
Rerandomizable RCCA Encryption

Manoj Prabhakaran and Mike Rosulek

Department of Computer Science, University of Illinois, Urbana-Champaign.
{mmp,rosulek}@uiuc.edu

Abstract. We give the first perfectly rerandomizable, Replayable-CCA
(RCCA) secure encryption scheme, positively answering an open problem
of Canetti et al. (CRYPTO 2003). Our encryption scheme, which we call
the Double-strand Cramer-Shoup scheme, is a non-trivial extension of the
popular Cramer-Shoup encryption. Its security is based on the standard
DDH assumption. To justify our definitions, we define a powerful “Re-
playable Message Posting” functionality in the Universally Composable
(UC) framework, and show that any encryption scheme that satisfies
our definitions of rerandomizability and RCCA security is a UC-secure
implementation of this functionality. Finally, we enhance the notion of
rerandomizable RCCA security by adding a receiver-anonymity (or key-
privacy) requirement, and show that it results in a correspondingly en-
hanced UC functionality. We leave open the problem of constructing a
scheme achieving this enhancement.

1 Introduction

Non-malleability and rerandomizability are opposing requirements to place on an
encryption scheme. Non-malleability insists that an adversary should not be able
to use one ciphertext to produce another one which decrypts to a related value.
Rerandomizability on the other hand requires that anyone can alter a ciphertext
into another ciphertext in an unlinkable way, such that both will decrypt to the
same value. Achieving this delicate tradeoff was proposed as an open problem
by Canetti et al. [7].

We present the first (perfectly) rerandomizable, RCCA-secure public-key en-
cryption scheme. Because our scheme is a non-trivial variant of the Cramer-
Shoup scheme, we call it the Double-strand Cramer-Shoup encryption. Like the
original Cramer-Shoup scheme, the security of our scheme is based on the De-
cisional Diffie Hellman (DDH) assumption. Additionally, our method of using
ciphertext components from two related groups may be of independent interest.

Going further, we give a combined security definition in the Universally-
Composable (UC) security framework by defining a “Replayable Message Post-
ing” functionality Frmp. As a justification of the original definitions of reran-
domizability and RCCA security, we show that any scheme which satisfies these
definitions is also a UC-secure realization of the functionality Frmp. (Here we
restrict ourselves to static adversaries, as opposed to adversaries who corrupt
the parties adaptively.) As an additional contribution on the definitional front,



in Sect. 7.1, we introduce a notion of receiver anonymity for RCCA encryptions,
and a corresponding UC functionality.
Frmp is perhaps the most sophisticated functionality that has been UC-

securely realized in the standard model, i.e., without super-polynomial simu-
lation, global setups, or an honest majority assumption.

Once we achieve this UC-secure functionality, simple modifications can be
made to add extra functionality to our scheme, such as authentication and
replay-testability (the ability for a ciphertext’s recipient to check whether it
was obtained via rerandomization of another ciphertext, or was encrypted inde-
pendently).

Related work. Replayable-CCA security was proposed by Canetti et al. [7] as a
relaxation of standard CCA security. They also raised the question of whether
a scheme could be simultaneously rerandomizable and RCCA secure. Gröth [18]
presented a rerandomizable scheme that achieved a weaker form of RCCA se-
curity, and another with full RCCA security in the generic groups model. Our
work improves on [18], in that our scheme is more efficient, and we achieve full
RCCA security in a standard model.

Rerandomizable encryption schemes also appear using the term universal
re-encryption schemes (universal refers to the fact that the rerandomization/re-
encryption routine does not require the public key), introduced by Golle et al. [17].
Their CPA-secure construction is based on El Gamal, and our construction can
be viewed as a non-trivial extension of their approach, applied to the Cramer-
Shoup construction.

The notion of receiver-anonymity (key-privacy) that we consider in Sect. 7.1
is an extension to the RCCA setting, of a notion due to Bellare et al. [3] (who
introduced it for the simpler CPA and CCA settings).

As mentioned before, our encryption scheme is based on the Cramer-Shoup
scheme [9, 10], which in turn is modeled after El Gamal encryption [14]. The
security of these schemes and our own is based on the DDH assumption (see,
e.g. [4]). Cramer and Shoup [10] later showed a wide range of encryption schemes
based on various assumptions which provide CCA security, under a framework
subsuming their original scheme [9]. We believe that much of their generalization
can be adapted to our current work as well, though we do not investigate this
in detail here (see the remark in the concluding section).

Shoup [26] and An et al. [1] introduced a variant of RCCA security, called
benignly malleable, or gCCA2, security. It is similar to RCCA security, but uses
an arbitrary equivalence relation over ciphertexts to define the notion of replay-
ing. However, these definitions preclude rerandomizability by requiring that the
equivalence relation be efficiently computable publicly. A simple extension of
our scheme achieves a modified definition of RCCA security, where the replay-
equivalence relation is computable only by the ciphertext’s designated recipient.
Such a functionality also precludes perfect rerandomization, though our modifi-
cation does achieve a computational relaxation of the rerandomization require-
ment.



Motivating applications. Golle et al. [17] propose a CPA-secure rerandomiz-
able encryption scheme for use in mixnets [8] with applications to RFID tag
anonymization. Implementing a re-encryption mixnet using a rerandomizable en-
cryption scheme provides a significant simplification over previous implementa-
tions, which require distributed key management. Golle et al. call such networks
universal mixnets. Some attempts have been made to strengthen their scheme
against a näıve chosen-ciphertext attack, including by Klonowski et al. [19], who
augment the scheme with a rerandomizable RSA signature. However, these mod-
ifications still do not prevent all practical chosen-ciphertext attacks, as demon-
strated by Danezis [11].

