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Abstract. We study the natural problem of secure n-party computa-
tion (in the passive, computationally unbounded attack model) of the
n-product function fG(x1, . . . , xn) = x1 · x2 · · ·xn in an arbitrary finite
group (G, ·), where the input of party Pi is xi ∈ G for i = 1, . . . , n.
For flexibility, we are interested in protocols for fG which require only
black-box access to the group G (i.e. the only computations performed
by players in the protocol are a group operation, a group inverse, or
sampling a uniformly random group element).
Our results are as follows. First, on the negative side, we show that if
(G, ·) is non-abelian and n ≥ 4, then no dn/2e-private protocol for com-
puting fG exists. Second, on the positive side, we initiate an approach
for construction of black-box protocols for fG based on k-of-k thresh-
old secret sharing schemes, which are efficiently implementable over any
black-box group G. We reduce the problem of constructing such pro-
tocols to a combinatorial colouring problem in planar graphs. We then
give two constructions for such graph colourings. Our first colouring con-
struction gives a protocol with optimal collusion resistance t < n/2, but

has exponential communication complexity O(n
(
2t+1

t

)2
) group elements

(this construction easily extends to general adversary structures). Our
second probabilistic colouring construction gives a protocol with (close
to optimal) collusion resistance t < n/µ for a graph-related constant
µ ≤ 2.948, and has efficient communication complexity O(nt2) group
elements. Furthermore, we believe that our results can be improved by
further study of the associated combinatorial problems.

Key Words: Multi-Party Computation, Non-Abelian Group, Black-
Box, Planar Graph, Graph Colouring.

1 Introduction

Background. Groups form a natural mathematical structure for cryptography.
In particular, the most popular public-key encryption schemes today (RSA [17]
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and Diffie-Hellman/ElGamal [8, 9]) both operate in abelian groups. However, the
discovery of efficient quantum algorithms for breaking these cryptosystems [19]
gives increased importance to the construction of alternative cryptosystems in
non-abelian groups (such as [13, 15]), where quantum algorithms seem to be
much less effective.

Motivated by such emerging cryptographic applications of non-abelian groups,
we study the natural problem of secure n-party computation (in the passive, com-
putationally unbounded attack model) of the n-product function fG(x1, . . . , xn) =
x1 · x2 · · ·xn in an arbitrary finite group (G, ·), where the input of party Pi is
xi ∈ G for i = 1, . . . , n. For flexibility, we are interested in protocols for fG

which require only black-box access to the group G (i.e. the only computations
performed by players in the protocol are a group operation (x, y) → x · y, a
group inverse x → x−1, or sampling a random group element x ∈R G). It is well
known that when (G, ·) is abelian, a straightforward 2-round black-box protocol
exists for fG which is t-private (secure against t parties) for any t < n and has
communication complexity O(n2) group elements. However, to our knowledge,
when (G, ·) is non-abelian, no constructions of black-box protocols for fG have
been designed until now. Consequently, to construct a t-private protocol for fG

in some non-abelian group G one currently has to resort to adopting existing non
black-box methods, which may lead to efficiency problems (see ‘Related Work’).

Our Results. Our results are as follows. First, on the negative side, we show
that if (G, ·) is non-abelian and n ≥ 4, then no dn/2e-private protocol for com-
puting fG exists. Second, on the positive side, we initiate an approach for con-
struction of black-box protocols for fG based only on k-of-k threshold secret
sharing schemes (whereas previous non black-box protocols rely on Shamir’s t-
of-n threshold secret sharing scheme over a ring). We reduce the problem of con-
structing such protocols to a combinatorial colouring problem in planar graphs.
We then give two constructions for such graph colourings. Our first colouring
construction gives a protocol with optimal collusion resistance t < n/2, but has
exponential communication complexity O(n

(
2t+1

t

)2
) group elements (this con-

struction also easily generalises to general Q2 adversary structures A as defined
in [11], giving communication complexity O(n|A|2) group elements). Our sec-
ond probabilistic colouring construction gives a protocol with (close to optimal)
collusion resistance t < n/µ for a graph-related constant µ ≤ 2.948, and has effi-
cient communication complexity O(nt2) group elements. Furthermore, we believe
that our results can be improved by further study of the associated combina-
torial problems. We note that our protocols easily and naturally generalize to
other arbitrary functions defined over the group G.

Related Work. There are two known non black-box methods for construct-
ing a t-private protocol for the n-product function fG for any t < n/2. They
are both based on Shamir’s t-of-n threshold secret sharing scheme [18] and its
generalizations.

The first method [3, 4, 10] requires representing fG as a boolean circuit, and
uses Shamir’s secret sharing scheme over the field GF (p) for a prime p > 2t + 1.
This protocol has total communication complexity O(t2 log t ·NAND(fG)) bits,



where NAND(fG) denotes the number of AND gates in the boolean AND/NOT
circuit for computing fG. Thus this protocol is efficient only for very small groups
G, for which NAND(fG) is manageable.

The second method [5] (see also [2] for earlier work) requires representing fG

as an arithmetic circuit over a finite ring R, and accordingly, uses a generalization
of Shamir’s secret sharing scheme to any finite ring. This protocol has total
communication complexity O(t2 log t ·NM (fG) · `(R)) bits, where NM (fG) is the
number of multiplication operations in the circuit for fG over R and `(R) ≥
log |R| denotes the number of bits needed for representing elements of R. If we
‘embed’ group G in the ring R = R(G), so that R inherits the multiplication
operation of G, then NM (fG) = n − 1, and hence the protocol from [5] has
total communication complexity O(nt2 log t · `(R(G))) bits, compared to O(nt2 ·
`(G)) bits for our (second) protocol (assuming t < n/2.948), where `(G) ≥
log |G| is the representation length of elements of G. Hence, for t < n/2.948,
the communication complexity of our protocol for fG is smaller than the one
from [5] by a factor Θ( `(R(G))

`(G) · log t) (for n/2.948 < t < n/2, the protocol
of [5] is still asymptotically the most efficient known proven protocol). Note
that, for any finite group G, we can always take R(G) to be the group algebra
(or group ring) of G over GF (2), which can be viewed as a |G|-dimensional
vector space over GF (2) consisting of all linear combinations of the elements
of G (the basis vectors) with coefficients from GF (2) (the product operation of
R(G) is defined by the operation of G extended by linearity and associativity,
and the addition operation of R(G) is defined componentwise). However, for this
generic choice of R(G) we have `(R(G)) = |G|, so, assuming `(G) = log |G|, our
protocol reduces communication complexity by a factor Θ( |G|

log |G| · log t), which
is exponentially large in the representation length log |G|. In the worst case, we
may have `(R(G)) = Θ(`(G)) and our protocol may only give a saving factor
O(log t) over the protocol from [5], e.g. this is the case for G = GL(k, 2) (the
group of invertible k × k matrices over GF (2)). We remark that this O(log t)
saving factor arises essentially from the fact that Shamir’s secret sharing for 2t+1
shares requires a ring of size greater than 2t + 1, and hence, for a secret from
GF (2), the share length is greater than the secret length by a factor Θ(log t)
(whereas our approach does not use Shamir’s sharing and hence does not suffer
from this length expansion). On the other hand, for sharing a secret from GF (q)
for ‘large’ q (q > 2t + 1), Shamir’s scheme is ideal, so for specific groups such as
G = GL(k, q) with q > 2t + 1, the communication cost of the protocols from [2,
5] reduces to O(nt2 · `(R(G))).

