4, we show how an extension of the attack leads to our new attack on
standard RSA-CRT with § < 0.0734 — ¢. Furthermore, we generalize our bound
to public exponents e of arbitrary size, and show that this leads to a polyno-
mial time attack on one of the revised parameter choices in [21]. In Section 5,
we explain in detail how we use Coppersmith’s original method for the imple-
mentation of the attack. In Section 6, we discuss the only heuristic part of the
attack, namely how to retrieve a common root from a number of polynomials.
We conclude in Section 7 by giving experimental data for our attack.

2 Finding Small Roots of Polynomials

Many attacks in RSA cryptanalysis use a similar technique, which originated
from Coppersmith’s work on finding small roots of polynomials [5]. In essence,
the attack starts with a polynomial equation in some of the unknowns of the
RSA variant, such as p, ¢, d, or d, and d, in the case of RSA-CRT. An example
is the usual RSA equation

ed=1+k(N+1—(p+q)),

with the unknowns d, k, p, and q.
Such an equation yields a polynomial f which has a certain root that an
attacker wishes to find. In the example, the polynomial

flry, w2, 23) = er1 — 1 —2o(N + 1 —23)

has the root (a:(l(]),xéo),xg))) = (d,k,p + ¢). Finding the root is equivalent to
factoring IV, since p,q can be computed from p 4+ ¢ using N = pq. The goal is
to derive a polynomial time attack provided that the size of the root is below a
certain bound.

In our new attack on standard RSA-CRT (Section 4), our goal is to find
a root of a four-variate polynomial f(z1,22,x3,24). We follow the strategy of
Jochemsz and May [13], that we will sketch here.

Let (mgo),xéo),xéo),xio)) be a root of the polynomial f(x1,xs,x3,24) that
is small in the sense that |x§0)| < Xy, |xé0)| < Xo, |x:(30)| < X3, |w510)| < Xy,
for some known upper bounds Xj, for j = 1,...,4. Moreover, we define W as
the maximal absolute coefficient of f(x1X7, 22X, x3X3,24X,). That is, W :=
||f(.131X1, $2X2, $3X3, J,‘4X4) Hoo, where ||f($1, 3?2, .Zg, x4) ||oo = max |a'i1i2i3i4 ‘ for
a polynomial f(x1,22,23,%4) = Y G iyizi, T1' 05T T4

A basis B of a lattice L is defined via so-called shift polynomials of the form
x?m?w?aszf(:vl,x27x37m4). The choice of the combinations {i1,1i2,i3,44} that
are used is described by a set S. The set M then consists of all monomials that
appear in the shift polynomials. The choice of S is crucial and depends on the



monomials that appear in f. We will give the precise definition of S in Section 4
for our specific polynomial.

Then, LLL-reduction [15] is performed on B to find small vectors in the
lattice L. From a result of [13], we know that under the condition

XPXPXPX<W?, fors; =y i; ands=|S], (1)
:I/’?i x? x? ri‘*GM\S

the first vectors in the reduced basis are small enough to ensure that we find a list
fo, ..., foof at least three polynomials that all have the root (mgo), :cgo), xgo), xio))
over the integers. The polynomials {f, fo,..., fe} will reveal their common root
(33:([0), mgo), x§0)7 xflo)) under the assumption that three variables can be eliminated
from the polynomial system of equations {f =0, fo =0, ..., fr = 0}. Resultant
computations are often used for this elimination process, but we choose to use
Grébner Bases, as we will explain in Section 6. Experiments must be done to

verify that the elimination assumption holds in practice.

3 The Bleichenbacher-May Attack

In [2], Bleichenbacher and May describe two new attacks on RSA-CRT. One of
them is meant for the case that both e and d, and d, are chosen to be smaller
than in standard RSA-CRT. For notation, we use e = N, d,, < N?, and dg < N
for some a € [0,1] and 6 € [0, ]. Clearly, if an attack on this so called "balanced’
RSA works in the case a = 1, then it threatens the security of standard RSA
with small private CRT-exponents.

The attack of Bleichenbacher and May uses a lattice of dimension 3. The
attack works whenever § < min{} , 2 — 2 a}, and therefore gives no result in
the case a = 1. However, we present a generalization of the attack for higher
dimensional lattices that is applicable also for o = 1. To explain our new attack,
we first describe the basics of the BM-attack [2].

Bleichenbacher and May start with the two RSA-CRT equations ed, = 1 +

k(p—1) and ed, = 1+ 1(¢ — 1), and rewrite these as
edy +k—1=kp and ed;+1—-1=Iq.
Multiplying the two equations yields
e*dyd, + edy(l — 1) +edy(k —1) — (N = 1)kl — (k+1—1) = 0.