We anticipate that by achieving full RCCA security, our construction will
be an important step towards universal mixnets that do not suffer from active
chosen-ciphertext attacks. However, mix-net applications tend to also require a
“receiver-anonymity” property (see Sect. 7.1) from the underlying encryption
scheme. In fact, the utility of rerandomizable RCCA encryption is greatly en-
hanced by this anonymity property. We do not have a scheme which achieves
this. However, our current result is motivated in part by the power of such a
scheme. We illustrate its potential with another example application (adapted
from a private communication [20]). Consider a (peer-to-peer) network routing
scenario, with the following requirements: (1) each packet should carry a path
object which encodes its entire path to the destination; (2) each node in the net-
work should not get any information from a path object other than the length
of the path and the next hop in the path; and (3) there should be a mechanism
to broadcast link-failure information so that any node holding a path object can
check if the failed link occurs in that path, without gaining any additional in-
formation. This problem is somewhat similar to “Onion Routing” [5, 12, 16, 21].
However, adding requirement (3) makes the above problem fundamentally dif-
ferent. Using an anonymous, rerandomizable, RCCA-secure encryption scheme
one can achieve this selective revealing property as well as anonymity. We defer
a more formal treatment of this scenario to future work.

Due to lack of space, we have omitted many details in this paper. We refer
the readers to the online version for a detailed presentation [24].

2 Definitions

We call a function ν negligible in n if it asymptotically approaches zero faster
than any inverse polynomial in n; that is, ν(n) = n−ω(1). We call a function
noticeable if it is non-negligible. A probability is overwhelming if it is negligibly
close to 1 (negligible in an implicit security parameter). In all the encryption
schemes we consider, the security parameter is the number of bits needed to
represent an element from the underlying cyclic group.

2.1 Encryption and Security Definitions

In this section we give the syntax of a perfectly rerandomizable encryption
scheme, and then state our security requirements, which are formulated as in-



distinguishability experiments. Later, we justify these indistinguishability-based
definitions by showing that any scheme which satisfies them is a secure realiza-
tion of a powerful functionality in the UC security model, which we define in
Sect. 5.

Syntax and correctness of a perfectly rerandomizable encryption scheme. A per-
fectly rerandomizable encryption scheme consists of four polynomial-time algo-
rithms (polynomial in the implicit security parameter):

1. KeyGen: a randomized algorithm which outputs a public key PK and a cor-
responding private key SK.

2. Enc: a randomized encryption algorithm which takes a plaintext (from a
plaintext space) and a public key, and outputs a ciphertext.

3. Rerand: a randomized algorithm which takes a ciphertext and outputs an-
other ciphertext.

4. Dec: a deterministic decryption algorithm which takes a private key and a
ciphertext, and outputs either a plaintext or an error indicator ⊥.

We emphasize that the Rerand procedure takes only a ciphertext as input, and
in particular, no public key.

We require the scheme to satisfy the following correctness properties for all
key pairs (PK,SK)← KeyGen:

– For every plaintext msg and every (honestly generated) ciphertext ζ ←
EncPK(msg), we must have DecSK(ζ) = msg.

– For every independently chosen (PK ′, SK ′)← KeyGen, the sets of honestly
generated ciphertexts under PK and PK ′ are disjoint, with overwhelming
probability over the randomness of KeyGen.

– For every plaintext msg and every (honestly generated) ciphertext ζ ←
EncPK(msg), the distribution of Rerand(ζ) is identical to that of EncPK(msg).

– For every (purported) ciphertext ζ and every ζ ′ ← Rerand(ζ), we must have
DecSK(ζ ′) = DecSK(ζ).

In other words, decryption is the inverse of encryption, and ciphertexts can
be labeled “honestly generated” for at most one honestly generated key pair.
We require that rerandomizing an honestly generated ciphertext induces the
same distribution as an independent encryption of the same message, while the
only guarantee for an adversarially generated ciphertext is that rerandomization
preserves the value of its decryption (under all private keys).

Perfect vs. computational rerandomization. For simplicity, we only consider sta-
tistically perfect rerandomization. However, for most purposes (including our
UC functionality), a computational relaxation suffices. Computational reran-
domization can be formulated as an indistinguishability experiment against an
adversary; given two ciphertexts (of a chosen plaintext), no adversary can have a
significant advantage in determining whether they are independent encryptions
or if one is a rerandomization of the other. As in our other security experiments,
the adversary is given access to a decryption oracle.



Replayable-CCA (RCCA) security. We use the definition from Canetti et al. [7].
An encryption scheme is said to be RCCA secure if the advantage of any PPT
adversary A in the following experiment is negligible:

1. Setup: Pick (PK,SK)← KeyGen. A is given PK.
2. Phase I: A gets access to the decryption oracle DecSK(·).
3. Challenge: A outputs a pair of plaintexts (msg0,msg1). Pick b ← {0, 1}

and let ζ∗ ← EncPK(msgb). A is given ζ∗.
4. Phase II: A gets access to a guarded decryption oracle GDec

(msg0,msg1)
SK which

on input ζ, first checks if DecSK(ζ) ∈ {msg0,msg1}. If so, it returns replay;
otherwise it returns DecSK(ζ).

5. Guess: A outputs a bit b′ ∈ {0, 1}. The advantage of A in this experiment
is Pr[b′ = b]− 1

2 .

Tightness of decryption. An encryption scheme is said to have tight decryption
if the success probability of any PPT adversary A in the following experiment
is negligible:

1. Pick (PK,SK)← KeyGen and give PK to A.
2. A gets access to the decryption oracle DecSK(·).
3. A outputs a ciphertext ζ. A is said to succeed if DecSK(ζ) = msg 6= ⊥ for

some msg, yet ζ is not in the range of EncPK(msg).

Observe that when combined with correctness property (2), this implies that an
adversary cannot generate a ciphertext which successfully decrypts under more
than one honestly generated key. Such a property is useful in achieving a more
robust definition of our UC functionality Frmp in Sect. 5 (without it, a slightly
weaker yet still meaningful definition is achievable).