Organization. The paper is organized as follows. Section 2 contains defini-
tions and results we use. In Section 3 we show that t < n/2 is necessary for
secure computation of fG. In Sections 4.2 and 4.3 we show how to construct a
t-private protocol for fG given a ‘t-Reliable’ colouring of a planar graph. Then in
Section 4.4, we present two constructions of such t-Reliable colourings. Finally,
Section 4.5 summarizes some generalizations and extensions, and Section 5 con-
cludes with some open problems. Some proofs are omitted from this version of
the paper due to space limitations – they are available in the full version [6].



2 Preliminaries

We recall the definition of secure multi-party computation in the passive (semi-
honest), computationally unbounded attack model, restricted to deterministic
symmetric functionalities and perfect emulation [10]. Let [n] denote the set
{1, . . . , n}.
Definition 1. Let f : ({0, 1}∗)n → {0, 1}∗ denote an n-input, single-output
function, and let Π be an n-party protocol for computing f . We denote the party
input sequence by x = (x1, . . . , xn), the joint protocol view of parties in subset
I ⊆ [n] by VIEWΠ

I (x), and the protocol output by OUTΠ(x). For 0 < t < n, we
say that Π is a t-private protocol for computing f if there exists a probabilistic
polynomial-time algorithm S, such that, for every I ⊂ [n] with #I ≤ t and every
x ∈ ({0, 1}∗)n, the random variables

〈S(I,xI , f(x)), f(x)〉 and 〈VIEWΠ
I (x), OUTΠ(x)〉

are identically distributed, where xI denotes the projection of the n-ary sequence
x on the coordinates in I.

To prove our result we will invoke a combinatorial characterization of 2-
input functions for which a 1-private 2-party computation protocol exists, due
to Kushilevitz [12]. To state this result, we need the following definitions.

Definition 2. Let M = C×D be a matrix, where C is the set of rows and D is
the set of columns. Define a binary relation ∼ on pairs of rows of M as follows:
x1, x2 ∈ C satisfy x1 ∼ x2 if there exists y ∈ D such that Mx1,y = Mx2,y. Let ≡
denote the equivalence relation on the rows of M which is the transitive closure
of ∼. Similarly, we define ∼ and ≡ on the columns of M .

Definition 3. A matrix M is called forbidden if all its rows are equivalent, all
its columns are equivalent, and not all entries of M are equal.

Definition 4. Let f : {0, 1}n×{0, 1}n → {0, . . . , m−1} be any 2-input function.
A matrix M for f is a 2n × 2n matrix with entries in {0, . . . ,m − 1}, where
each row x of f corresponds to a value for the first input to f , each column y
corresponds to a value for the second input to f , and the entry Mx,y contains
the value f(x, y).

Theorem 1 (Kushilevitz [12]). Let f be a 2-input function and let M be a
matrix for f . Then a 1-private 2-party protocol for computing f exists if and
only if M does not contain a forbidden submatrix.

3 Honest Majority is Necessary for n-Product in
Non-Abelian Groups

We show that an honest majority t < n/2 is necessary for secure computation
of the n-product function in non-abelian groups.



Theorem 2. Let (G, ·) denote a finite non-abelian group and let n ≥ 4. There
does not exist a

⌈
n
2

⌉
-private protocol for computing fG(x1, . . . , xn) = x1·x2 · · ·xn.

Proof. The proof proceeds by contradiction; we show that if a
⌈

n
2

⌉
-private proto-

col Π exists for fG for n ≥ 4, then we can construct a 1-private 2-party protocol
for a 2-input function f ′G whose matrix M ′ contains a forbidden submatrix, thus
contradicting Theorem 1.

Lemma 1. Suppose there exists a
⌈

n
2

⌉
-private n-party protocol Π for computing

the n-input function fG : Gn → G defined by fG(x1, . . . , xn) = x1 · · ·xn for n ≥
4. Then we can construct a 1-private 2-party protocol Π ′ for computing the 2-
input function f ′G : G2×G2 → G defined by f ′G((x′1, x

′
3), (x

′
2, x

′
4)) = x′1 ·x′2 ·x′3 ·x′4.

Proof. Given party P ′1 with input (x′1, x
′
3) and party P ′2 with input (x′2, x

′
4), the

protocol Π ′ runs as follows. First, if n ≥ 5, we partition the set {5, . . . , n} into
two disjoint subsets S′1 and S′2 such that the size of both S′1 and S′2 is at most⌈

n
2

⌉ − 2 (namely, if n is even we take #S′1 = #S′2 = n/2 − 2, and if n is odd
we take #S′1 = (n − 3)/2 and #S′2 = (n − 5)/2). Then Π ′(P ′1, P

′
2) consists of

running the n-party protocol Π(P1, . . . , Pn) where:

– P ′1 plays the role of parties (P1, P3, {Pi}i∈S′1) in Π, and sets those parties
inputs to be x1 = x′1, x3 = x′3, and xi = 1 for all i ∈ S′1, respectively.

– P ′2 plays the role of parties (P2, P4, {Pi}i∈S′2) in Π, and sets those parties
inputs to be x2 = x′2, x4 = x′4 and xi = 1 for all i ∈ S′2, respectively.

The 1-privacy of protocol Π ′(P ′1, P
′
2) for computing f ′G follows from the

⌈
n
2

⌉
-

privacy of protocol Π(P1, . . . , Pn) for computing fG because:

– fG(x′1, x
′
2, x

′
3, x

′
4, 1, . . . , 1) = f ′G(x′1, x

′
2, x

′
3, x

′
4) = x′1 · x′2 · x′3 · x′4 for all

x′1, x
′
2, x

′
3, x

′
4 ∈ G.

– For each (x′1, x
′
2, x

′
3, x

′
4), the view of P ′1 (resp. P ′2) in protocol Π ′(P ′1, P

′
2) is

identical to the view of a set of at most
⌈

n
2

⌉
parties in protocol Π(P1, . . . , Pn)

whose inputs are known to P ′1 (resp. P ′2), with special settings of 1 for some
inputs. Thus the same view simulator algorithm S of Π can be used to
simulate the view in Π ′.

