
A Security Analysis of the NIST SP 800-90
Elliptic Curve Random Number Generator

Daniel R. L. Brown1 and Kristian Gjøsteen2

1 Certicom Research, dbrown@certicom.com
2 Department of Mathematical Sciences, Norwegian University of Science and
Technology, NO-7491 Trondheim, Norway, kristian.gjosteen@math.ntnu.no

Abstract. An elliptic curve random number generator (ECRNG) has
been approved in a NIST standard and proposed for ANSI and SECG
draft standards. This paper proves that, if three conjectures are true,
then the ECRNG is secure. The three conjectures are hardness of the
elliptic curve decisional Diffie-Hellman problem and the hardness of two
newer problems, the x-logarithm problem and the truncated point prob-
lem. The x-logarithm problem is shown to be hard if the decisional Diffie-
Hellman problem is hard, although the reduction is not tight. The trun-
cated point problem is shown to be solvable when the minimum amount
of bits allowed in NIST standards are truncated, thereby making it in-
secure for applications such as stream ciphers. Nevertheless, it is argued
that for nonce and key generation this distinguishability is harmless.

Key Words: Random Number Generation, Elliptic Curve Cryptography.

1 Introduction

Certain random number generator (RNG) algorithms, such as the Blum-Micali
[1] and Kaliski [2] generators, have been proven secure — assuming the conjec-
tured hardness of associated number-theoretic problems. Recently, a new random
number generator has been undergoing standardization (see [3–6]). In this pa-
per, this new generator is called the Elliptic Curve Random Number Generator
(ECRNG). Like Kaliski’s generator, the ECRNG is based on elliptic curves and
is adapted from the Blum-Micali generator. Compared to many other number-
theoretic RNGs, the ECRNG is considerably more efficient, because it outputs
more bits per number-theoretic operation. The ECRNG is different from the
Kaliski RNG in two major respects:

– The ECRNG uses ordinary elliptic curves, not the supersingular elliptic
curves of Kaliski RNG. Supersingular curves can make the state transi-
tion function a permutation, which is advantageous for making the Blum-
Micali proof work, but is disadvantageous because of the Menezes-Okamoto-
Vanstone (MOV) attack, which requires a larger curve to make the proof

give a useful assurance.3 For ordinary curves, the state transition function
is many-to-one, often two-to-one. This paper adapts the Blum-Micali proof
by introducing the x-logarithm problem to overcome the obstacle introduced
by state transition function not being a permutation.

– The ECRNG produces at each state update an output with almost as many
bits as in the x-coordinate of an elliptic curve point, whereas the Kaliski
ECRNG outputs just a single bit. Therefore the ECRNG is considerably
more efficient than the Kaliski RNG if operated over the same elliptic curve.
The Kaliski RNG outputs a single bit that is a hardcore predicate for the
elliptic curve discrete logarithm problem (ECDLP). The ECRNG output
function essentially uses a conjectured hardcore function of the ECDLP. The
basis of this conjecture is the elliptic curve DDH problem, and the truncated
point problem (TPP), defined below.

This paper proves that ECRNG is secure if the following problems are hard:

– The elliptic curve version of the well known decisional Diffie-Hellman prob-
lem (DDH). This is now widely accepted for certain groups. These groups
include most small cofactor order elliptic curve groups defined over finite
fields, such as the NIST curves. Boneh [7] gives an excellent survey about
the DDH problem.

– The x-logarithm problem (XLP): a new problem, which is, given an elliptic
curve point, determine whether its discrete logarithm is congruent to the
x-coordinate of an elliptic curve point. This problem is discussed further in
§5. We provide some evidence that the XLP problem is almost as hard as
the DDH problem. The evidence takes the form of loose reduction between
a related problem, AXLP (defined below), and the DDH problem.

– The truncated point problem (TPP): a new problem, which is, given a bit
string of a certain length, determine whether it is obtained by truncating
the x-coordinate of a random elliptic curve point. The TPP problem con-
cerns extraction of pseudorandom bits from random elliptic curve points.
El Mahassni and Shparlinski [8] give some results about extraction of pseu-
dorandom bits from elliptic curve points. Gürel [9] also gives some results,
although with fewer bits extracted than in the ECRNG. We discuss the TPP
problem in §7. We find that if too few bits are truncated, then the result is
distinguishable from a random bit string. Schoenmakers and Sidorenko [10]
independently found a similar result.

Naor and Reingold [11] constructed pseudorandom functions secure as the hard-
ness of the DDH problem, while Gertner and Malkin constructed such a pseu-
dorandom number generator based on the same assumption. Farashahi, Schoen-
makers and Sidorenko [12] recently constructed pseudorandom number genera-
tors following a modified version of the ECRNG, which are secure as DDH over
certain groups.

3 This is not to say that MOV attack could be applied against the Kaliski RNG for
smaller sized curves.

This paper does not attempt to analyze the various issues surrounding en-
tropy of the secret state of the RNG. Prediction resistance is the ability of
RNG to add additional entropy into the secret state to recover completely from
a circumstance where an adversary has information about the previous state.
Initialization and prediction resistance are general RNG issues, and indeed the
standards specifying the ECRNG do not treat the ECRNG especially differ-
ent from other RNGs with respect initialization and prediction resistance. This
paper deliberately restricts itself to ECRNG specific issues.