2.2 Decisional Diffie-Hellman (DDH) Assumption

Let G be a (multiplicative) cyclic group of prime order p. The Decisional Diffie-
Hellman (DDH) assumption in G is that the following two distributions are
computationally indistinguishable:

{(g, ga, gb, gab)}g←G;a,b←Zp and {(g, ga, gb, gc)}g←G;a,b,c←Zp .

Here, x← X denotes that x is drawn uniformly at random from a set X.

Cunningham chains. Our construction requires two (multiplicative) cyclic groups
with a specific relationship: G of prime1 order p, and Ĝ of prime order q, where
Ĝ is a subgroup of Z∗p. We require the DDH assumption to hold in both groups
(with respect to the same security parameter).

As a concrete example, the DDH assumption is believed to hold in QR∗p, the
group of quadratic residues modulo p, where p and p−1

2 are prime (i.e, p is a safe

1 It is likely that our security analysis can be extended to groups of orders with large
prime factors, as is done in [10]. For simplicity, we do not consider this here.



prime). Given a sequence of primes (q, 2q+1, 4q+3), the two groups Ĝ = QR∗2q+1

and G = QR∗4q+3 satisfy the needs of our construction. A sequence of primes of
this form is called a Cunningham chain (of the first kind) of length 3 (see [2]).
Such Cunningham chains are known to exist having q as large as 20,000 bits. It
is conjectured that there are infinitely many such chains.

3 Motivating the Double-strand Construction

Conceptually, the crucial enabling idea in our construction is that of using two
“strands” of ciphertexts which can be recombined with each other for rerandom-
ization without changing the encrypted value. To motivate this idea, we sketch
the rerandomizable scheme of Golle et al. [17], which is based on the El Gamal
scheme and secure against chosen plaintext attacks.

Recall that in an El Gamal encryption scheme over a group G of order p, the
private key is a ∈ Zp and the corresponding public key is A = ga. A message
µ ∈ G is encrypted into the pair (gv, µAv) for a random v ∈ Zp.

To encrypt a message µ ∈ G in a “Double-strand El Gamal” scheme, we
generate two (independent) El Gamal ciphertexts: one of µ (say, C0) and one
of the identity element in G (say, C1). Such a double-strand ciphertext (C0, C1)
can be rerandomized by computing (C ′0, C

′
1) = (C0C

r
1 , Cs

1) for random r, s← Zp

(where the operations on C0 and C1 are component-wise).
Our construction adapts this paradigm of rerandomization for Cramer-Shoup

ciphertexts, and when chosen ciphertext attacks are considered. The main tech-
nical difficulty is in ensuring that the prescribed rerandomization procedure is
the only way in which “strands” can be used to generate a valid ciphertexts.

Cramer-Shoup encryption. The Cramer-Shoup scheme [9] uses a group G of
prime order p in which the DDH assumption is believed to hold. The private
key is b1, b2, c1, c2, d1, d2 ∈ Zp and the public key is g1, g2 ∈ G, B =

∏2
i=1 gbi

i ,
C =

∏2
i=1 gci

i , and D =
∏2

i=1 gdi
i .

To encrypt a message msg, first pick x ∈ Zp. and for i = 1, 2 let and Xi = gx
i .

Encode msg into an element µ in G. The ciphertext is (X1, X2, µBx, (CDm)x)
where m = H(X1, X2, µBx) and H is a collision-resistant hash function.

In our scheme the ciphertext will contain two “strands,” each one similar to
a Cramer-Shoup ciphertext, allowing rerandomization as in the example above.
However, instead of pairs we require 5-tuples of gi, bi, ci, di (i.e., for i = 1, . . . , 5).
To allow for rerandomization, we use a direct encoding of the message for the
exponent m (instead of a hash of part of the ciphertext). Finally, we thwart
attacks which splice together strands from different encryptions by correlating
the two strands with shared random masks.

Our security analysis is more complicated than the ones in [3, 9, 18]. However
all these analyses as well as the current one follow the basic idea that if an
encryption were to be carried out using the secret key in a “bad” way, the
result will remain indistinguishable from an actual encryption (by the DDH
assumption), but will also become statistically independent of the message and
the public key.



4 Our Construction

In this section we describe our main construction, the Double-strand Cramer-
Shoup (DSCS) encryption scheme. First, we introduce a simpler encryption
scheme that is used as a component of the main scheme.

4.1 Double-strand Malleable Encryption Scheme

We now define a rerandomizable encryption scheme which we call the “Double-
strand malleable encryption” (DSME). As its name suggests, it is malleable,
so it does not achieve our notions of RCCA security. However, it introduces
the double-strand paradigm for rerandomization which we will use in our main
construction. We will also use our DSME scheme as a component in our main
construction, where its malleability will actually be a vital feature.

System parameters. A cyclic multiplicative group Ĝ of prime order q. Ĝ also
acts as the message space for this scheme.

Key generation. Pick random generators ĝ1, ĝ2, ĝ3 from Ĝ, and random a =
(a1, a2, a3) from (Zq)3. The private key is a. The public key consists of ĝ1, ĝ2,
ĝ3, and A =

∏3
j=1 ĝ

aj

j .

Encryption: MEncMPK(u ∈ Ĝ):

– Pick random v, w ∈ Zq. For j = 1, 2, 3: let Vj = ĝv
j and Wj = ĝw

j .
– Output (V, uAv,W, Aw), where V = (V1, V2, V3) and W = (W1,W2,W3).

Decryption: MDecMSK(U = (V, AV ,W, AW )):

– Check ciphertext integrity: Check if AW
?=

∏3
j=1 W

aj

j . If not, output ⊥.

– Derive plaintext: Output AV /
∏3

j=1 V
aj

j .