This can be transformed into the linear equation e?z; +exs — (N=1)zg—z4 =0,
if we substitute x1 = dpdy, xo =d,(I — 1) +dy(k — 1), z3 =kl, 24 =k +1— 1.

The given linear equation leads directly to a lattice attack with a lattice of
dimension 3. This attack works provided that § < min{% , 2 — 2 a}.

Although linearization of an equation makes the analysis easier and keeps
the lattice dimension small, better results can sometimes be obtained by using a
non-linear polynomial equation directly. In the next section, we will pursue this
approach and use a polynomial with the variables x1,...,24 corresponding to

dp, dg, k, and [, respectively.



4 The New Attack on RSA-CRT

The equation we introduced in the previous section
e*dyd, +ed,(I— 1) +edy(k—1) — (N - Dkl — (k+1—1) =0

yields a polynomial f(xy,xs,x3,74) = €2x1T2 + €x174 — €x1 + ex2w3 — €Ty —
(N —1)azzy — 23— x4+ 1 with monomials 1,21, X9, T3, T4, T122, X124, ToT3, T3Ty
and a small root ©

‘.’El | < X1 = N(S,

27| < Xy = N9,

2| < Xy = Noto—3,

1

2] < Xy = Not9-3,

(0) .(0)

(z1 7, 73 755(0)

3 7.7/'510)) = (dpadq7k7l), with

We will follow the strategy for finding small integer roots of Jochemsz and
May [13] as sketched in Section 2, to analyze which attack bound corresponds
to this polynomial f.

In the basic strategy of [13], the set S that describes which monomials
ai a2 2l are used for the shift polynomials, is simply the set that contains all
monomials of f™~! for a given integer m. The set M is defined as the set of all
monomials that appear in z}'z2x5x} f(x1, 22, 3, 24), with z{'zRaf2’ € S.
Since f has a non-zero constant coefficient, all monomials of S are included in
M. More precisely, S and M can be described as

11 =0,...,m—1—13,
i1, 2 i3, 4 190=0,...,m—1—1y4,
rilegrsdrt €S5S & (.

23:0,...,’/71—1,

4 =0,...,m—1,

11 =0,...,m—13,
iy i g i i9=0,....,m—1
1'1111'5255?33«%24 ceM e .2 ’ ’ 4

’L?,:O,...,TTL7

i4:0,...,m.

However, in [13] it is also advised to explore the possibility of extra shifts of one
or more variables. Since X7 and X5 are significantly smaller than X3 and X, for
a > %, we find that the attack bound is superior for a = 1 if we use extra shifts

of x1 and x5. Therefore, we take

11=0,....m—1—13+t,
i1 da i3 i 19=0,....m—1—14+1
gighalpait e S L 2T v e

13:0,...,77?,—1,

i =0,...,m—1,

i =0,...m — i+ 1,
i1 da i3 i 19=0,...,m—iq4+t
girghalait e M {2 0 e

13:0,...,’/77,,

14 =0,...,m,

for some t that has to be optimized as a function of m and a.



Our goal is to find at least three polynomials fy, f1, fo that share the root
w(o), LU(O), xgo), 2" over the integers. From Section 2 we know that these poly-
1 5T T3 Ty
nomials can be computed by lattice reduction techniques as long as

S1 S2 S3 S4 S e y . —
XU XPXPX < W8, for sj = E i; ands=]|S|.
.7;111,';27:;31‘146]\4\5

For a given integer m and t = 7m, our last definition of S and M yields the
bound

(X1 Xo) (T HEr+ir+r)mibo(m™) (x, X, ) (F+§7+377)m" +o(m")

< W(i+‘r+7’2)m4+o(m4) )

To obtain the asymptotic bound, we let m grow to infinity and let all terms
of order o(m*) contribute to some error term e. If we substitute the values for
X1, X9, X3, X4, W, we obtain
(S+3r+37247%) 264+ (L + 37+ 372) - (20 +25 - 1)
< (F4+7+72) (20 +20),

which leads to

5 —4da + 207 — 16a7 + 1872 — 12a72
14 + 567 4 6672 + 2473

0 <

For o = 1, we find an optimal value of 7 =~ 0.381788, and we get
0 <0.0734 —e.

Hence, for a 1024-bit modulus, d, and d, are in the attack space if they are less
then 75 bits. Analogously, for a 2048-bit modulus, d, and d, are in the attack
space if they are at most 150 bits.