This completes the proof. ut
Lemma 2. For any non-abelian group G, the matrix M for the 2-input function
f ′G : G2 ×G2 → G defined by f ′G((x′1, x

′
3), (x

′
2, x

′
4)) = x′1 · x′2 · x′3 · x′4 contains a

2× 2 forbidden submatrix.

Proof. Observe from Definitions 2 and 3 that any 2 × 2 matrix with 3 equal
elements and a fourth distinct element is a forbidden matrix. Now recall that
the rows of matrix M for f ′G are indexed by (x′1, x

′
3) ∈ G2, the columns of M

are indexed by (x′2, x
′
4) ∈ G2, and the entry of M at row (x′1, x

′
3) and column

(x′2, x
′
4) is M(x′1,x′3),(x

′
2,x′4) = x′1 · x′2 · x′3 · x′4. Also, since G is non-abelian, there

exist a pair of elements a and b in G such that a and b do not commute and
a, b 6= 1. Consider the 2 × 2 submatrix of M formed by the intersections of



the 2 rows (1, 1) and (a, a−1) and the 2 columns (1, 1) and (b, b−1) (these row
and column pairs are distinct because a, b 6= 1). We claim that this submatrix is
forbidden. Indeed, three of the submatrix entries are equal because M(1,1),(1,1) =
M(a,a−1),(1,1) = M(1,1),(b,b−1) = 1, and the remaining fourth entry is distinct
because M(a,a−1),(b,b−1) = a · b · a−1 · b−1 = (a · b) · (b · a)−1 6= 1 since a and b do
not commute. This completes the proof. ut
Combining Lemma 1 and Lemma 2, we conclude that if a

⌈
n
2

⌉
-private protocol

Π exists for fG for n ≥ 4, then we obtain a contradiction to Theorem 1. This
completes the proof. ut

4 Constructions

4.1 Our Approach: Black Box Non-Abelian Group Protocols

Our protocols will treat the group G as a black box in the sense that the only
computations performed by players in our protocols will be one of the following
three: Multiply (Given x ∈ G and y ∈ G, compute x · y), Inverse (Given x ∈ G,
compute x−1), and Random Sampling (Choose a uniformly random x ∈ G).
It is easy to see that these three operations are sufficient for implementing a
perfect k-of-k threshold secret sharing scheme. We use this k-of-k scheme as a
fundamental building block in our protocols. The following proposition is easy
to prove.

Proposition 1. Fix x ∈ G and integers k and j ∈ [k], and suppose we cre-
ate a k-of-k sharing (sx(1), sx(2), . . . , sx(k)) of x by picking the k − 1 shares
{sx(i)}i∈[k]\{j} uniformly and independently at random from G, and computing
sx(j) to be the unique element of G such that x = sx(1)sx(2) · · · sx(k). Then the
distribution of the shares (sx(1), sx(2), . . . , sx(k)) is independent of j.

4.2 Construction of n-Product Protocol from a Shared 2-Product
Subprotocol

We begin by reducing the problem of constructing a t-private protocol for the
n-product function f(x1, . . . , xn) = x1 · · ·xn (where party Pi holds input xi for
i = 1, . . . , n), to the problem of constructing a subprotocol for the Shared 2-
Product function f ′(x, y) = x · y, where inputs x, y and output z = x · y are
shared among the parties. We define for this subprotocol a so-called strong t-
privacy definition, which will be needed later to prove the (standard) t-privacy of
the full n-product protocol built from subprotocol ΠS . The definition of strong
t-privacy requires the adversary’s view simulator to simulate all output shares
except one share not held by the adversary, in addition to simulating the internal
subprotocol view of the adversary.

Definition 5 (Shared n-Party 2-Product Subprotocol). A n-Party Shared
2-Product subprotocol ΠS with sharing parameter ` and share ownership func-
tions Ox,Oy,Oz : [`] → [n] has the following features:



– Input: For j = 1, . . . , `, party POx(j) holds jth share sx(j) ∈ G of x and party
POy(j) holds jth share sy(j) ∈ G of y, where sx = (sx(1), sx(2), . . . , sx(`))

and sy = (sy(1), sy(2), . . . , sy(`)) denote `-of-` sharing of x
def= sx(1) ·

sx(2) · · · sx(`) and y
def= sy(1) · sy(2) · · · sy(`), respectively.

– Output: For j = 1, . . . , `, party POz(j) holds jth share sz(j) of output product

z
def= sz(1) · · · sz(`).

– Correctness: We say that that ΠS is correct if, for all protocol inputs sx =
(sx(1), sx(2), . . . , sx(`)) and sy = (sy(1), sy(2), . . . , sy(`)), the output shares
sz = (sz(1), sz(2), . . . , sz(`)) satisfy

z = x · y

where x
def= sx(1) · sx(2) · · · sx(`), y

def= sy(1) · sy(2) · · · sy(`) and z
def=

sz(1) · · · sz(`).
– Strong t-Privacy: We say that ΠS achieves strong t-privacy if there exists a

probabilistic simulator algorithm SΠS
such that for all I ⊂ [n] with #I ≤ t,

there exist j∗ ∈ [`] with Ox(j∗) /∈ I and Oz(j∗) /∈ I, and j∗y ∈ [`] with
Oy(j∗y) /∈ I such that for all protocol inputs sx = (sx(1), . . . , sx(`)) and
sy = (sy(1), . . . , sy(`)), the random variables

〈SΠS (I, {sx(j)}j∈[n]\{j∗}, {sy(j)}j∈[`]\{j∗y})〉 and

〈VIEWΠS

I (sx, sy), {sz(j)}j∈[`]\{j∗}〉

are identically distributed (over the random coins of ΠS). Here
VIEWΠS

I (sx, sy) denotes the view of I in subprotocol ΠS run with input shares
sx, sy, and sz(j) denotes the jth output share. If j∗y = j∗ for all I, then we
say ΠS achieves symmetric strong t-privacy.

Remark 1. The share ownership functions Ox,Oy,Oz specify for each share in-
dex j ∈ [`], the indices Ox(j),Oy(j),Oz(j) in [n] of the party which holds the
jth input shares sx(j) and sy(j) and jth output share sz(j), respectively.

Remark 2. The adversary view simulator SΠS
for collusion I is given all input

shares except the j∗th x-share sx(j∗) and j∗yth y-share sy(j∗y) (where j∗, j∗y ∈ [`],
which depend on I, are indices of shares given to players not in I), and outputs
all output shares except the j∗th share sz(j∗) of z. Because, for each I, the same
value of index j∗ is used for both x-input shares and output shares, this allows
multiple simulator runs to be composed, using output shares of one subprotocol
run as x-input shares in a following subprotocol run, as shown in the security
proof of the following construction. If in addition, symmetric strong t-privacy
is achieved, one can use output shares of one subprotocol run as either x-input
or y-input shares for the following subprotocol run, allowing for more efficient
protocols.