Rerandomization: MRerand(U = (V, AV ,W, AW )): The only randomness used
in MEnc is the choice of v and w in Ĝ. We can rerandomize both of these
quantities by choosing random s, t ∈ Zq and outputting the following ciphertext:

U ′ = (VWs, AV ·As
W ,Wt, At

W ).

Here VWs and Wt denote component-wise operations. It is not hard to see that
if U is in the range of MEncMPK(u) (with random choices v and w), then U ′ is
in the range of MEncMPK(u) with corresponding random choices v′ = v + sw
and w′ = tw.



Homomorphic operation (multiplication by known value): Let u′ ∈ Ĝ and let
U = (V, AV ,W, AW ) be a DSME ciphertext. We define the following operation:

u′ ⊗ U
def= (V, u′ ·AV ,W, AW ).

It is not hard to see that for all private keys MSK, if MDecMSK(U) 6= ⊥
then MDecMSK(u′ ⊗ U) = u′ · MDecMSK(U), and if MDecMSK(U) = ⊥ then
MDecMSK(U ′) = ⊥ as well.

Observe that this scheme is malleable under more than just multiplication
by a known quantity. For instance, given r ∈ Zq and an encryption of u, one can
derive an encryption of ur. As it turns out, the way we use DSME in the main
construction ensures that we achieve our final security despite such additional
malleabilities.

4.2 Double-strand Cramer-Shoup Encryption Scheme

Now we give our main construction: a rerandomizable, RCCA-secure encryption
scheme called the “Double-strand Cramer-Shoup” (DSCS) scheme. At the high
level, it has two Cramer-Shoup encryption strands, one carrying the message,
and the other to help rerandomize it. But unlike in the Cramer-Shoup scheme,
we need to allow rerandomization, and so we do not use a prefix of the ciphertext
itself in ensuring consistency; instead we use a direct encoding of the plaintext.

Further, we must prevent the possibility of mixing together strands from two
different encryptions of the same message (say, in the manner in which rerandom-
izability allows two strands to be mixed together) to obtain a ciphertext which
successfully decrypts, which would yield a successful adversarial strategy in our
security experiments. For this, we correlate the two strands of a ciphertext with
shared random masks. These masks are random exponents which are separately
encrypted using the malleable DSME scheme described above (so that they may
be hidden from everyone but the designated recipient, but also be rerandomized
via the DSME scheme’s homomorphic operation).

Finally, we must restrict the ways in which a ciphertext’s two strands can
be recombined, so that essentially the only way in which the two strands can be
used to generate a ciphertext that decrypts successfully is to combine the two
strands in the manner prescribed in the Rerand algorithm. To accomplish this,
we perturb the exponents of the message-carrying strand by an additional (fixed)
vector. Intuitively, this additive perturbance must remain present in the message-
carrying strand of a ciphertext, which restricts the ways in which that strand
can be combined with things. As a side-effect, our construction requires longer
strands (i.e., more components) than in the original Cramer-Shoup scheme.

System parameters. A cyclic multiplicative group G of prime order p. A space of
messages. An injective encoding encodeG of messages into G. An injective map-
ping encodeZp of messages into Zp (or into Z∗p, without any significant difference).
These functions should be efficiently computable in both directions.



We also require a secure DSME scheme over a group Ĝ of prime order q,
where Ĝ is also a subgroup of Z∗p. This relationship is crucial, as the homomor-
phic operation ⊗ of the DSME scheme must coincide with multiplication in the
exponent in G.

Finally, we require a fixed vector z = (z1, . . . , z5) ∈ (Zp)5 with a certain
degenerate property. For our purposes, z = (0, 0, 0, 1, 1) is sufficient.

Key generation. Generate 5 keypairs for the DSME scheme in Ĝ. Call them
Ai,ai for i = 1, . . . , 5.

Pick random generators g1, . . . , g5 ∈ G, and random b = (b1, . . . , b5), c =
(c1, . . . , c5),d = (d1, . . . , d5) from (Zp)5. The private key consists of b, c,d and
the 5 private keys for the DSME scheme. The public key consists of (g1, . . . g5),
the 5 public keys for the DSME scheme, and the following values:

B =
∏5

i=1 gbi
i , C =

∏5
i=1 gci

i , D =
∏5

i=1 gdi
i .

Encryption: EncPK(msg):

– Pick random x, y ∈ Z∗p and random u1, . . . , u5 ∈ Ĝ.
– For i = 1, . . . , 5: let Xi = g

(x+zi)ui

i ; Yi = gyui

i ; and Ui = MEncAi(ui).
– Let µ = encodeG(msg), and m = encodeZp

(msg).
– Output:

(X, µBx, (CDm)x,Y, By, (CDm)y,U),

where U = (U1, . . . , U5),X = (X1, . . . , X5),Y = (Y1, . . . , Y5).

Decryption: DecSK(ζ = (X, BX , PX ,Y, BY , PY ,U)):

– Decrypt Ui’s: For i = 1, . . . , 5: set ui = MDecai
(Ui). If any ui = ⊥, imme-

diately output ⊥.
– Strip ui’s and zi’s: For i = 1, . . . , 5: set Xi = X

1/ui

i g−zi
i and Y i = Y

1/ui

i .
– Derive purported plaintext: Set µ = BX/

∏5
i=1 X

bi

i , msg = encode−1
G (µ),

and m = encodeZp(msg).
– Check ciphertext integrity: Check the following conditions:

BY
?=

∏5
i=1 Y

bi

i ; PX
?=

∏5
i=1 X

ci+dim

i ; PY
?=

∏5
i=1 Y

ci+dim

i .

If any checks fail, output ⊥. Otherwise output msg.