4.1 Extending the Attack to Other Values of a

In Section 4, we assumed that x§0>,x§°) are smaller than xgo),xflo), ti a > %

For a < %, symmetrically one uses extra x3 and xz4-shifts instead of extra x;

and xo-shifts. Because of the symmetry, one can immediately see that the attack
bound is

X, X (%+§T+%T2)m4+o(m4) XX (%+%T+%T2+Ts)m4+o(m4)
(X1X2) (X3X4)

< W(i+‘r+7’2)m4+o(m4)'
The above bound leads to

< 5 — 4o + 207 — 167 + 2772 — 3072 + 1272 — 24a73
14 + 567 + 6672 + 2473

]

Note that this bound only holds for o+ § > %, since we assume that the values
of k£ and ! are unknown to the attacker. Both conditions are only met if o > %.



However, in Section 7.1 we provide experimental evidence that our heuristic
attack is successful only when a > %.

In the revised paper by Sun, Hinek, Wu [21], the authors propose as new
parameters {a = 0.577,5 = 0.186}. For this choice, we find the bound ¢ < 0.192,
which breaks the new proposal in polynomial time.

5 Implementation Using Coppersmith’s Original Method

Although we have derived our attack bound from the strategy of Jochemsz, May
[13], we deviate from their strategy for the implementation of the attack. Ba-
sically, we make use of Coppersmith’s original technique [5] instead of Coron’s
reformulation [6]. This does not change the asymptotic bound of the attack, but
it has a major practical advantage. Namely, the lattices used in the attacks are
high-dimensional, and Coppersmith’s original method requires only the reduc-
tion of a lower-dimensional sublattice!. Since the LLL-process is the most costly
factor in our attack, this leads to a significant improvement in practice. Further-
more, we slightly adapt Coppersmith’s original method such that we directly
obtain triangular lattice bases, which simplifies the determinant calculations.

So let us first explain how to apply Coppersmith’s technique for our attack.
We introduce the shift polynomials

i1 02 .93 .04
gi1i2i3i4(x17z2ax37x4) — 131 IQ Ig .’,U4 (371,1'2,1:3,.’174),

for z'xRaalt € S for a set of monomials S, as specified in Section 4. As

before, we define the set M as the set of all monomials that appear in the shift
polynomials. We use the notation s = |S| for the total number of shifts and
d = |M| — |S] for the difference of the number of monomials and the number
of shifts. Notice that the maximal coefficient of f(z1X71,z2Xo, x5Xs5,24X4) is
e2X1 X5, and the monomial corresponding to it is x1xe. We define S’ as the set
of monomials x? Tyl for ot w222l € S. Naturally, |S'| = |S| = s.
We now build a (d + s) x (d + s) matrix B; as follows.

The upper left d x d block is diagonal, where the rows represent the mono-
mials 222z € M\S'. The diagonal entry of the row corresponding to
Rt is (X7 X2 X5 X1) 1. The lower left s x d block contains only ze-
ros.

The last s columns of the matrix By represent the shift polynomials ¢;,i,i4i, =
et arRalPalt f for 2 a2 a2’ € S. The first d rows correspond to the monomials
in M\S’, and the last s rows to the monomials of S’. The entry in the column
corresponding to gi,i,isi, iS the coefficient of the monomial in g;,iyisi,-

This description asks for a simple example. Let us use the set S as described
in Section 4 with m = 1 and ¢ = 0, which results in the lattice basis B; given in

! In these CRYPTO’07 proceedings, a new article by Coron [7] shows how to adapt
his method such that it also requires only the reduction of a sublattice instead of
the reduction of the full lattice, and hence his new technique could be applied here,
too.



Figure 1. We only use the polynomial f(z1, 22,3, 24) itself as a shift polynomial.
Therefore, s = 1 and we have d+s = 9 monomials. The rows represent the mono-
mials 1, x1, 2, X3, T4, T3Tg, ToT3, T124, x1T2 and the last column corresponds to
the coefficients of these monomials in f.

10 0 0 0 O 0 0| -1
04 0 0 0 0 0 0 | —e
1

00%2000 0 0 —e
oooxiaoo 0 0 -1
ooooxﬁo 0 0 -1
00000X31X4(1) 0 [1-N
00 0 0 O Om?
00 0 0 0 O 0 %%
00 0 0 0 O 0 0 e?