2 The Elliptic Curve Random Number Generator

Let Fq be a finite field with q elements. An elliptic curve E over Fq is defined by
a nonsingular cubic polynomial in two variables x and y with coefficients in Fq.
This paper considers only cubics in a specially reduced Weierstrass form

E(x, y) = y2 + cxy − (x3 + ax1+c + b) = 0 (1)

where c is 0 if q is odd and 1 if q is odd, since these are most often used in
cryptography, and particularly in the ECRNG. We define the rational points of
the curve to be

E(Fq) = {(x, y) ∈ F2
q : E(x, y) = 0} ∪ {0}. (2)

An addition law is defined on E(Fq) using the well-known chord-and-tangent
law. For example, (u, v) + (x, y) = (w, z) is computed as follows. Form a line
through (u, v) and (x, y), which intersects the curve E(x, y) = 0 in three points,
namely (u, v), (x, y) and some third point (w,−z), which defines the desired sum
by negating the y-coordinate.

In the ECRNG, and in elliptic curve cryptography more generally, one defines
some base point P on the curve. One assumes that P has prime order n in the
elliptic curve group, so that nP = 0. Generally, the number of points in E(Fq) is
hn, where the cofactor h is usually quite small, typically with h ∈ {1, 2, 4}. We
say that a point Q is valid if it is an additive multiple of P . We will generally
only consider valid points in this paper, so when we say a random point, we
mean a random valid point.

The ECRNG maintains a state, which is an integer si ∈ [0,max{q−1, n−1}].
The iteration index i increments upon each output point of the ECRNG. The
ECRNG is intended to be initialized by choosing the initial state s0 uniformly
at random from [0, n− 1].

For a point P = (x, y) ∈ E(Fq), we write x(P) = x̄, where x̄ ∈ Z is obtained
by taking the bit representation of the x ∈ Fq and considering this is as the bit
representation of an integer. When q is prime, we essentially have x̄ = x, but
when q is not a prime, the value of x̄ depends on the representation used for the
finite field Fq. (We may arbitrarily define x(0) = 0, but we will encounter this
case negligibly often in our analysis.) Therefore, to fully specify the ECRNG, one
needs to define a field representation, because the function x(·) has an important
rôle in the ECRNG, as we see below.

The ECRNG has another initialization parameter, which is a point Q. The
point should ideally be chosen at random, preferably verifiably at random, such
as by deriving it from the output of secure hash function or block cipher.

When the state is si, the (raw) output point is defined as

Ri = siQ. (3)

The actual output of the ECRNG applies further processing to Ri. The final
output is ri = t(x(Ri)), where t is a function that truncates certain bits from
the bit string representation of an elliptic curve point. The purpose of t is to
convert the x-coordinate of a pseudorandom EC point to a pseudorandom bit
string.

After generating an output point Ri, the state is updated as

si+1 = x(siP). (4)

It is convenient to adopt the following notation. We define the prestate at it-
eration i + 1 as Si+1 = siP . Note that si+1 = x(Si+1). We may think of the
prestate being updated as

Si+2 = x(Si+1)P. (5)

The following notation for the ECRNG will be convenient. Let s0 be the initial
state. We define gm(Q, s0) = (R0, R1, . . . , Rm) inductively by

g0(Q, s0) = (s0Q) and gm(Q, s0) = (s0Q, gm−1(Q, x(s0P))),

where we use the convention that a comma indicates concatenation of point
sequences. We shall continue to use this convention for the remainder of the
paper.

3 Lemmas on Indistinguishability

Random variables X and Y are computationally indistinguishable if, given a sam-
ple value u that has probability 1

2 of coming from X and 1
2 from Y , an adversary

cannot distinguish , with a feasible cost of computation and reasonable success
rate, whether u comes from X or from Y . Pseudorandomness is indistinguisha-
bility from a uniform (equiprobable) distribution. Indistinguishability is a well
known notion in cryptology, but for completeness, this section introduces some
general notation and lemmas on indistinguishability that are convenient for the
proofs of the main theorems.

We write X ∼ Y to indicate that random variables X and Y are indistin-
guishable. Where needed, we write X σ∼ Y to quantify the indistinguishability
by some parameters σ, such as success rate or computational cost. We write
X ∼= Y when random variables X and Y are identically distributed. Obviously,
X ∼= Y implies X ∼ Y .

Intuitively, one expects indistinguishability (∼) to be an equivalence relation.
Certainly, ∼ is reflexive and symmetric, and more interestingly, it is transitive
([13, Ex. 27], for example). This is such a fundamental point it is worth repeating
here.

Lemma 1. If X ∼ Y and Y ∼ Z, then X ∼ Z.

A second lemma, which one also intuitively expects, makes proofs cleaner through
separating complicated constructions from indistinguishability.