Rerandomization: Rerand(ζ = (X, BX , PX ,Y, BY , PY ,U)): The only random-
ness used in Enc is the choice of x, y, u = (u1, . . . , u5), and the randomness used
in each instance of MEnc. We can rerandomize each of these quantities by choos-
ing random r1, . . . , r5 ∈ Ĝ, random s, t ∈ Z∗p, and constructing a ciphertext
which corresponds to an encryption of the same message, with corresponding
random choices u′i = uiri, x′ = x + ys, and y′ = yt:

– For i = 1, . . . , 5, set U ′i = MRerand(ri ⊗ Ui); X ′i = (XiY
s
i )ri ; and Y ′i = Y rit

i .
– B′X = BXBs

Y and P ′X = PXP s
Y .

– B′Y = Bt
Y and P ′Y = P t

Y .

The rerandomized ciphertext is ζ ′ = (X′, B′X , P ′X ,Y′, B′Y , P ′Y ,U′).



4.3 Complexity

The complexities of the DSCS scheme are summarized in Table 1 and Table 2.2

Clearly our scheme is much less efficient than the Cramer-Shoup encryption

Table 1. Number of elements

bG Zq G Zp

Public key 20 - 8 -
Private key - 15 - 15
Ciphertext 40 - 14 -

Table 2. Group operations performed

exp. mult. inv.bG G Z∗p G Z∗p G
Enc 40 16 15 3 0 0
Dec (worst case) 30 35 40 22 10 1
Rerand 36 19 40 7 0 0

scheme. On the other hand, it is much more efficient than the only previously
proposed rerandomizable (weak) RCCA-secure scheme [18], which used O(k)
group elements to encode a k-bit message (or in other words, to be able to
use the group itself as the message space, it used O(log p) group elements). In
fact, if we restrict ourselves to weak RCCA security (as defined in [18]) and a
computational version of rerandomizability, our construction can be simplified
to have only 10 group elements (we omit the details of that construction in this
paper).

Rerandomizable RCCA security is a significantly harder problem by our cur-
rent state of knowledge. Despite the inefficiency, we believe that by providing
the first complete solution (i.e., not in the generic group model) we have not
only solved the problem from a theoretical perspective, but also opened up the
possibility of efficient and practical constructions.

5 Replayable Message Posting

We define the “Replayable Message Posting” functionality Frmp in the Uni-
versally Composable (UC) security framework [6, 22], also variously known as
environmental security [15, 25] and network-aware security [23] framework.

This functionality concisely presents the security achieved by a rerandomiz-
able, RCCA-secure encryption scheme. The functionality allows parties to pub-
licly post messages which are represented by abstract handles, arbitrary strings
provided by the adversary. The adversary is not told the actual message (un-
less, of course, the recipient is corrupted by the adversary). Only the designated
receiver is allowed to obtain the corresponding message from the functionality.

Additionally, Frmp provides a reposting functionality: any party can “repost”
(i.e., make a copy of) any existing handle. Requesting a repost does not reveal the
message. To the other parties (including the adversary and the original message’s
recipient), the repost appears exactly like a normal message posting; i.e, the

2 Multiplication and inversion operations in Z∗p include operations in the subgroup bG.
We assume that for bgi elements of the public key, bg−1

i can be precomputed.



functionality’s external behavior is no different for a repost versus a normal
post.

A similar functionality Frpke was defined by Canetti et. al [7] to capture
(not necessarily rerandomizable) RCCA security. Frpke is itself a modification
of the Fpke functionality of [6], which modeled CCA security. Both of these func-
tionalities similarly represent messages via abstract handles. However, the most
important distinction between these two functionalities is that Frmp provides
the ability to repost handles as a feature; thus, it does not include the notion of
“decrypting” handles which are not previously known to the functionality.

We now formally define the behavior of Frmp. It accepts the following four
kinds of requests from parties:

Registration: On receiving a message register from a party sender, the functional-
ity sends (id-req, sender) to the adversary, and expects in response an identifier
string id.3 If the string received in response has been already used, ignore the
request. Otherwise respond to sender with the string id, and also send a message
(id-announce, id) to all other parties.

Additionally, we reserve a special identifier id⊥ for the adversary. The ad-
versary need not explicitly register to use this identifier, nor is it announced to
the other parties. We also insist that only corrupted parties are allowed to post
messages for id⊥ (though honest parties may repost the resulting handles).4

Message posting: On receiving a request (post, id,msg) from a party sender, the
functionality behaves as follows:5 If id is not registered, ignore the request.

If id is registered to an uncorrupted party, send (handle-req, sender, id) to
the adversary; otherwise send (handle-req, sender, id,msg) to the adversary.
In both cases, expect a string handle in return. If handle has been previously
used, ignore this request. Otherwise, record (handle, sender, id,msg) internally
and publish (handle-announce, handle, id) to all registered parties.

Note that if the recipient of a message is corrupted, it is reasonable for the
functionality to reveal msg to the adversary when requesting the handle.

Message reposting: On receiving a message (repost, handle) from a party sender,
the functionality behaves as follows: If handle is not recorded internally, ignore
the request.

Otherwise, suppose (handle, sender′, id,msg) is recorded internally. If id is reg-
istered to an uncorrupted party, send (handle-req, sender, id) to the adversary;

3 This can be modified to have the functionality itself pick an id from a predeter-
mined distribution specified as part of the functionality. In this case the function-
ality will also provide the adversary with some auxiliary information about id (e.g.,
the randomness used in sampling id). For simplicity we do not use such a stronger
formulation.

4 id⊥ models the fact that an adversary may generate key pairs without announcing
them, and broadcast encryptions under those keys.

5 We assume that msg is from a predetermined message space, with size superpolyno-
mial in the security parameter; otherwise the request is ignored.



otherwise send (handle-req, sender, id,msg) to the adversary. In both cases,
expect a string handle′ in return. If handle′ has been previously used, ignore
this request. Otherwise, record (handle′, sender, id,msg) internally and publish
(handle-announce, handle′, id) to all registered parties.