Fig. 1. Matrix By for the case m =1,t =0
In general, the determinant of the matrix Bj is
det(B1) = [T xexexin™ |- ()
wil w;2$;3$Z4EM\S’

Let
V($1,$2,$3,l‘4) = (1,%1,1‘2,1’3,1’4, $3$4,$2$3,$1$4,$1Z2)-

Note that in our example,

— 1 2 x3 T4 T3T4 23 T1T4
v(xy, w2, 23,24) - By := (1, X1 Xo' X3° X4 XsXa’ XaX3° X1X4,f(1?1,5€2,5’337$4))-

So,

d d dqk dpl
[V (dp, dg, k1) - Bull = (1, §5, 255 5 0 vk Yo w0l < V.

Since the X; upper bound the root, there is always such a vector v which, if one
substitutes the unknowns {d,, dg, k, 1} for the variables {x1, z2, z3, x4}, becomes
a vector with Euclidean norm smaller than v/d after multiplication with the

matrix Bj.
Let us perform a unimodular transformation U; on B; to create a matrix By
such that
A 0
BQZUl'Blz ( §l><d Id><s>.
sxd SXS

Now if the rows of By form a basis of a lattice L, then the rows of By form a
basis of the same lattice. Moreover, the rows of

Bs = (Aaxd | Oaxs )



are a basis of the sublattice Ly of L which has zeros in the last s entries. Notice
that det(Lg) = det(L). Clearly, v(d,,dq, k,1) - By is in the lattice Ly spanned by
the rows of Bs.
Since

V(dy,dg, k,1) - By = v(dy, dg, k, 1)UL " Ba,

this means that the last s entries of v(dp, dg, k, 1)U, ! must be zero. We use the
notation |v]g} for the vector v with its length ’shortened’ to its first d entries.
Then,

Lv(dp’ dfl’ k7 l) : Bleh = Lv(dpv dQv ka l)UleQth = \_V(dpv dqv k? Z)UfljshA

Next, we reduce A using lattice basis reduction to a basis B = Uy A. It follows
that
[V (dp, dg, k,1) - B1lgp, = [V(dp, dg, k, 1)U "], Us ' B.

We use the notation v'(dp, dg, k,1) for the vector |v(dyp,dq, k, l)UfljshUgl, and
B* (with row vectors b)) for the basis after applying Gram-Schmidt orthogo-
nalization to B. Now we can make three observations. Firstly, the vector v’ is
integral. This is because both matrices U; and U; have integer entries. Secondly,
|v(dp,dy, k,1) - Bi|| < V/d. Thirdly, it is known [15] that the Gram-Schmidt
orthogonalization of the LLL-reduced basis satisfies

—(d—-1)

b > 2= 7 det(L)4.

So, if we combine these three facts, we obtain that

\/g > Hv(dp7dq7k7l) : Bl” = H |_V(dp>dqvk=l) : Bleh ” = || V/(dp7dq7kal)B ||

—(d=1)

> | V/(dpadq7k7l>d ‘ ’ Hb;;” 2 ‘ Vl(dp’dq’kvl)d | 2T det(L)%'

. —(d-1) .
Since the terms 2—5 and V/d do not depend on N, we let them contribute to
an error term e. Thus, whenever

det(L)d > 1,

we must have | v/(dp,dg, k,1)q | = 0.

Hence, the polynomial fo(x1,x2,x3,x4) corresponding to the coefficient vec-
tor v/(z1,x2, x3,x4)q contains the root (d,,dq, k, 1) over the integers.

In Appendix A, we show that the bound det(L)é > 1 is equivalent to the
bound (1) that was given in Section 2. Moreover, we use a result from Jutla [14]
to show that the vectors v/ (x1,x2, 23, x4)d—¢, £ > 2, yield a list of at least three
polynomials fo, ..., fo having the same root (d,, dq, k,1). In the next section, we
show how to retrieve this root from the polynomials f, fo,..., fe.

The running time of our algorithm is dominated by the time to LLL-reduce
the lattice basis A. Taking the algorithm of Nguyen, Stehlé [17] this can be
achieved in O(d®(d +1log A,,) log A,,), where log A,, is the maximal bitsize of an
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entry in A. Qur lattice dimension d depends on €' only, whereas the bitsize of
the entries is bounded by a polynomial in log N. Therefore, the construction of
fo,.-., fe can be done in time polynomial in log N.

Moreover, fo,. .., fr have a fixed degree that only depends on e~ ! and coef-
ficients with bitsize polynomial in log V. This will be important for the analysis
in the following section.