Lemma 2. If f is an efficiently computable function, and X ∼ Y , then f(X) ∼
f(Y).

It is worth noting that the converse to this lemma does not necessarily hold:
generally, f(X) ∼ f(Y) does not imply X ∼ Y . A constant function f is a
trivial counterexample. Nontrivial counterexamples exist too, such as f being a
bijection whose inverse is not efficiently computable.

A third lemma, which one again intuitively expects, allows one to analyze
distributions by analyzing independent components.

Lemma 3. If X ∼ Y and W ∼ Z, and X and W are independent variables, as
are Y and Z, and X and Z can be efficiently sampled, then (X,W) ∼ (Y,Z).

This lemma also applies under our notational convention that if X and Y are
sequences, then (X,Y) is their concatenation.

4 The Decisional Diffie-Hellman Problem

The decisional Diffie-Hellman problem (DDH) for a given elliptic curve E and
a base point P is to distinguish between a triple (Q,R, S) = (qP, rP, qrP) and
a triple (Q,R,Z) = (qP, rP, zP) where q, r, z are integer random variables uni-
formly distributed in the interval [0, n − 1]. (Note this q is not to be confused
with the field order.) The triple (Q,R, S) is often called a Diffie-Hellman triple.
For certain elliptic curves, it is conjectured that the DDH problem is hard.

Conjecture 1. If q, r and z are independent random integers uniformly dis-
tributed in [0, n− 1], then (qP, rP, qrP) ∼ (qP, rP, zP).

This, if true, provides a nontrivial counterexample to the converse to Lemma 2
because random variables X = (q, r, qr) and Y = (q, r, z) are distinguishable,
but if one applies the function f defined by f(x, y, z) = (xP, yP, zP), then the
conjecture says f(X) ∼ f(Y).

The conjectured hardness of the DDH problem, for certain groups, is widely
believed among cryptologists. One should be aware that for certain elliptic
curves, however, there are efficiently computable so-called pairings that can be
used to distinguish Diffie-Hellman triples. Pairings exist for all elliptic curves,
but only for a very few are they known to be efficiently computable. For most
elliptic curves, one can verify that the known pairings are extremely inefficient
and infeasible to use in practice. This has been confirmed for most of the NIST
recommended elliptic curves.

5 The x-Logarithm Problem

The x-Logarithm Problem (XLP) for elliptic curve E(Fq) and base point P is
to distinguish between dP and xP where: d is an integer chosen uniformly at
random in [0, n − 1]; and x = x(Z) for a point Z chosen uniformly at random
in E(Fq). We conjecture that the x-logarithm problem is hard for most elliptic
curves:

Conjecture 2. If d and z are random integers uniformly distributed in the interval
[0, n− 1], then dP ∼ x(zP)P .

Now d and x = x(zP) are generally distinguishable. Firstly, known tests on
x quickly determine whether there exists a y ∈ Fq such that (x, y) ∈ E(Fq).
Secondly, when the cofactor h > 1, we expect to have x > n for at least about
half of the x-coordinates x of random points, whereas for d, we always have
d < n. Therefore, this conjecture, if true, gives another counterexample to the
converse of Lemma 2.

An intuitive reason for the plausibility of the XLP conjecture is that given
public key dP , one expects that nothing substantial is leaked about the private
key d. This intuition derives from the conjectured hardness of the elliptic curve
discrete logarithm problem (ECDLP). However, a formal argument that the
ability to determine whether dP = x(zP)P for some z, implies an ability to find
d is not known to the authors. In fact, conceivably, the ECDLP could be hard,
even though certain information about the discrete logarithm, such as whether
it is congruent to an x-coordinate, is easily discernible.

Certain bits in the binary representation of the d have been shown by Kaliski
[2] to be as hard to find as the whole of d. A bit of information with such a
property is known as a hardcore predicate for the ECDLP. Kaliski’s proof that
certain bits of the binary representation of the discrete logarithm are hardcore
predicate works with a reduction, as follows. Given Q = dP , determine from Q
a bit of information about d. Then transform Q to some Q′ = d′P in such a
way that there is an known relation between d and d′, and d′ has one less bit of
freedom than d. Next determine a bit of information about d′, then d′′ and so on.
The transformation is such that all bits of information learnt are independent
and can be easily be reconstituted to learn d in its entirety.

What would be ideal to make Conjecture 2 into a theorem, would be another
transformation with comparable properties to Kaliski’s for determining the dis-
crete logarithm d using an oracle for solving XLP. Instead we have the following
result, Theorem 1, which is not ideal in that it

1. is not a tight reduction,
2. concerns a harder variant of the XLP.

The Arbitrary-base x-Logarithm Problem (AXLP) for elliptic curve E(Fq) is to
distinguish between (P, dP) and (P, xP) where: d is an integer chosen uniformly
at random in [0, n − 1]; and x = x(Z) for points P and Z chosen uniformly
at random in E(Fq). The distinction between AXLP and XLP is that in XLP,

the adversary needs only to succeed for fixed base P , whereas in AXLP, the
adversary must succeed for any base P .