As above, if the message’s recipient is corrupted, the functionality can legit-
imately reveal msg to the adversary when requesting the handle.

Message reading: On receiving a message (get, handle) from a party, if a record
(handle, sender, id,msg) is recorded internally, and id is registered to this party,
then return (id,msg) to it. Otherwise ignore this request.

6 Results

We present two main results below. The first is that the DSCS encryption scheme
presented in Sect. 4 achieves the security definitions defined in Sect. 2.1. The
second result is that any construction which meets these guarantees is a secure
realization of the Frmp functionality defined in Sect. 5. For the complete proofs
of these results, we refer the reader to the full version of this paper [24].

Theorem 1. The DSCS scheme (Sect. 4) is a perfectly rerandomizable encryp-
tion scheme which satisfies the definitions of RCCA security and tight decryption
under the DDH assumption in G and Ĝ.

Proof overview: Here we sketch an outline of the proof of RCCA security.
It is convenient to formulate our proof in terms of alternate encryption and

decryption procedures. We remark that this outline is similar to that used in
previous proofs related to the Cramer-Shoup construction [3, 9, 10, 13]. However,
the implementation is significantly more involved in our case.

Alternate encryption. First, we would like to argue that the ciphertexts hide
the message and the public key used in the encryption. For this we describe an
alternate encryption procedure AltEnc. AltEnc actually uses the private key to
generate ciphertexts. In short, instead of using {Xi = gx

i } and {Yi = gy
i }, AltEnc

picks random group elements for these ciphertext components, then uses the
private key to generate the other components according to the quantities which
are computed by Dec.

When AltEnc is used to generate the challenge ciphertext in the RCCA se-
curity experiment, it follows from the DDH assumption in G and Ĝ that for any
adversary the experiment’s outcome does not change significantly. Additionally,
the ciphertexts produced by AltEnc are information-theoretically independent of
the message.

Alternate decryption. An adversary may be able to get information about the
message used in the encryption not only from the challenge ciphertext, but also
from the answers to the decryption queries that it makes. Indeed, since the de-
cryption oracle uses the private key there is a danger that information about



the private key is leaked, especially when the oracle answers maliciously crafted
ciphertexts. To show that our scheme does leak information in this way, we
describe an alternate decryption procedure AltDec to be used in the security ex-
periments, which can be implemented using only the public key(s) and challenge
ciphertext (quantities which are already known to the adversary). AltDec will
be computationally unbounded, but since it is accessed as an oracle, this does
not affect the analysis. More importantly, its functionality is statistically indis-
tinguishable from the honest decryption procedure (even when the adversary is
given a ciphertext generated by AltEnc).

By computing discrete logarithms of some components of its input and com-
paring with the public key and challenge ciphertext, the alternate decryption
procedure can check whether its input is “looks like” an honest encryption or
a rerandomization of the challenge ciphertext, and give the correct response in
these cases. To establish the correctness of this approach, we show that cipher-
texts which are rejected by AltDec would be rejected by the normal decryption
algorithm with overwhelming probability as well. The u and z components of
our construction are vital in preventing all other ways of combining the challenge
strands and the public key. This is the most delicate part of our proof.

We conclude that with these two modifications – alternate challenge cipher-
text and the alternate decryption procedure – the adversary’s view in the RCCA
security experiment is independent of the secret bit b, and so the adversary’s ad-
vantage is zero. Furthermore, the outcome of this modified experiment is only
negligibly different from the outcome of the original experiment, so the security
claim follow. C

Theorem 2. Every rerandomizable encryption scheme which is RCCA-secure,
and has tight decryption6 is a secure realization of Frmp in the standard UC
model.

Proof overview: For simplicity we consider all communications to use a
broadcast channel. The scheme yields a protocol for Frmp in the following natural
way: public keys correspond to identifiers and ciphertexts correspond to handles.
To register oneself, one generates a key pair and broadcasts the public key. To
post a message to a party, one simply encrypts the message under his public
key. To repost a handle, one simply applies the rerandomization procedure. To
retrieve a message in a handle, one simply decrypts it using one’s private key.

To prove the security of this protocol, we demonstrate a simulator S for each
adversary A. The simulator S internally runs A and behaves as follows:

When Frmp receives a registration request from an honest party, it requests
an identifier from S. S generates a key pair, sends the public key as the identifier
string, and simulates to A that an honest party broadcasted this public key.
6 By relaxing the requirement that the scheme have tight decryption (and also the

correctness requirement that ciphertexts are not honest ciphertexts for more than
one honest key pair), we can still realize a weaker variant of Frmp. In this variant,
handles may be re-used, and the adversary is notified any time an honest party
reposts any handle which the adversary posted/reposted. We omit the details here.



When Frmp receives a post request addressed to an honest party (or a repost
request for such a handle), it requests a new handle from S, without revealing the
message. The ith time this happens, S generates the handle handleH

i by picking
a random message msgH

i and encrypting it under the given identity (say, public
key PKi). In its simulation, S uses this ciphertext as the one broadcast by the
sender. The correctness of this simulated ciphertext follows from the scheme’s
RCCA security property.

When A broadcasts a public key, S registers it as an identifier in Frmp. When
A broadcasts a ciphertext ζ, S behaves as follows:

1. If for some i, DecSKi(ζ) = msgH
i (the ith random message chosen to sim-

ulate a ciphertext between honest parties), then S instructs Frmp to repost
handleH

i .
2. If DecSK(ζ) = msg 6= ⊥ for any of the private keys SK that it picked while

registering honest parties, then S instructs Frmp to post msg, addressed to
the corresponding honest party.