6 Extracting the Common Root

Assume that we want to retrieve a common root from four polynomials f, fo,
f1, f2. Usually, one uses resultants to eliminate variables one by one until one
obtains a univariate polynomial wg(x;) that has xgo) as a root:
To(xl, T2, x3) = RGS:M (f» fO)
so(x1, 22) = Resg,(ro,71)
r1(z1, w2, v3) = Resg, (f, f1) wo(71) = Resy, (r3,74)
s1(x1, 22) = Resg,(r1,72)
TQ(Il, xa, Ig) = Resu (f, fQ)

However, this method only works if the polynomials are algebraically indepen-
dent. One cannot easily use more than three candidates f;, besides repeating the
scheme for different combinations. Moreover, the last resultant computation can
take a significant amount of time and memory, since the degrees of the resultant
polynomials grow fast. We use Grobner Bases instead of resultant methods to
extract the root. For a detailed introduction to Grébner Bases, we refer to [8].
Suppose we have a set of polynomials {f, fo,..., f¢} that have the small

root (zgo), e ,x%o)) in common. Then a Grébner Basis G := {g1,...,g:} is a
set of polynomials that preserves the set of common roots of {f, fo,..., f¢}. In

other words, the variety of the ideal I generated by {g1,...,g:} is the same as
the variety of the ideal generated by {f, fo,..., fi}. The advantage of having a
Grobner Basis is that the g; can be computed with respect to some ordering
that eliminates the variables. Having such an elimination ordering, it is easy to
extract the desired root.

In our experiments in Section 7 we usually found much more polynomials
fo, ..., fe than the required amount of £ = 2. Therefore, we have two advantages
of Grobner Bases in comparison with resultants. First, in contrast to resultants
the computation time of a Grobner Basis usually benefits from more overdefined
systems which lowers the time for extracting the root. Second, we do not have
to search over all subsets of three polynomials until we find an algebraically in-
dependent one. Instead, we simply put all the polynomials in our Grébner Basis
computation. The elimination of variables can only fail if the variety V(I) de-
fined by the ideal I which is generated by {f, fo, ..., f¢} is not zero-dimensional.
Therefore, we make the following heuristic assumption for our attack.

Assumption 1: The variety V(I) of the ideal I generated by the polynomials
in the construction of Section 5 is zero-dimensional.
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Under Assumption 1, the secret root (dy,dq, k,1) can be derived in polynomial
time, since we run a Grébner Basis computation on polynomials of a fixed degree.

Recently, Bauer and Joux [1] made some important progress considering the
heuristic involved in Coppersmith methods. Their result, for roots of trivariate
polynomials, can in theory be extended to more variables. In this way, one could
investigate if Assumption 1 can be replaced by a weaker assumption. In this
paper, we made no efforts in this direction. Instead we verified the validity of
Assumption 1 by experiments.

7 Experiments

In order to test the attack described in this paper for varying bitsizes of e
and dp,d, we designed a key generation process similar to the one proposed
by Galbraith, Heneghan, and McKee [10].

INPUT: Bitsizes n of N, an of e, dn of dp, d,

(1) Choose d,,d, of bitsize on.

(2) Choose k,l of bitsize (v + 6 — 1)n such that ged(dy, k) = ged(dg,1) =
ged(k, 1) = 1.

(3) Compute e using Chinese Remaindering such that

e:d];1 mod k
e:dq_1 mod [ |’

(4) Compute e := e + ¢ kl for some c of bitsize (1 — o — 20)n.
(5) Compute p = Ed‘,’gl —1and g = Ed"l*l — 1. If either p or ¢ is composite,

repeat the whole algorithm.

OUTPUT: CRT-RSA-instance (e, N, d,,dq, p, q)

Notice that this key generation algorithm works as long as a + 2§ < 1.
Namely, in Step 3 we compute a public key e of bitsize (2« + 26 — 1)n, which is
extended in Step 4 to bitsize an. Therefore, we require that a > 2o+ 2§ — 1.

The above key generation is a slight variation of the GHM algorithm. In [10],
the authors choose e, k, [ first and afterwards compute d,, d, as inverses of e
mod k, [, respectively. Then analogously to Step 4 above, they fill up dy,d, to
the desired bitsize. Thus, their key generation requires that the sizes of dp,d,
are at least the sizes of k, [. However, this condition is not fulfilled by a large
portion of the RSA instances that we can attack. If the conditions of both key
generations are fulfilled, one should however prefer the GHM method. It is more
efficient, since one can generate p and g separately.