Note that for r chosen uniformly at random from [0, n − 1], we have that
(P, dP) ∼= (rP, rdP) and (P, xP) ∼= (rP, rxP). This means that any adversary
A can be replaced by an equally effective adversary A′ that first randomizes its
input by multiplying both points by a random integer r. Let

fi = Pr[A(P, iP) = 1] and f = Pr[A(P,Q) = 1] =
1
n

n−1∑
i=0

fi (6)

where the probabilities are taken over random P and Q.

Lemma 4. For any adversary A against AXLP, there exists an adversary B
against DDH with advantage

ε =
2
n

n−1∑
i=0

(fi − f)2. (7)

Proof. The idea is that for a DDH triple (Q,R, S), logP Q = logR S. If we run
A with the pairs (P,Q) and (R,S) as input, the output should be correlated.
But if (Q,R, S) is a random triple, the output should be uncorrelated.

Let B be the algorithm that on input of (Q,R, S) samples u and v uniformly
at random from 0, 1, ..., n− 1, then runs A on (uP, uR) and (vQ, vS). If the
outputs are equal, B outputs 1, otherwise 0.

We compute the advantage of B in distinguishing DDH tuples from random
tuples as ε = |δ0 − δ1|, where δ0 is the probability that B outputs 1 on input of
a DDH triple, and δ1 is the probability that B outputs 1 on input of a random
triple.

For a DDH triple (Q,R, S) = (qP, rP, qrP), the two runs of A will have
identical the same input distributions. That is, we can deal with each possible
logarithm r = i separately and get

δ0 = Pr[B(Q,R, S) = 1]
= Pr[A(uP, ruP) = A(vQ, rvQ) = 1] + Pr[A(uP, ruP) = A(vQ, rvQ) = 0]

=
∑
i

(Pr[A(P, iP) = 1]2 + Pr[A(P, iP) = 0]2)/n

=
∑
i

(f2
i + (1− fi)2)/n

=
∑
i

(1 + 2f2
i − 2fi)/n.

(8)
For a random triple, the two runs of A will be independent, and we get

δ1 = Pr[A(P, jP) = 1 | j random]2 + Pr[A(P, jP) = 0 | j random]2

= f2 + (1− f)2 = 1 + 2f2 − 2f

=
∑
i

(1 + 2f2 − 2fi)/n.
(9)

Summing up, we get

ε =

∣∣∣∣∣∑
i

(1 + 2f2
i − 2fi − (1 + 2f2 − 2fi))/n

∣∣∣∣∣
= (2/n)

∣∣∣∣∣∑
i

(f2
i − f2)

∣∣∣∣∣ = (2/n)
∑
i

(fi − f)2
(10)

which completes the proof. ut

We now need to show that this adversary against DDH has a significant
advantage if the AXLP adversary has a significant advantage.

Let ai be the probability that the x-coordinate of a random point Z of order
n is i modulo n, that is

ai = Pr[x(Z) ≡ i (mod n) | Z random of order n]. (11)

The signed advantage of an adversary A against AXLP is

ε′ = Pr[A(P, iP) = 1 | i = x(Z), Z random of order n]−
Pr[A(P, iP) = 1 | i random]

=
∑
i

Pr[A(P, iP) = 1](ai − 1/n)

=
∑
i

fi(ai − 1/n).

(12)

Since
∑
i(ai − 1/n) = 0, we can write

ε′ =
∑
i

(fi − f)(ai − 1/n). (13)

Next, let t be the maximal number of points on a curve with the same x-
coordinate modulo n. (That is, t is at most twice the cofactor.) Then |ai−1/n| ≤
(t− 1)/n, or alternatively

|ai − 1/n| n

t− 1
≤ 1. (14)

Lemma 5. For any adversary A against AXLP, we have

2
n

∑
i

(fi − f)2 ≥ 2
t− 1

(ε′)2, (15)

where fi, f , t and ε′ are as defined above.

Proof. We multiply each term in the sum with ((ai−1/n)n/(t−1))2 ≤ 1, getting

2
n

∑
i

(fi − f)2 ≥ 2
(t− 1)2

1
n

∑
i

(fi − f)2(ai − 1/n)2n2 = µ. (16)

Using the fact that the average sum of squares is greater than the square of the
average (Jensen’s inequality applied to z 7→ z2), we get that

µ ≥ 2
(t− 1)2

(∑
i

1
n

(fi − f)(ai − 1/n)n

)2

=
2

(t− 1)2
(ε′)2, (17)

which concludes the proof. ut

Theorem 1. If the DDH problem is hard and the cofactor is small, then AXLP
is hard.

Proof. If there exists an adversary A against AXLP with advantage |ε′|, then by
Lemma 4 and 5 there exists an adversary against DDH with advantage

ε ≥ 2
(t− 1)2

(ε′)2. (18)

If |ε′| is non-negligible and the cofactor (and hence t) is small, then ε is non-
negligible. ut

This reduction is not tight. If |ε′| ≈ 1
2 and the cofactor is 1, then ε ≈ 1

2 .
On the the other hand, if |ε′| ≈ 2−40, then ε ≈ 2−80. It may be the case that
a feasible distinguisher for DDH exists with this advantage, in which case an
efficient distinguisher for AXLP with advantage 2−40 could not be ruled out.