We now explain our construction of an n-Product Protocol Π(T,ΠS) given
a binary computation tree T for fG with n leaf nodes corresponding to the n



protocol inputs (as illustrated in Fig. 1), and a Shared 2-Product subprotocol
ΠS with sharing parameter ` and share ownership functions Ox,Oy,Oz. The
protocol Π begins with each party Pj computing an `-of-` sharing of its input
xj , and distributing out these shares to the n parties according to the share
ownership functionsOx,Oy of ΠS . Then protocol Π performs each of the internal
node 2-product computations of the computation tree T on `-of-` sharings of the
internal node’s two children nodes by running the shared 2-product subprotocol
ΠS , resulting in an `-of-` sharing of the internal node value. Eventually this
recursive process gives an `-of-` sharing of the root node value x1 · · ·xn of T ,
which is broadcast to all parties.

Fig. 1. (a) Example of a binary tree T with n = 7 leaves. (b) The slanted linear tree
Tslin with n leaves.

The following Lemma establishes the t-privacy of protocol Π(T, ΠS), assum-
ing the correctness and strong t-privacy of subprotocol ΠS . Refer to [6] for a
proof.

Lemma 3. For any binary tree T with n leaves, if the n-party Shared 2-Product
subprotocol ΠS satisfies correctness and symmetric strong t-privacy (see Defini-
tion 5), then protocol Π(T, ΠS) is an n-party t-private protocol for computing
n-Product function fG(x1, . . . , xn) = x1 · · ·xn. For the slanted linear binary tree
Tslin shown in Fig 1(b), the above result holds even if ΠS satisfies (ordinary)
strong t-privacy (i.e. symmetric strong t-privacy is not needed in this case).

4.3 Construction of a t-Private n-Party Shared 2-Product
Subprotocol from a t-Reliable n-Colouring of a Planar Graph

Next, we reduce the problem of constructing a t-Private n-Party Shared 2-
Product Subprotocol ΠS to a combinatorial problem defined below of finding a
‘t-Reliable n-Colouring’ of the nodes of a planar graph. We note that our no-
tion of a ’t-Reliable n-Colouring’ is closely related to a similar notion defined



in [7], and shown to be equivalent to the existence of private communication via
a network graph in which each node is assigned one of n possible colours and
the adversary controls all nodes with colours belonging to a t-colour subset I.

Consider a Planar Directed Acyclic Graph (PDAG) G having 2` source (in-
put) nodes drawn in a horizontal row at the top, ` sink (output) nodes drawn
in a horizontal row at the bottom, and σG nodes overall. We use PDAG G to
represent a blackbox protocol, where the input/output nodes are labelled by
the protocol input/output group elements, and the internal graph nodes are
labelled by intermediate protocol values. Each internal graph node is also as-
signed a colour specifying the player which computes the internal node value.
The graph edges represent group elements sent from one player to another. The
computation performed at each node is multiplication of the values on all incom-
ing edges and resharing the product along the outgoing edges using the k-of-k
secret sharing scheme in Proposition 1. All computations in the ith round of the
2-Product subprotocol correspond to the ith row (from the top) in the PDAG.
Communications between nodes correspond to edges between consecutive rows.

Actually to construct a protocol for any non-abelian group our requirement
on graph G is slightly stronger than planarity and can be precisely defined as
follows.

Definition 6 (Admissible PDAG). We call graph G an Admissible PDAG
with share parameter ` and size parameter m if it has the following properties:

– Nodes of G are drawn on a square m ×m grid of points (each node of G is
located at a grid point but some grid points may not be occupied by nodes).
Rows of the grid are indexed from top to bottom and columns from left to
right by the integers 1, 2, . . . ,m. A node of G at row i and column j is said
to have index (i, j). G has 2` source (input) nodes on top row 1, and ` sink
(output) nodes on bottom row m.

– Incoming edges of a node on row i only come from nodes on row i− 1, and
outgoing edges of a node on row i only go to nodes on row i + 1.

– For each row i and column j, let η
(i,j)
1 < . . . < η

(i,j)

q(i,j) denote the ordered
column indices of the q(i,j) > 0 nodes on level i + 1 which are connected to
node (i, j) by an edge. Then, for each j = 1, . . . , m− 1, we have

η
(i,j)

q(i,j) ≤ η
(i,j+1)
1 , (1)

i.e. the rightmost node on level i + 1 connected to node (i, j) is to the left of
(or equal to) the leftmost node on level i + 1 connected to node (i, j + 1).

We call the left ` source nodes on row 1 (indexed (1, 1), . . . , (1, `)) the ‘x-
input’ nodes and the last ` source nodes on row 1 (indexed (1, `+1), . . . , (1, 2`))
the ‘y-input’ nodes. By ith x-input node, we mean the x-input node at position
i from the left. We define the ith y-input and ith output node similarly.

Let C : [m] × [m] → [n] be an n-Colouring function that associates to each
node (i, j) of G a colour C(i, j) chosen from a set of n possible colours [n]. We
now define the notion of a t-Reliable n-Colouring.



Definition 7 (t-Reliable n-Colouring). We say that C : [m]× [m] → [n] is a
t-Reliable n-Colouring for admissible PDAG G (with share parameter ` and size
parameter m) if for each t-colour subset I ⊂ [n], there exist j∗ ∈ [`] and j∗y ∈ [`]
such that:

– There exists a path PATHx in G from the j∗th x-input node to the j∗th
output node, such that none of the path node colours are in subset I (we call
such a path I-avoiding), and

– There exists an I-avoiding path PATHy in G from the j∗y th y-input node to
the j∗th output node.

If j∗y = j∗ for all I, we say that C is a Symmetric t-Reliable n-Colouring.

Remark 3. The paths PATHx and PATHy in Definition 7 are free to move in
any direction along each edge of directed graph G, i.e. for this definition we
regard G as an undirected graph (throughout the paper we assume that a path
is simple, i.e. free of cycles; hence each node on the path is only visited once).

An example of an admissible PDAG with I-avoiding paths PATHx and PATHy

is shown in Fig 2(a). Given an admissible PDAG G (with share parameter ` and
size parameter m) and an associated t-Reliable n-Colouring C : [m]× [m] → [n],
we construct a t-Private n-Party Shared 2-Product Subprotocol ΠS(G, C).