In the following experiments, we applied our key generation algorithm for
varying sizes of e and d,, d;. The LLL reduction was carried out using a C-
implementation of the provable L? reduction algorithm due to Nguyen and
Stehlé [17]. The timings were performed on a 1GHz PC running Cygwin.
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7.1 Experiments for Small e

All experiments in this section were done for 1000-bit V. For every fixed e, we
looked for the maximal bitsize for dj, d, that gave us enough small vectors for
recovering the secrets. In our experiments, we fixed the attack parameter m = 2
and tried different values of .

In the table below, the third column provides the bound of Bleichenbacher-
May which can be achieved using a 3-dimensional lattice. The fourth column
provides the bound for an attack of Galbraith, Heneghan, and McKee [10], which
is closely related to the attack described in this paper (see Appendix B for details
on this GHM-attack). The J-column gives the theoretical upper bound for the
chosen parameters m,t and e. The ’asymp’-column gives the asymptotic bound
which is reached when the lattice dimension goes to infinity.

e |dp,d, BM[2]|GHM[10]] ¢ |asymp | lattice parameters |LLL
250 bit|332 bit| 0.250 | 0.333 0.227| 0.287 |m = 2,t = 0,dim = 27| 2 sec
300 bit|299 bit| 0.250 | 0.300 0.209| 0.271 |m = 2,t = 0,dim = 27| 2 sec
400 bit|239 bit| 0.240 | 0.233 0.173| 0.243 |m = 2,t = 0,dim = 27| 2 sec
500 bit|{199 bit| 0.200 | 0.167 0.136| 0.214 |m = 2,t = 0,dim = 27| 2 sec
577 bit|168 bit| 0.169 | 0.115 0.108| 0.192 |m = 2,t = 0,dim = 27| 2 sec
700 bit|119 bit| 0.120 | 0.033 0.064| 0.157 jm = 2,t = 0,dim = 27| 2 sec
800 bit| 79 bit| 0.080 | —0.033 0.027| 0.128 |m = 2,t = 0,dim = 27| 2 sec
900 bit| 38 bit| 0.040 | —0.100 | —0.009| 0.100 |m = 2,t = 0,dim = 27| 2 sec
900 bit| 40 bit| 0.040 |—0.100 0.013| 0.100 jm = 2,t = 1,dim = 56|93 sec
925 bit| 29 bit| 0.030 |—0.117 | —0.018| 0.093 |m = 2,¢{ = 0,dim = 27| 2 sec
925 bit| 31 bit| 0.030 | —0.117 0.006| 0.093 |m = 2,t = 1,dim = 56|87 sec
950 bit| 19 bit| 0.020 | —0.133 | —0.027| 0.087 |m = 2,t = 0,dim = 27| 2 sec
950 bit| 23 bit| 0.020 | —0.133 | —0.001| 0.087 |m = 2,t = 1, dim = 56|80 sec

In all the above experiments, we were able to recover the factorization of N. Ex-
perimentally, we see that our attack is much better than theoretically predicted.
The reason is that for these RSA parameter settings, the shortest vectors are
linear combinations of certain subsets of the lattice basis. I.e., the shortest vec-
tors belong to some sublattice and the determinant calculation of the full lattice
in Section 4 does not accurately capture the optimal choice of basis vectors.
However, to identify the optimal sublattice structure for every fixed size e seems
to be a difficult task.

Let us first comment on the results for 250-bit and 300-bit e. As can be seen
in Appendix B, there exists an attack by Galbraith, Heneghan, and McKee [10]
that is closely related to our new attack. Basically, they use a Coppersmith
method for finding modular roots, to find the small root (k,1) of a polynomial
fe modulo e. The polynomial f. is exactly our polynomial f taken modulo e.
Since for a = 0.25,« = 0.3, the bound of the GHM-attack is superior to our
new attack bound, the GHM-attack should be used for these cases instead of the
new attack. However, if one uses the new attack, the lattice reduction algorithm
chooses certain sublattices that still lead to the GHM-bound. This explains for
these small values of o, why the experimental results are better than expected.
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These were the only instances that we discovered, where Assumption 1 failed.
Since the reduced basis vectors corresponded to the underlying structure of the
GHM-attack, we were not able to eliminate three variables. However, we always
found a polynomial of the form (k+1— 1)xzzs — kl(z3+ x4 — 1) in the Grobner
Basis, which directly yields k£ and [. The knowledge of k is sufficient to factor NV
in polynomial time, provided that e is large enough: Notice that

p=1—k=! mode.