In practice, the bound given by t is not sharp. For the cofactor two NIST
curves, one can prove that for almost all d ∈ [0, n−1], at most one of d and d+n
can be the x-coordinate of a valid point. This is because a valid x-coordinate
has a certain trace, and in trinomial or pentanomial basis representation, the
trace depends on a few bits of the x-coordinate including the least significant
bit. From this we see that t = 2 would work. For cofactor four curves, we only
have a heuristic estimate for t, which presumably could be confirmed (or denied)
by further analysis.

The advantage of B in the proof above can possibly be increased by also
comparing A’s run on (T, V) and (U,W) and other such pairings, although one
does not expect a significant increase compared to increased runtime.

Because AXLP appears to be a hard problem, it seems quite reasonable
to conjecture that XLP is also a hard problem. It should be noted that the
hardness of XLP suggests that the output of the ECRNG, before truncation, is
suitable to use for the generation of an ECC private key. One would conjecture
that it would therefore be just as sensible to concatenate enough output of
the properly truncated ECRNG, and use these as a ECC private key, since
presumably truncation and concatenation should not decrease the security.

6 Security of the Raw ECRNG Outputs Points

The traditional notion of security for an RNG is that its output is indistinguish-
able from random. We prove below in Theorem 2 that the raw output points

of the ECRNG are indistinguishable from random points, that they are pseudo-
random as points. Furthermore, we prove that the points are forward secure, as
defined below.

The following proof is not substantially different than the proof for the Blum-
Micali generator [1] or the Kaliski generator [2]. However, unlike these genera-
tors, which used a hardcore bit of the discrete logarithm, the ECRNG uses a
hardcore function — as suggested, for example, in [14] — which yields greater
efficiency provide that one accepts hardness of the corresponding problem, DDH,
to ensure the function is hardcore. A second reason for providing the proof anew
here is that the state update transition function is not a permutation. This issue
is addressed via recourse to the hardness of the x-logarithm problem. Roughly
speaking, hardness of XLP ensures that the state transition function is indistin-
guishable from a permutation.

In cryptology, forward secrecy refers to the following property: present secrets
remain secret into the future, even from an adversary who acquires all future
secrets. So, in forward secrecy, the secrecy of present secrets extends forward
into the future indefinitely and without depending on protection of some future
secrets. Many key agreement schemes, and even some digital signature schemes,
claim forward secrecy. When implementing these schemes, one likely needs to en-
sure that any RNGs used have forward secrecy too. In [5, 3], forward secrecy has
been renamed4 backtracking resistance to convey the notion that an adversary
cannot use future secret to backtrack to present secrets.

To model forward secrecy, we let adversary see the latest prestate, but still
it cannot distinguish previous output points from random points.

Theorem 2. If the DDH and XLP problems are hard, and Q,Z0, . . . , Zm, Zm+1

are independent and uniformly distributed random points, and s0 is a random
integer uniformly distributed in [0, n − 1], and gm(Q, s0) = (R0, . . . , Rm), with
the next prestate of the ECRNG being Sm+1, then

(Q,R0, . . . , Rm, Sm+1) ∼ (Q,Z0, . . . , Zm, Zm+1). (19)

Proof. The case of m = 0 is to show (Q,R0, S1) ∼ (Q,Z0, Z1). This follows
directly from hardness of the DDH problem. Assume by induction that

(Q,R0, . . . , Rm−1, Sm) ∼ (Q,Z0, . . . , Zm−1, Zm). (20)

The current outputs and prestate are given by

(Q,R0, . . . , Rm−1, Rm, Sm+1) = (Q,R0, . . . , Rm−1, x(Sm)Q, x(Sm)P) (21)

Combining (20) and (21), and applying Lemma 2, we get

(Q,R0, . . . , Rm−1, Rm, Sm+1) ∼ (Q,Z0, . . . , Zm−1, x(Zm)Q, x(Zm)P). (22)

4 Breaking precedent not only with wider usage in cryptology but also with other
ANSI standards such as X9.42 and X9.62, which use forward secrecy.

Hardness of XLP gives x(Zm)P ∼ Zm+1. Writing Q = qP , Lemma 2 gives

(Q,Z0, . . . , Zm−1, x(Zm)Q, x(Zm)P) ∼ (qP, Z0, . . . , Zm−1, qZm+1, Zm+1).
(23)

Hardness of DDH gives (qP, qZm+1, Zm+1) ∼ (Q,Zm, Zm+1) where Q = qP , so
Lemma 3 gives

(qP, Z0, . . . , Zm−1, qZm+1, Zm+1) ∼ (Q,Z0, . . . , Zm−1, Zm, Zm+1). (24)

Lemma 1 on transitivity connects (22) to (23) to (24) to complete the inductive
step, getting us our desired result. ut

This proof makes essential use of Q being random. The reason for this is more
than just to make the proof work. If Q is not random, then it may be the case
the adversary knows a d such that dQ = P . Then dRi = dSi+1, so that such
a distinguisher could immediately recover the secret prestates from the output.
Once the distinguisher gets the prestates, it can easily distinguish the output
from random. Therefore, it is generally preferable for Q to be chosen randomly,
relative to P .