Shared 2-Product Subprotocol ΠS(G, C)

Input: We define the share ownership functions Ox,Oy,Oz of ΠS(G, C) according to
the colours assigned by C to the input and output nodes of G (i.e. Ox(j) = C(1, j),
Oy(j) = C(1, ` + j), Oz(j) = C(m, j) for j = 1, . . . , `). For j = 1, . . . , `, party POx(j)

holds jth share sx(j) ∈ G of x and party POy(j) holds jth share sy(j) ∈ G of y, where
sx = (sx(1), sx(2), . . . , sx(`)) and sy = (sy(1), sy(2), . . . , sy(`)) denote `-of-` sharing of

x
def
= sx(1) · sx(2) · · · sx(`) and y

def
= sy(1) · sy(2) · · · sy(`), respectively.

For each row i = 1, . . . , m and column j = 1, . . . , m of G, party PC(i,j) does the
following:

– PC(i,j) computes a label v(i,j) for node (i, j) of G as follows. If i = 1, PC(i,j) defines

v(i,j) = sx(j) for j ≤ ` and v(i,j) = sy(j) for ` + 1 ≤ j ≤ 2`. If i > 1, PC(i,j)

computes v(i,j) by multiplying the shares received from nodes at previous row i−1
(labels of edges between a node on row i− 1 and node (i, j)), ordered from left to
right according to the sender node column index.

– If i = m, PC(m,j) sets output share j to be the label v(m,j),

– else, if i < m, let η
(i,j)
1 < . . . < η

(i,j)

q(i,j) denote the ordered column indices of the

nodes on level i + 1 which are connected to node (i, j) by an edge. PC(i,j) chooses

q(i,j) − 1 uniformly random elements from G and computes a q(i,j)-of-q(i,j) secret
sharing s

(i,j)
1 , . . . , s

(i,j)

q(i,j) of label v(i,j) such that:

v(i,j) = s
(i,j)
1 · · · s(i,j)

q(i,j) .

– For k = 1, . . . , q(i,j), PC(i,j) sends share s
(i,j)
k to party P

C(i+1,η
(i,j)
k

)
and labels edge

from node (i, j) to node (i + 1, η
(i,j)
k ) by the share s

(i,j)
k .



Note that the correctness of ΠS follows from the fact that the product of
node values at each row of PDAG G is preserved and hence equal to x ·y, thanks
to condition (1) in Definition 6.

Lemma 4. If G is an admissible PDAG and C is a t-Reliable n-Colouring for
G then ΠS(G, C) achieves strong t-privacy. Moreover, if C is a Symmetric t-
Reliable n-Colouring, then ΠS(G, C) achieves Symmetric strong t-privacy.

Proof. (Sketch) The full proof of Lemma 4 can be found in [6]. Here we only
explain the main idea by considering the case when the I-avoiding paths PATHx

and PATHy only have downward edges (in [6] we extend the argument to paths
with upward edges). Consider PATHx from the j∗th x-input node to the j∗th
output node. At the first node PATHx(1) on the path, although the node value
v(1) = sx(j∗) is not known to the view simulator SΠS

, we may assume, by
Proposition 1, that in the real subprotocol ΠS , when node PATHx(1) shares
out its node label among its q outgoing edges, it sends new random elements
(labels) ri on each of the q − 1 outgoing edges not on PATHx. Thus simulator
SΠS can easily simulate all outgoing edge values of PATHx(1) which are not
on PATHx. The same argument shows that for all kth nodes PATHx(k) and
PATHy(k) on PATHx and PATHy respectively, simulator SΠS can simulate
all values on outgoing edges of PATHx(k) and PATHy(k) which are not on
PATHx or PATHy by independent random elements. The values on edges along
PATHx or PATHy depend on the inputs sx(j∗) and sy(j∗y) which are not known
to simulator SΠS , but since the paths PATHx and PATHy are I-avoiding, these
values are not in the view of I and need not be simulated by SΠS . Since SΠS

knows all inputs to ΠS it can compute all other edge values in the ΠS , including
all outputs except the j∗th one (which is on PATHx and PATHy), as required.

ut

4.4 Constructions of t-Reliable n-Colourings of Planar Graphs

We now present two general constructions of t-Reliable n-Colourings of planar
graphs which can be used to build t-Private n-Party protocols for the n-Product
function in any finite group as explained in the previous sections. Our first
deterministic construction achieves optimal collusion security (t < n/2) but has
exponential complexity (` =

(
n
t

)
). Our second probabilistic construction has a

slightly suboptimal collusion security (t < n/2.948) but has a very efficient linear
complexity (` = O(n)).

The PDAG. The admissible PDAG Gtri(`′, `) that we consider has sharing
parameter ` and has `′×` nodes. It is shown in Fig. 2(b). The nodes of Gtri(`′, `)
are arranged in an `′ × ` node grid. Let (i, j) denote the node at row i ∈ [`′]
(from the top) and column j (from the left). There are three types of edges in
directed graph Gtri(`′, `): (1) Horizontal edge: An edge connecting two adjacent
nodes on the same row, directed from right to left (i.e. from node (i, j) to node
(i, j − 1), for i ∈ [`′], j ∈ [`] \ {1}), (2) Vertical edge: An edge connecting two
adjacent nodes on the same column, directed from top to bottom (i.e. from node



(i, j) to node (i+1, j), for i ∈ [`′]\{`′}, j ∈ [`]), and (3) Diagonal edge: An edge
connecting node (i, j) to node (i + 1, j − 1), for i ∈ [`′] \ {`′}, j ∈ [`] \ {1}).

The ` nodes on the top row (row 1) of Gtri are the x-input nodes, indexed
from left to right. The top ` nodes on the rightmost column of Gtri (column `)
are the y-input nodes, indexed from top to bottom.

Fig. 2. (a) Example of an admissible PDAG G with sharing parameter ` = 3 (node
colours are not indicated). For a given collusion I, an example I-avoiding path PATHx

is shown in heavy black, and an example I-avoiding path PATHy (until the meeting
with PATHx) is shown in heavy gray. In this example, we have j∗ = 2 and j∗y = 3. (b)
The admissible PDAG Gtri(`

′, `).

Remark 4. The reader may notice that the above specification of Gtri does not
formally satisfy the convention for drawing an admissible PDAG as defined in
Def. 6, due to the horizontal edges and the fact that the y-input nodes are
arranged along a column, rather than along the same row as the x-input nodes.
However, it is easy to see that Gtri can also be drawn strictly according to Def. 6.
Namely by rotating the drawing of Gtri in Fig. 2 by 45 degrees anticlockwise,
the horizontal edges become diagonal edges, and x-inputs and y-inputs can be
formally put on the same row by adding appropriate ‘connecting’ nodes of the
same colour as the corresponding input nodes of Gtri. These are only formal
changes in drawing conventions, and there is no change in the protocol itself. In
this section we use the drawing convention in Fig. 2 for clarity.