3. Otherwise, ζ does not successfully decrypt under any of these private keys.
The jth time this happens, S picks a random message msgA

j and instructs
Frmp to post msgA

j to id⊥. It also remembers handleA
j = ζ.

In all the above cases, S sends ζ to Frmp as the handle for this new message.
Tight decryption ensures that at most one of the above decryptions succeeds.
Further, if one does succeed, the ciphertext must be in the support of honest
encryptions, so the perfect rerandomization condition holds for it.

When Frmp receives a post request addressed to a corrupted party (or a repost
request for such a handle), it sends the corresponding message msg and identifier
id to S, and requests a new handle.

1. If id = id⊥ and msg = msgA
j (the jth random message chosen to simulate an

adversarial ciphertext to Frmp), then S generates a handle by rerandomizing
the corresponding handleA

j .
2. Otherwise, S generates a handle by encrypting the message under the ap-

propriate public key.

In its simulation, S uses this ciphertext as the one broadcast by the sender. C

7 Extensions

Once our construction is made available as a UC-secure realization of Frmp, it is
easier to extend in a modular fashion. We first describe a few useful extensions
which are easily achieved, and then discuss extending the notion of receiver-
anonymity to rerandomizable RCCA encryption schemes.

Replay-test. In some applications, it is convenient if the recipient of a ciphertext
is able to check whether it is a rerandomization of another ciphertext, or an in-
dependent encryption of the same plaintext. We call such a feature a replay-test



feature. A replay-test precludes having perfect or even statistical rerandomiza-
tion, and so we must settle for a computational definition of rerandomization.

Redefining RCCA security and rerandomizability for schemes which include
a replay-test feature is a non-trivial extension of our current definitions. In par-
ticular, note that in a chosen ciphertext attack, the adversary should be allowed
to access a replay-test oracle as well as a decryption oracle, while responses from
the decryption oracle should be guarded based on the replay-test instead of a
check of the plaintext.

However, instead of modifying our security definitions based on standalone
experiments, we can directly formulate a new UC functionality. The functionality
is identical to Frmp, but it provides an additional test command: a party can give
two handles, and if it is the designated receiver of both the handles, then the
functionality tells it whether the two handles were derived as reposts of the
same original post. To do this, the functionality maintains some extra book-
keeping internally. This functionality can be easily achieved starting from Frmp:
each message is posted with a random nonce appended. To implement test, the
receiver retrieves the messages of the two handles and compares their nonces.

Authentication. As should be intuitive, authentication can be achieved by signing
the messages using a public-key signature scheme, before posting them. In terms
of the functionality, a separate register feature is provided which allows senders
to register themselves (this corresponds to publishing the signature verification
key). Then the functionality’s get command is augmented to provide not only the
message in the handle, but also who originally posted the handle. The identifiers
for receiving messages and sending messages are separate, but they can be tied
together (by signing the encryption scheme’s public key and publishing it), so
that only the signature verification keys need to be considered as identifiers in
the system.

Variable-length plaintexts. In our presentation of our encryption scheme, there
is a hard limit on the message length, because the message must be encoded as
an element in a group of fixed size. However, Frmp can easily be extended to al-
low messages of variable lengths: for this the longer message is split into smaller
pieces; a serial number and a common random nonce are appended to each piece;
the first piece also carries the total number of pieces. Then each piece is posted
using the fixed-length Frmp functionality. The decryption procedure performs
the obvious simple integrity checks on a set of ciphertexts and discards them if
they are not all consistent and complete. Note that the resulting modification to
the Frmp functionality tells the adversary the length of the message (i.e., number
of pieces) while posting or reposting a handle. It is straight-forward to construct
a simulator (on receiving a handle and a length, the simulator creates the ap-
propriate number of handles and reports to the adversary; when the adversary
reposts handles, the simulator will not make a repost to the functionality unless
all handles it generated for one variable-length handle are reposted together).
We note that these extensions can be applied one after the other.



7.1 Anonymity

Bellare et al. [3] introduced the notion of receiver-anonymity (or key-privacy) for
CPA and CCA secure encryption schemes, which we extend to the RCCA set-
ting. In a system with multiple users, rerandomizability of ciphertexts, without
receiver-anonymity, may not be satisfactory. For instance, while rerandomizabil-
ity allows unlinkability of multiple encryptions in terms of their contents, without
anonymity they could all be linked as going to the same receiver.

RCCA receiver-anonymity. An encryption scheme is said to be RCCA receiver-
anonymous if the advantage of any PPT adversary A in the following experiment
is negligible:

1. Setup: Pick (PK0, SK0)← KeyGen and (PK1, SK1)← KeyGen. A is given
(PK0, PK1)

2. Phase I: A gets access to the decryption oracles DecSK0(·) and DecSK1(·).
3. Challenge: A outputs a plaintext msg. Pick b ← {0, 1} and let ζ∗ ←

EncPKb
(msg). A is given ζ∗.

4. Phase II: A gets access to a guarded decryption oracle GDecmsg
SK0,SK1

(·),
which on input ζ, first checks if msg ∈ {DecSK0(ζ),DecSK1(ζ)}. If so, it
returns replay; otherwise it returns the pair (DecSK0(ζ),DecSK1(ζ)).

5. Guess: A outputs a bit b′ ∈ {0, 1}. The advantage of A in this experiment
is Pr[b′ = b]− 1

2 .

Our scheme does not achieve this definition of anonymity. We leave it as an
interesting open problem.

Modifications to Frmp. If a rerandomizable RCCA-secure encryption scheme
additionally meets this definition of RCCA anonymity, the scheme can be used
to implement an “anonymous” variant of Frmp. In this variant, the functionality
does not reveal the handle’s recipient in a handle-announce broadcast, nor in
the handle-req messages it sends to the adversary (unless the handle’s recipient
is corrupted).