Although Theorem 2 says that hardness of the DDH problem is one of the
sufficient conditions for indistinguishability of the ECRNG output points, it is
not at all clear whether or not hardness of the DDH problem is a necessary
condition. It is clear that hardness of the computational Diffie-Hellman problem
(CDH) is a necessary condition in that Si+1 is the Diffie-Hellman product of P
and Ri to the base Q.

Hardness of XLP, however, is necessary for indistinguishability of the raw
output points. Output R1 = s1Q = x(S1)Q, so distinguishing it from random
Z1 is essentially XLP. Distinguishing output Rj = x(Sj−1)Q from random is
almost XLP except that Sj−1 is not necessarily a random point. However, if
distinguishing algorithm A is an XLP solver, then one heuristically expects that
A could distinguish Rj from a random point. Algorithm A would only fail if
the Sj−1 were distributed with a bias such that A reports that x(Sj−1)Q was
not of the form x(Z)P for some valid point Z. Therefore one cannot hope to
strengthen Theorem 2 by replacing the hardness of XLP with a weaker yet still
natural assumption. One could improve the result, however, by proving that
XLP is as hard as some other problems, such as DDH or ECDLP.

7 Truncated Point Problem and Security of the Full
ECRNG

For appropriate choice of truncation function t(·), we conjecture the following.

Conjecture 3. Let R be a random point and b a random bit string of length
matching the output length of t(·). Then t(x(R)) ∼ b.
We call the problem of distinguishing between t(x(R)) and b, the Truncated Point
Problem (TPP). This paper does not substantially address this conjecture, but
rather uses it to prove something about the final output of the ECRNG, rather
than just its raw output points.

Theorem 3. If the DDH, XLP and TPP problems are hard, then the ECRNG
has forward secrecy.

Proof. Apply Theorem 2 to get that the raw outputs are indistinguishable. By
the assumed hardness of the TPP problem, each truncated point is indistinguish-
able from random bit strings. Apply the lemmas as necessary and get that the
ECRNG output bit strings are indistinguishable from random bit strings, even
from an adversary that gets to see the latest prestate. ut

Although hardness of XLP is necessary for the raw output points to be pseudo-
random, it does not seem necessary for the full ECRNG output bit strings to
be pseudorandom. Likewise, hardness of CDH may not be necessary for security
of the full ECRNG, even if it is necessary for the indistinguishability of the raw
output points. Truncation of the raw output points may yield bit strings are
that unusable even by an XLP distinguisher or a CDH solver to distinguish the
ECRNG outputs.

We note that it is straightforward to generalize the construction to any group
G with suitable maps x : G→ Zn and t : G→ {0, 1}l. If the corresponding DDH,
XLP and TPP problems are hard, the generator will have forward secrecy. If the
map x is a permutation, the corresponding XLP will be trivially hard.

The proposed truncation function drops some number of the leftmost bits
of the bit representation of the x-coordinate. The number of bits dropped is at
least 13+log2(h), where h is the cofactor. The number of bits dropped must also
be such that resulting length is a multiple of eight. Current (draft) standards
allow any number of bits to be dropped that meets these conditions.

We consider if B ∼ t(x(R)) where R is a random point and B is a random
bit string whose output length l matches that of the truncation function. Let k
be the number of bits truncated from x(R), which has length m = k + l.

It is well-known that the advantage of any distinguisher is bounded above
by the statistical distance between the distributions B and t(x(R)), and that
the optimal distinguisher has advantage equal to the statistical distance. The
statistical distance ∆ between B and t(x(R)) is by definition

∆ = ∆(B, t(x(R))) =
∑
b

|Pr[t(x(R)) = b]− Pr[B = b]| . (25)

The easier probability to compute is Pr[B = b] = 2−l because all 2l bit strings
b are equally likely. The other probability has theoretical formula given by
Pr[t(x(R))] = n(b)

n , where n(b) is the number of valid pointsR such that t(x(R)) =
b. Note the n(b) is always even, if we ignore the negligibly frequent case R = 0,
because x(R) = x(−R). Also, as k bits of the x-coordinate are truncated, we
have 0 ≤ n(b)/2 ≤ 2k. Let Bi be the number of b such that n(b) = 2i. Then

∆ =
2k∑
i=0

Bi

∣∣∣∣2in − 2−l
∣∣∣∣ . (26)

Now we make some heuristic assumptions. Assume that the set X of valid x-
coordinates is a random subset of bit strings of length k + l, such that each

bit string belongs to X with probability 1/(2h), where h is the cofactor. Con-
sider cofactor h = 1. Our first heuristic assumption implies Bi has a binomial
distribution, so its approximate expectation is:

E(Bi) ≈ 2l−2k

(
2k

i

)
, (27)

where E is not to be confused with the elliptic curve equation. This distribution
is because there are 2k bit strings of length k + l that truncate to a given bit
string b of length l, and each of these completions of b has probability 1