From a theorem of Coppersmith for factoring with high bits known [5], it follows
that we can find p in polynomial time whenever e > N i, which is satisfied in our
experiments. We also made attacks for the case e < N %, where we still got the
secrets k, . However, this information seems to be not sufficient for factoring N
efficiently. This is consistent with the GHM-attack, where Galbraith, Heneghan,
and McKee state that the attack only succeeds if the factorization of N can be
extracted in polynomial time from the knowledge of the exposed k, [.

For @ > 2/5, i.e. e of bitsize at least 400, Assumption 1 was always valid. In all
experiments, the Grobner Basis of all polynomials yields the secret parameters
(dp,dg, k,1) and therefore the factorization of N. The roots were found by using
the F4 Grobner Basis algorithm implemented in Magma V2.11-14. We would
like to note that, when we did not include all candidates fy,..., f but used
only a few, it sometimes happened that we could eliminate two variables only.
In that case, we were still able to retrieve the secrets, since the Grobner Basis,
where x2 and x4 were eliminated, then contained a polynomial with the terms
(dp + (k — 1)x1 — dpxs) and (dg + (I — 1)z1 — dyxs) in its factorization.

For e of bitsizes 400 up to 800, we actually rediscovered the bound 2(1—a) by
Bleichenbacher, May experimentally. Again the lattice reduction algorithm chose
certain sublattices which in this case lead to the BM-bound. Even a moderate
increasement of the lattice dimension did not give us any improvement in this
range of e. Although our asymptotical bound always beats the BM-bound, we
are not able to see this effect for small e, since going beyond the BM-bound
requires high-dimensional lattice bases.

For e larger than 900 bits we can for the first time see the effect of increasing
the lattice dimension and we are able to go slightly beyond the BM-bound. This
effect intensifies for full size e, where the BM-bound does not give any results at
all.

7.2 Experiments for Full Size e

Here we describe the experiments for RSA with a standard key generation for
small CRT-exponents, which usually yields full size e. Namely, the parameters
d,, dg4 are chosen for a fixed bitsize and e is the unique integer modulo ¢(N)
which is the inverse of d,,, d, modulo p — 1 and ¢ — 1, respectively.
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N dp,dq é lattice parameters LLL-time
1000 bit| 10 bit| —0.015|m = 2,t = 1,dim = 56 61 sec
1000 bit| 13 bit| —0.002 |m = 2,t =2,dim =95 | 1129 sec
1000 bit| 15 bit| 0.002|m = 3,¢t = 1,dim = 115| 13787 sec
2000 bit| 20 bit| —0.015|m = 2,t = 1,dim = 56 255 sec
2000 bit| 22 bit| —0.002|m = 2,t = 2,dim =95 | 1432 sec
2000 bit| 32 bit| 0.002|m = 3,t =1,dim = 115 | 36652 sec
5000 bit| 52 bit| —0.015|m = 2,t =1,dim =56 | 1510 sec
5000 bit| 70 bit| —0.002|m = 2,t = 2,dim = 95 | 18032 sec

10000 bit| 105 bit| —0.015|m = 2,t = 1,dim =56 | 3826 sec
10000 bit| 140 bit| —0.002 |m = 2,t = 2,dim = 95 | 57606 sec

Every experiment gave us sufficiently many polynomials with the desired roots
over the integers, such that we could recover the factorization. The Grobner
computation never took more than 100 seconds and consumed a maximum of
300 MB.

Notice that for 10000-bit N, we can recover dp, d, of bitsize 140, which would
not be possible by a square-root attack.

As in the experiments before, the §-bound is very inaccurate. For lattice di-
mensions 56 and 95, we should not obtain any results at all, while experimentally
we succeeded for d with bitsizes roughly a 0.010-fraction respectively a 0.013-
fraction of N. On the other hand, our asymptotical bound states that we could
in theory go up to a 0.073-fraction. Unfortunately, we are a tad bit away from the
theoretical bound, since currently the best LLL-reductions only allow to reduce
lattice bases of moderate size, when the base matrices have large entries. Let us
give a numerical example. Theoretically, for m = 10 we find an optimal value of
t = 6 which yields a bound of 0.063. However, this parameter choice results in a
lattice dimension of 4200 which is clearly out of practical reach.