Remark 5. All diagonal edges in the definition of Gtri above are parallel (with
a ‘positive slope’, when using the drawing convention in Fig 2). However, it is
clear that the admissible PDAG requirements are still satisfied if we remove from
Gtri some ‘positive slope’ diagonal edges and add some ‘negative slope’ diagonal
edges (connecting a node (i, j) to node (i + 1, j + 1), for some i ∈ [`′] \ {`′},
j ∈ [`] \ {`}), as long as planarity of G is preserved (no two diagonal edges
intersect). We denote such ‘generalised’ PDAGs by Ggtri.

First Construction Ccomb (t < n/2 and ` =
(
n
t

)
). We now present an

explicit construction of a t-Reliable n-Colouring Ccomb of the square graph
Gtri(`, `). The construction applies for all n ≥ 2t + 1 (i.e. t ≤ bn−1

2 c), and
hence (by Section 3) the n-Product protocol constructed from it by the method
of Sections 4.2 and 4.3 achieves bn−1

2 c-privacy (which is optimal, as shown in
Section 3). Unfortunately, the sharing parameter in this construction ` =

(
n
t

)
,

is exponential in t (and therefore the protocol communication cost is also expo-
nential in t).

Colouring Ccomb for graph Gtri(`, `) with ` =
(

n
t

)
and n ≥ 2t + 1

1. Let I1, . . . , I` denote the sequence of all ` =
(

n
t

)
t-colour subsets of [n] (in some

ordering).

2. For each (i, j) ∈ [`] × [`], define the colour C(i, j) of node (i, j) of Gtri(`, `) to
be any colour in the set Si,j = [n] \ (Ii

⋃
Ij) (note that since |Ii| = |Ij | = t and

n ≥ 2t + 1, the set Si,j contains at least n − (|Ii| + |Ij |) ≥ n − 2t ≥ 1 colours, so
Si,j is never empty).

Lemma 5. For n ≥ 2t + 1, the colouring Ccomb is a Symmetric t-Reliable n-
Colouring for graph Gtri(`, `), with ` =

(
n
t

)
.

Proof. Given each t-colour subset I ⊆ [n], let j∗ denote the index of I in the
sequence I1, . . . , I` of all t-colour subsets used to construct Ccomb, i.e Ij∗ = I. By
construction of Ccomb, none of the nodes of Gtri(`, `) along column j∗ have colours
in Ij∗ = I. Hence one can take column j∗ of Gtri(`, `) as PATHx. Similarly, we
also know that none of the nodes of Gtri(`, `) along row j∗ have colours in Ij∗ = I,
so one can take PATHy to consist of all nodes on row j∗ which are on columns
j ≥ j∗, followed by all nodes on column j∗ which are on rows i ≥ j∗. Thus Ccomb

is a Symmetric t-Reliable n-Colouring for graph Gtri(`, `), as required. ut

Remark 6. The colouring Ccomb remains a Symmetric t-Reliable n-Colouring
even if we remove all diagonal edges from Gtri(`, `) (since the paths PATHx and
PATHy only contain vertical and horizontal edges).

Combining Lemma 5 (applied to a subset of n′ = 2t + 1 ≤ n colours from
[n]) with Lemmas 3 and 4, we have

Corollary 1. For any t < n/2, there exists a black-box t-private protocol for fG

with communication complexity O(n
(
2t+1

t

)2
) group elements.



Second Construction Crand (t < n/2.948 and ` = O(n)). It is natural to
ask whether the exponentially large sharing parameter ` =

(
n
t

)
can be reduced.

Our second construction Crand shows that this is certainly the case when t <
n/2.948, achieving a linear sharing parameter ` = O(n).

As a first step towards our second construction, we relax the properties re-
quired from C in Definition 7 to slightly simpler requirements for the square
graph Gtri(`, `) (i.e. `′ = `), as follows.

Definition 8 (Weakly t-Reliable n-Colouring). We say that C : [`]× [`] →
[n] is a Weakly t-Reliable n-Colouring for graph Gtri(`, `) if for each t-colour
subset I ⊂ [n]:

– There exists an I-avoiding path Px in G from a node on the top row (row
1) to a node on the bottom row (row `). We call such a path an I-avoiding
top-bottom path.

– There exists an I-avoiding path Py in G from a node on the rightmost column
(column `) to a node on the leftmost column (column 1). We call such a path
an I-avoiding right-left path.

Note that in the above definition of Weak t-Reliability, the index of the starting
node of path Px in the top row need not be the same as the index of the exit
node of Px in the bottom row (whereas in the definition of t-Reliability, PATHx

must exit at the same position along the output row as the position in the top
row where PATHx begins).

The following lemma shows that finding a Weakly t-Reliable n-Colouring for
the square graph Gtri(`, `) is sufficient for constructing a (standard) t-Reliable
n-Colouring for a rectangular graph Ggtri(2` − 1, `). The idea is to add ` − 1
additional rows to Gtri(`, `) by appending a ‘mirror image’ (reflected about the
last row) of itself, as shown in Fig. 3 (refer to [6] for the detailed proof).

Lemma 6. Let C : [`]×[`] → [n] be a Weakly t-Reliable n-Colouring (see Def. 8)
for square admissible PDAG Gtri(`, `). Then we can construct a (standard) t-
Reliable n-Colouring (see Def. 7) for a rectangular admissible PDAG Ggtri(2`−
1, `).

For our second colouring construction, we use the ‘probabilistic method’ [1],
namely we choose the colour of each node in the square graph Gtri(`, `) inde-
pendently and uniformly at random from [n]. Although there is a finite error
probability p that such a random n-Colouring will not be Weakly t-Reliable, we
show that if n/t > 2.948 and we use a sufficiently large (but only linear in n)
sharing parameter ` = O(n), then the error probability p can be made arbitrarily
small. Moreover, p decreases exponentially fast with `, so p can be easily made
negligible.

Colouring Crand for graph Gtri(`, `) with ` = O(n) and n ≥ 2.948t

For each (i, j) ∈ [`] × [`], choose the colour C(i, j) of node (i, j) of Gtri(`, `) inde-
pendently and uniformly at random from [n].



Fig. 3. (a) Example paths in square PDAG Gtri(`, `) for a given Weakly t-Reliable
n-Colouring (Px in heavy black, Py in heavy gray). (b) Corresponding paths in rect-
angular PDAG Ggtri(2`− 1, `).

To analyse this construction, we will make use of the following counting
Lemma. Here, for any right-left path in Gtri(`, `), we define its length as the
number of nodes on the path. We say a path is minimal if removing any node
from the path disconnects the path.

Lemma 7. The number NP (k, `) of minimal right-left paths of length k in graph
Gtri(`, `) is upper bounded as

NP (k, `) ≤ c(µ) · ` · µk,

for some constants µ, c(µ), with µ ≤ 2.948. We call the minimal possible value
for µ the connective constant of Gtri(`, `).