In proving this, compared to the proof of Theorem 2, the only change in the
simulator for this modified functionality is that it uses a “dummy” public key
to generate all simulated ciphertexts addressed to honest recipients, instead of
using the correct key.

8 Conclusions and Future Directions

This work leads to several interesting questions. First, can the efficiency of
our scheme be improved? Public-key encryption schemes like Cramer-Shoup
are much less efficient than private-key schemes. To exploit the best of both
worlds, one can use a hybrid encryption scheme which uses a public-key en-
cryption scheme to share a private key, and then encrypt the actual voluminous
data with the private-key encryption. It is interesting to consider whether such



a hybrid scheme can be devised in a rerandomizable manner. To achieve perfect
rerandomization, the public-key scheme would have to be malleable (to reran-
domize the private key), and the private-key scheme should allow reencryption
which changes the key accordingly.

Second, can rerandomizable RCCA-secure schemes be constructed which are
also RCCA receiver-anonymous? As mentioned earlier, many applications re-
quire not only rerandomizability of the ciphertexts, but also receiver anonymity.

Third, can CCA-like tradeoffs be defined for encryption schemes with more
sophisticated homomorphic features? In this work, we give a tight tradeoff, al-
lowing malleability via the identity function in the strongest manner, while pro-
hibiting all other kinds of malleability. How can one define (and achieve) a similar
tradeoff for, say, malleability via multiplication?

Finally, we based our schemes on the DDH assumption. However, as men-
tioned before, it is likely that the extensions of Cramer and Shoup [10] can
be adapted for our problem too. But we point out that our requirements on
the “Universal Hash Proofs” would be more demanding than what they re-
quire. In particular, when using the double-strand approach, we seem to require
5-universality instead of 2-universality, corresponding to our use of five bases
g1, . . . , g5 instead of just two.

Acknowledgments

We would like to acknowledge useful discussions with Rui Xue about the work
in [10]. We also thank Ran Canetti, Michael Loui, and the anonymous referees
for their helpful feedback on earlier drafts of this manuscript.

References

1. J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryp-
tion. In L. R. Knudsen, editor, EUROCRYPT, volume 2332 of Lecture Notes in
Computer Science, pages 83–107. Springer, 2002.

2. J. K. Andersen and E. W. Weisstein. Cunningham chain. From MathWorld–A
Wolfram Web Resource. http://mathworld.wolfram.com/CunninghamChain.html,
2005.

3. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key
encryption. In C. Boyd, editor, ASIACRYPT, volume 2248 of Lecture Notes in
Computer Science, pages 566–582. Springer, 2001.

4. D. Boneh. The decision diffie-hellman problem. In J. Buhler, editor, ANTS, volume
1423 of Lecture Notes in Computer Science, pages 48–63. Springer, 1998.

5. J. Camenisch and A. Lysyanskaya. A formal treatment of onion routing. In
V. Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer Science,
pages 169–187. Springer, 2005.

6. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, 2005.

7. R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing chosen-ciphertext security.
In D. Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in Computer Science,
pages 565–582. Springer, 2003.



8. D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM, 4(2), February 1981.

9. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In H. Krawczyk, editor, CRYPTO,
volume 1462 of Lecture Notes in Computer Science. Springer, 1998.

10. R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In L. R. Knudsen, editor, EUROCRYPT,
volume 2332 of Lecture Notes in Computer Science, pages 45–64. Springer, 2002.

11. G. Danezis. Breaking four mix-related schemes based on universal re-encryption. In
Proceedings of Information Security Conference 2006. Springer-Verlag, September
2006.

12. R. Dingledine, N. Mathewson, and P. F. Syverson. Tor: The second-generation
onion router. In USENIX Security Symposium, pages 303–320. USENIX, 2004.

13. E. Elkind and A. Sahai. A unified methodology for constructing public-key encryp-
tion schemes secure against adaptive chosen-ciphertext attack. Cryptology ePrint
Archive, Report 2002/042, 2002. http://eprint.iacr.org/.

14. T. E. Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In CRYPTO, pages 10–18, 1984.

15. O. Goldreich. Foundations of Cryptography: Basic Applications. Cambridge Uni-
versity Press, 2004.

16. D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Onion routing. Commun.
ACM, 42(2):39–41, 1999.

17. P. Golle, M. Jakobsson, A. Juels, and P. Syverson. Universal re-encryption for
mixnets. In Proceedings of the 2004 RSA Conference, Cryptographer’s track, San
Francisco, USA, February 2004.

18. J. Gröth. Rerandomizable and replayable adaptive chosen ciphertext attack se-
cure cryptosystems. In M. Naor, editor, TCC, volume 2951 of Lecture Notes in
Computer Science, pages 152–170. Springer, 2004.

19. M. Klonowski, M. Kutylowski, A. Lauks, and F. Zagórski. Universal re-encryption
of signatures and controlling anonymous information flow. In WARTACRYPT ’04
Conference on Cryptology. Bedlewo/Poznan, 2006.

20. M. Lad. Personal communication, 2005.
21. The onion routing program. http://www.onion-router.net/. A program spon-

sored by the Office of Naval Research, DARPA and the Naval Research Laboratory.
22. B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure

reactive systems. In ACM Conference on Computer and Communications Security,
pages 245–254, 2000.

23. M. Prabhakaran. New Notions of Security. PhD thesis, Department of Computer
Science, Princeton University, 2005.

24. M. Prabhakaran and M. Rosulek. Rerandomizable rcca encryption. Cryptology
ePrint Archive, Report 2007/119, 2007. http://eprint.iacr.org/.

25. M. Prabhakaran and A. Sahai. New notions of security: achieving universal com-
posability without trusted setup. In STOC, pages 242–251. ACM, 2004.

26. V. Shoup. A proposal for an iso standard for public key encryption. Cryptology
ePrint Archive, Report 2001/112, 2001. http://eprint.iacr.org/.