Our result guarantees that one can find the factorization of N for a suf-
ficiently large — but fixed — lattice dimension for CRT-exponents d,,d, up to
a 0.073-fraction. Moreover, it does not rule out that one can go beyond this
bound. Even with our approach, the experimental results seem to indicate that
an analysis of sublattice structures could lead to a better theoretical bound. We
hope that these open problems stimulate further research in the exciting areas
of lattice-based cryptanalysis and fast practical lattice reduction algorithms.
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A Calculating the Bound and Finding More Polynomials

In this appendix, we show that the bound det(Lﬁ > 1 of the implementation
of our attack using Coppersmith’s original method (Section 5) is equivalent to
the bound (1) corresponding to an implementation following Coron’s method
(as used in Section 2). Moreover, we use a result from Jutla [14] to show that
the vectors v'(z1, z2, 23, 24)d—e, £ > 2, yield a list of at least three polynomials
fo, ..., fe having the same root (d,,dq, k, ).

One can check that

det(L)# = det(B;)d = [T xexiexm=] ().

1,12 .13 14 ’
zlelale,teM\S

So the bound det(L)# > 1 implies that

TTxpxe x5 x50 | < (e%). (2)

1,02 .13 iq ’
rtxlrl e, EM\S

Let us substitute e? by % X . We observe that the difference between the mono-
mials of M\S” and M\S is s times the monomial x;x5. Multiplying both sides
by (X1X32)® yields

X7 XPXPX <W?e, for s = Z i; ands= Z 1.

i1 .02 13 ig i1 .42 .13 .14
zltelale,teM\S zle et eS

Notice that this condition is equivalent to the condition (1) given in Section 2.

It follows that if this bound holds, then applying Coppersmith’s method gives
us a polynomial fo(x1,x2,x3,x4) from the coefficient vector v/ (z1,x2, 23, %4)d,
such that fo has the desired root (d,, dq, k,1) over the integers. But in order to
extract the root, we have to construct at least two more polynomials which share
the same root.

We will prove now that it is always possible to construct any constant num-
ber of polynomials with the same common root provided that condition (1) is
satisfied, at the cost of a slightly larger error term ¢ in the construction. There-
fore, we use a theorem of Jutla [14], which gives us a lower bound for the length
of any Gram-Schmidt vector in an LLL-reduced basis. Namely,

Ibi|| > 27 (de“)) fori=1...d,

m—1

max
where byax is the maximal length of the Gram-Schmidt orthogonalization of
the matrix A (the matrix before starting the LLL-reduction process). Following
the analysis of [14], it can be checked that in our attack, bmax = €. Therefore,
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IIb¥|| > 1 reduces to

l_
,(i;l) (Hxil z;z133:634GM\S’(X?X;zXéSXJII)_l) : (62)5
2 (eZ)dfi > 1

—(i=1)

Since 277 does not depend on N, we let it contribute to an error term €. This
simplifies our condition to

[T (i X xgexie) < ()=,
wil x;2z;3 wi“ eM\S’

Notice that for i = d, we obtain the same bound as in (2). In Section 4, we have
seen that s = m*(1 + o(1)). So as long as d — i = o(m*), the asymptotic bound
does not change and we get just another error term that contributes to €. This is
clearly satisfied if d — i = ¢ for some constant ¢. Thus, all polynomials fy, ..., fo
corresponding to the coefficient vectors v/ (x1, X2, 3, 24)4—i, ¢ = 0... ¢, share the
common root (dy,dq, k,1), as desired.

B A Related Attack by Galbraith, Heneghan, and McKee

In Section 7.1 we noted that for very small e, there is an attack by Galbraith,
Heneghan, and McKee [10, Section 5.1] that works better than our new attack.
In this appendix, we briefly describe this GHM-attack and its relation to our
new attack.

Recall that for our new attack, we multiply the equations

edp+k—1=kp and ed;+1—-1=lqg
to obtain the polynomial
f(z1, @, 3, 24) = €211 X9 + ex Ly — €T1 + eXToTs — €T — (N—-1)zgxg—x35—24+1

with the small root (dp,dq, k,1).

In their attack in [10, Section 5.1], Galbraith, Heneghan, and McKee do
essentially the same, but modulo e. Hence, the goal of their attack is to find
the modular root (k,l) of the polynomial f.(z3,z4) = (N — Daszy + x3 +
x4 — 1 modulo e. This polynomial f., with monomials 1, x3, x4, x374 has a well-
known [5] bound

2
X3X, <es.

that specifies for which upper bounds X3, X4 of x3, x4 the root can be found in
1

polynomial time. Substituting X3 = X4 = N®™°~2 and e = N®, we find the

attack bound
o< 1 — ga
2 37

For very small a (for instance a = 0.25 and § = 0.3), this bound is superior
to the bound obtained by our new attack, and for these cases, the GHM-attack
should be preferred to the new attack.