2 of
belonging to X. Typically a few Bi may veer off considerably from the expected
value. Nevertheless, by linearity of expectation, we can substitute these expected
values into (25), getting expected statistical distance:

E(∆) ≈
2k∑
i=0

2l−2k

(
2k

i

) ∣∣∣∣2in − 2−l
∣∣∣∣ . (28)

Take the approximation n ≈ 2l+k, to get a second heuristic assumption that
2i
n ≈

2i
2k+l . Pulling a common factor through the sum gives

E(∆) ≈ 2−2k−k+1
2k∑
i=0

(
2k

i

) ∣∣i− 2k−1
∣∣ . (29)

The terms with 0 ≤ i ≤ 2k−1 are identical to those with 2k ≥ i ≥ 2k−1, and the
term with i = 2k−1 is zero, so we can eliminate the absolute value signs, getting

E(∆) ≈ 2−2k−k+2
2k−1∑
i=0

(
2k

i

)(
2k−1 − i

)
. (30)

Using the general identity i
(
j
i

)
= j
(
j−1
i−1

)
, with a convention that

(
j−1
−1

)
= 0, gives

E(∆) ≈ 2−2k−k+2
2k−1∑
i=0

(
2k−1

(
2k

i

)
− 2k

(
2k − 1
i− 1

))
. (31)

Pulling out common factor 2k−1 from the sum and the general identity
(
j
i

)
=(

j−1
i−1

)
+
(
j−1
i

)
gives

E(∆) ≈ 2−2k+1
2k−1∑
i=0

((
2k − 1
i

)
−
(

2k − 1
i− 1

))
. (32)

This summation telescopes, giving

E(∆) ≈ 2−2k+1

(
2k − 1
2k−1

)
(33)

For large even J , Stirling’s approximation gives a third heuristic assumption that(
J
J/2

)
≈ 2J
√

2πJ
, and clearly

(
J−1
J/2

)
= 1

2

(
J
J/2

)
. Applying this to (33) with J = 2k

gives

E(∆) ≈ 1√
2π2k

(34)

as the heuristic value for the statistical distance. For k = 16, the heuristic for
the expected statistical distance is about 1

641 . Although this is just a heuristic,
it may be prudent to pay the price of using a larger k when a high degree
of indistinguishability is desired. If only unpredictability is desired, say if the
ECRNG is used for nonces or keys, but not as one-time pads, then this may not
be so critical.

An optimal distinguisher can be constructed by computing n(b), which has
a computational cost of about 2k times the cost of validating a potential x-
coordinate. If n(b)

n > 2−l report t(x(R)), otherwise report B. Provided that k is
small enough, then one heuristically expects that an efficient distinguisher exists
with advantage of about that given by (34).

Rather than making all these highly heuristic assumptions, one can also
gather some empirical data by sampling random B to infer an approximate
distribution for n(B). The inferred distribution can be used as estimates for the
quantities Bi and thus the statistical distance ∆. An accurate inference requires
a large random sampling. We have carried out quite extensive experiments, and
they confirm the heuristic estimates.

One possibility for repairing the ECRNG is to use standard techniques for
entropy extraction to process the raw outputs. In order to increase the asymp-
totic output rate, one may want to extract output from tuples of points instead
of single points. This introduces a higher startup cost and requires a buffer to
hold the points, but this can be tolerated in many practical applications.

Acknowledgments

The first author thanks the ANSI X9F1 working group for introducing him to
the ECRNG, and Certicom colleagues for valuable discussions, especially Matt
Campagna for a careful reading. The second author thanks John Kelsey for
introducing him to the ECRNG. We would also like to thank the anonymous
referees for helpful comments.

References

1. Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM Journal on Computing 13 (1984) 850–864

2. Kaliski, B.S.: A pseudo-random bit generator based on elliptic logarithms. In
Odlyzko, A.M., ed.: Advances in Cryptology — CRYPTO ’86. Volume 263 of
LNCS., Springer (1986) 84–103

3. Barker, E., Kelsey, J.: Recommendation for Random Number Generation Using
Deterministic Random Bit Generators. National Institute of Standards and Tech-
nology. (2006) http://csrc.nist.gov/CryptoToolkit/RNG/SP800-90_June2006.

pdf.
4. Johnson, D.B.: X9.82 part 3 number theoretic DRBGs. Presentation at NIST

RNG Workshop (2004) http://csrc.nist.gov/CryptoToolkit/RNG/Workshop/

NumberTheoreticDRBG.pdf.
5. Barker, E.: ANSI X9.82: Part 3 — 2006, Random Number Generation, Part 3:

Deterministic Random Bit Generators. American National Standards Institute.
(2006) Draft. http://www.x9.org/.

6. Standards for Efficient Cryptography Group: SEC 1: Elliptic Curve for Cryptog-
raphy. Draft 1.7 edn. (2006) http://www.secg.org/.