Proof. For a minimal right-left path, there are ` possible starting nodes on the
rightmost column. We may assume without loss of generality that the first edge
of the path is not a vertical edge. For the ith starting node on the rightmost
column, there are at most 2 possibilities for the first path edge: a horizontal
edge, or a diagonal edge. For j ≥ 1, let Ni(j) denote the number of minimal
paths in Gtri(`, `) of length j starting at the ith node on the rightmost column.
Note that the paths counted in Ni(j) are not necessarily right-left paths, i.e. the
last node in the path need not be on the leftmost column.

We use induction on j to show Ni(j) ≤ 3j−1 for j ≥ 2. We have already
shown above the basis step Ni(2) = 2 < 3. For the induction step, suppose that
Ni(j) ≤ 3j−1 for some j ≥ 2. We show that Ni(j + 1) ≤ 3j .



Consider each path P of length j. We claim that there are at most 3 possible
choices for adding a (j + 1)th node P (j + 1) to P to create a minimal path P ′

of length j + 1. Let P (j − 1) and P (j) denote the (j − 1)th node and jth node
of P , respectively.

Suppose first that P (j) is is a boundary node of Gtri(`, `) (i.e. it is on row 1
or row ` or column 1 or column `). Then P (j) has degree at most 4, and one of
the 4 nodes adjacent to P (j) is P (j − 1), so there are at most 3 possible choices
for P (j + 1), as required.

Now suppose that P (j) is an internal node of Gtri(`, `). Then P (j) has degree
6, and one of the 6 nodes adjacent to P (j) is P (j−1). Hence there are at most 5
possibilities for P (j +1). But it is easy to verify that 2 of those 5 adjacent nodes
of P (j) must also be adjacent to P (j − 1). Hence, neither of these 2 nodes can
be chosen as P (j + 1) since the resulting path P ′ will not be minimal (indeed,
if P (j + 1) is chosen adjacent to P (j − 1) then internal node P (j) could be
removed from P ′ without disconnecting it). So there are at most 3 possibilities
for P (j + 1) to keep P ′ minimal.

We conclude that any minimal path P of length j can be extended in at most
3 ways to a minimal path P ′ of length j +1. It follows that Ni(j +1) ≤ 3Ni(j) ≤
3j , which completes the inductive step. Since there are ` possible starting nodes
on the rightmost column, we get NP (k, `) ≤ ` · 3k, which proves µ ≤ 3.

We now show how to improve the connective constant upper bound to µ ≤
2.948. This improvement is based on the fact that the bound µ ≤ 3 only takes
into account a ‘1 edge history’ of the path to restrict the number of possible
‘next’ nodes by ruling out those which destroy the path minimality due to 3
node cycles. By taking into account m-edge history for larger m > 1, we can
improve the bound by also ruling out m′-cycles for m′ > 3. Here we examine
the case of m = 4 edge history, ruling out m′ = 6 node cycles, as well as m′ = 3
node cycles (see [6] for some results with even larger m).

Consider the 6 node cycle C6 in graph Gtri(`, `) shown in Fig. 4(a). For any
minimal path P of length j ≥ 4 whose last 4 edges match a sequence of 4
successive edges along C6 (in either clockwise or anticlockwise sense, such as the
4 edges between nodes P (j−4), P (j−3), P (j−2), P (j−1), P (j) in Fig. 4(a)), we
have at most 2 possibilities (labelled n1, n2 in Fig. 4(a)) for choosing a (j +1)th
node P (j +1) to extend P to a minimal path P ′ of length j +1. This is because
by minimality, only 3 possiblities are allowed for P (j + 1) to rule out 3-node
cycles in P ′ (as shown above), and out of those 3 nodes, one (labelled n∗ in
Fig 4(a)) can be eliminated to rule out the 6-cycle C6 from being contained in
P ′. This reduction from 3 to 2 possibilities for P (j + 1) when the last 4 edges of
P match a sequence from C6 will give us the improved upper bound on µ.

To analyse this improvement, let S(j) denote the set of all minimal paths
P in Gtri(`, `) of length j starting at the ith node on the rightmost column of
Gtri(`, `). We partition S(j) into 4 disjoint subsets S1(j), . . . , S4(j) according to
the number of matches of the 4 last edges of P with a sequence of successive
edges on C6, namely:



– S4(j) denotes the subset of paths in S(j) whose 4 last edges match a sequence
of 4 successive edges along C6 (in either clockwise or anticlockwise sense).

– For k = 3, 2, 1, Sk(j) denotes the subset of paths in S(j) which are not in
Sk+1(j), but whose k last edges match a sequence of k successive edges along
C6 (in either clockwise or anticlockwise sense).

For j ≥ 5 and k ∈ {1, 2, 3, 4}, we say that a minimal path P of length j is in
state k if P ∈ Sk(j). We can now construct a finite state machine M whose
state transition function specifies for each minimal path P of length j in state
k, the possible ‘next’ state k′ of a minimal path P ′ of length j + 1 formed by
adding a (j + 1)th node to P . The state transition diagram of M is shown in
Fig 4(b), where a label b on a transition from state k to k′ indicates that there
are b possibilities for the (j + 1)th node which lead to this state transition. For
example, as shown in Fig 4(a), if P is in state 4, then there are 2 possibilities
for node P (j + 1): one (node labelled n1) leads to a transition to state 1 (since
no two successive edges in C6 are in the same column), the other (node labelled
n2) leads to a transition to state 2 (since no three successive edges in C6 are
in the order ‘horizontal, vertical, horizontal’). It is easy to verify that the same
transition rule from state 4 holds for all paths P in state 4 (i.e. regardless of the
particular sequence of 4 successive edges along C6 which form the last 4 edges
of P ). The transition rules for the other three states are also easy to verify.

Fig. 4. (a) The 6 node cycle C6 in Gtri(`, `) is shown in heavy black. (b) The state
transition diagram of finite state machine M .