7. Boneh, D.: The decision Diffie-Hellman problem. In Buhler, J.P., ed.: Algorithmic
Number Theory, ANTS-III. Volume 1423 of LNCS., Springer (1998) 48–63 http:

//crypto.stanford.edu/~dabo/abstracts/DDH.html.
8. Mahassni, E.E., Shparlinksi, I.: On the uniformity of distribution of congruential

generators over elliptic curves. In: International Conference on Sequences and
Their Applications, SETA ’01, Springer (2002) 257–264

9. Gürel, N.: Extracting bits from coordinates of a point of an elliptic curve. ePrint
2005/324, IACR (2005) http://eprint.iacr.org/.

10. Schoenmakers, B., Sidorenko, A.: Cryptanalysis of the dual elliptic curve pseudo-
random generator. ePrint 2006/190, IACR (2006) http://eprint.iacr.org/.

11. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In IEEE, ed.: Foundations of Computer Science, FOCS ’97, IEEE
Computer Society Press (1997) 458–467 http://www.wisdom.weizmann.ac.il/

~reingold/publications/GDH.PS.
12. Farashahi, R.R., Schoenmakers, B., Sidorenko, A.: Efficient pseudorandom gen-

erators based on the DDH assumption. ePrint 2006/321, IACR (2006) http:

//eprint.iacr.org/.
13. Luby, M.: Pseudorandomness and Cryptographic Applications. Princeton Univer-

sity Press (1996)
14. Goldreich, O.: Foundations of Cryptography. Cambridge University Press (2001)
15. Smart, N.P.: A note on the x-coordinate of points on an elliptic curve in charac-

teristic two. Information Processing Letters 80(5) (2001) 261–263

A Unpredictability of the Next State from the Current
Output

Unpredictability is a much weaker property than indistinguishability, but is
also much more important. If the ECRNG outputs are used as cryptographic
keys, very little harm may come from them being distinguishable. If they are
predictable, however, then all may be lost. Indistinguishability implies unpre-
dictably, so in fact, we have already proven unpredictability.

The theorem below, however, proves a little bit of unpredictability under
weaker, arguably more accepted, conjectures, such as hardness of CDH instead
of the hardness of the DDH problem.

Theorem 4. If CDH and XLP are hard, and q and s0 are independent random
integers uniformly distributed in [0, n − 1], and gm(qP, s0) = (R0, . . . , Rm) and

Q = qP , then an adversary who gets to see only Q and Rm cannot compute the
next prestate Sm+1.

Proof. Clearly S1 ∼ Z where Z = zP and z is a random integer uniformly
distributed in [0, n − 1]. Indeed, s0 ∼= z, so S1 = s0P ∼= zP = Z. Assume
by induction that Sj−1 ∼ Z. Now Sj = x(Sj−1)P ∼ x(Z)P ∼ Z, with the
second indistinguishability flowing from the hardness of XLP. Therefore Sm+1 ∼
Z. Since q is independent of z, we have (Q,Sm+1) ∼ (Q,Z). Now (Q,Rm) =
(Q, qSm+1) ∼ (Q, qZ) ∼ (Q,Z), with the second indistinguishability flowing
from Z being able to absorb q by independence.

Suppose adversary A takes (Q,Rm) and outputs Sm+1 = q−1Rm. Then ad-
versary can also take (Q,Z) and output U = q−1Z, because otherwise A could
distinguish (Q,Rm) from (Q,Z). Let (X,Y) = (xP, yP) with x, y independent
random integers uniformly distributed in [0, n − 1]. We will use A to compute
xyP . Pick a random integer u with the same distribution. Let U = uP . Apply
A to (X,U) to get V = x−1U = x−1uP . Let W = u−1V = x−1P = wP . Apply
A to (W,Y) to get w−1Y = (x−1)−1Y = xY = xyP , as desired. Because we
assumed that CDH is hard, adversary A cannot find xyP , so we get a contra-
diction. ut

The simple proof techniques above do not seem to rule out an adversary who
could use two output points to find the next state, or one output point to find
the next output point. The obstacle in the first case seems to be that output
points obey a relationship that needs to be simulated if we wish to solve CDH.
The obstacle in the second case is that the next output can be thought of as a
one-way function of the Diffie-Hellman product of public values, and we seem to
need to invert it to solve CDH.

B A Caution About the Truncated Point Problem for
Binary Curves

It should be noted that for the NIST recommended curves defined over the binary
field F2409 , valid elliptic curve points have a fixed rightmost bit in their canonical
representation. Therefore, for the curves B-409 and K-409, the truncation func-
tion should also drop the rightmost bit. The explanation for this phenomenon
(see also [15]) is that one of the conditions for a point to have the correct order
can be characterized by the trace of the x-coordinate have a fixed value. The
trace depends on the field representation. For trinomial and pentanomial field
representations, the trace simplifies to a sum of just a few of the bits, the trace
bits, in the representation. In all fields, the rightmost bit is a trace bit. For the
409-bit field, the rightmost bit is the only trace bit. For the other four NIST
recommended binary fields, there is at least one trace bit among the leftmost
truncated bits. Consequently, the constant trace condition does not leak any
information after truncation in these cases.