For j ≥ 5 and k ∈ {1, 2, 3, 4} let Nk(j) denote the number of minimal paths
(starting at ith node of the rightmost column of Gtri(`, `)) of length j in state
k. From the labelled state transition diagram of M in Fig 4(b), we immediately



obtain the following recursive bound:



N1(j + 1)
N2(j + 1)
N3(j + 1)
N4(j + 1)


 ≤ AM ·




N1(j)
N2(j)
N3(j)
N4(j)


 , where AM =




1 1 1 1
2 1 1 1
0 1 0 0
0 0 1 0


 . (2)

It follows from (2) that the vector N(j) def= [N1(j) N2(j) N3(j) N4(j)]T satisfies

N(j) ≤ Aj−5
M N(5) (3)

for j ≥ 5. The matrix AM can be diagonalised into the form AM = Q ·D ·Q−1,
where Q is a 4×4 invertible matrix having the eigenvectors of AM as its columns,
and D is a 4× 4 diagonal matrix having the 4 eigenvalues λ1, . . . , λ4 of AM on
the diagonal. Note that Aj−5

M = Q ·Dj−5 ·Q−1, and Dj−5 is a diagonal matrix
with diagonal elements λj−5

k for k = 1, . . . , 4. Plugging into (3) and adding
up the components of N(j), we get the following upper bound on the number
NP (j) = N1(j)+ · · ·N4(j) of minimal paths of length j, starting at the ith node
in the rightmost column of Gtri(`, `):

NP (j) ≤ c1λ
j−5
1 + c2λ

j−5
2 + c3λ

j−5
3 + c4λ

j−5
4 , (4)

where the constants c1, . . . , c4 are determined from (3) by N(5) and the eigenvec-
tor matrix Q. It follows that NP (j) = O(λj), where λ

def= maxk |λk| is the largest
eigenvalue magnitude of AM . Numerical computation shows that λ ≤ 2.948,
and hence (considering the ` possible starting nodes on the rightmost column of
Gtri(`, `)), the claimed bound NP (k, `) ≤ c(µ) · ` ·µk with µ = λ ≤ 2.948 follows,
for some constant c(µ). ut

Remark 7. Our terminology connective constant for µ comes from similar (al-
though not identical) constants defined in combinatorial studies of the ‘self avoid-
ing walk’ in a lattice [14, 16]. However, the particular connective constant µ which
arises in our work seems to not have been previously studied.

Remark 8. We have done some preliminary numerical eigenvalue computations
using MATLAB with larger values of the ‘edge history’ parameter m on the
path, extending our method for proving Lemma 7 (refer to [6] for more details).
Using m = 8 we obtained the improved bound µ ≤ 2.913, although we are not
yet certain about the accuracy of these MATLAB computations. We believe the
efficient techniques from [14, 16] can be useful to further improve our numerical
computed upper bound on µ by using even larger values of the ‘edge history’
on the path. Also, our method of bounding µ does not take into account the
restriction that the paths of length k are right-left paths, so further improvements
might result by taking this restriction into account.

Now we are ready to prove the following result.



Theorem 3. Let µ, c(µ) denote the connective constants of Gtri(`, `) (see Lemma
7). For any real constant R > µ, if t ≤ n/R, there exists a Weakly t-Reliable
n-Colouring for graph Gtri(`, `) for some ` = O(n). Moreover, for any constant
δ > 0, the probability p that the random n-Colouring Crand is not Weakly t-
Reliable is upper bounded by δ if we choose

` ≥ b · log
(
n
t

)

log(R/µ)
,

for a constant b satisfying

b−
(

3
log R

)
log b ≥ 1 +

log
(

2c(µ)δ−1
(

log R
log(R/µ)

)3
)

log R
. (5)

Proof. Fix a t-colour subset I. We upper bound the probability p(I), that if all
`2 node colours of Gtri(`, `) are chosen uniformly and independently at random
from [n], the colouring Crand is not Weakly t-Reliable, i.e. either an I-avoiding
top-bottom path Px doesn’t exist, or an I-avoiding right-left path Py doesn’t
exist.

Suppose that for a given colouring C, an I-avoiding top-bottom path Px

doesn’t exist. This implies that the set S(C) of graph nodes with colours in I
must form a top-bottom cutset, which is defined as follows.

Definition 9 (Cutset/Minimal Cutset). A set of nodes S in Gtri(`, `) is
called a top-bottom cutset (resp. right-left cutset) if all top-bottom paths (resp.
right-left paths) in Gtri(`, `) pass via a node in S. A cutset S is called minimal
if removing any node from S destroys the cutset property.

Note that the top-bottom cutset S(C) must contain a minimal top-bottom
cutset. The following intuitively obvious lemma shows that in order to count
the minimal top-bottom cutsets of Gtri(`, `) it is enough to look at all minimal
right-left paths in Gtri(`, `). Its formal proof can be found in [6].

Lemma 8 (Minimal Cutsets are Minimal Paths). A set of nodes S in
Gtri(`, `) is a minimal top-bottom cutset (resp. right-left cutset) if and only if it
is a minimal right-left path (resp. top-bottom path).

By Lemma 8, we conclude that if an I-avoiding top-bottom path doesn’t exist
for a colouring C then S(C) contains a minimal right-left path Pc,x. Since Pc,x

is a subset of S(C), its nodes only have colours in I. So, over the random choice
of colouring Crand, the probability that an I-avoiding top-bottom path doesn’t
exist is equal to the probability px(I) that there exists a minimal right-left path
Pc,x whose node colours are all in t-collusion I.

Let NP (k, `) denote the total number of minimal right-left paths in Gtri(`, `)
of length k. Since node colours are chosen independently and uniformly in [n],
each such path has probability (t/n)k to have all its node colours in I. It is clear
that ` ≤ k ≤ `2. So, summing over all possible path lengths, we get the following
upper bound: px(I) ≤ ∑`2

k=` NP (k, `)(t/n)k. By symmetry, a similar argument



gives the same upper bound on the probability py(I) that a right-left I-avoiding
path Py does not exist. So we get the following upper bound on the probability
p(I) that either I-avoiding top-bottom path doesn’t exist or an I-avoiding right-
left path doesn’t exist for each fixed t-subset I: p(I) ≤ 2

∑`2

k=` NP (k, `)(t/n)k.
Finally, taking a union bound over all

(
n
t

)
possible t-colour subsets I, we get

an upper bound on the probability p that the colouring Crand is not Weakly t-
Reliable of the form p ≤ 2

∑`2

k=` NP (k, `)(t/n)k
(
n
t

)
. Using the bound on NP (k, `)

from Lemma 7, we get

p ≤ 2c(µ)`3(µt/n)`

(
n

t

)
. (6)

Since n/t ≥ R > µ, it is clear that this upper bound on p is less than 1 for
sufficiently large `. In fact, it suffices to take ` = O(log(

(
n
t

)
)/ log(n/(µt))) =

O(n), as claimed. Now suppose we fix δ > 0 and we want to find a lower bound
on ` such that the error probability p ≤ δ. From (6) and using n/t ≥ R we see
that p ≤ δ is satisfied as long as

` log(R/µ)− 3 log(`) ≥ log(2c(µ)Nδ−1), (7)

where N =
(
n
t

)
. Take ` = b log(N)/ log(R/µ). Plugging this choice of ` into

(7), and using the fact that N ≥ (dRe
1

) ≥ R for all n ≥ R (since N =
(

n
n/R

)

increases monotonically with n), we conclude that (7) is satisfied if the constant
b is sufficiently large such that (5) holds. This completes the proof. ut

Combining Theorem 3 (applied with n′ = R · t ≤ n colours from [n] for
constant R > µ) with Lemmas 3, 4, 6 and 7, we have

Corollary 2. For any constant R > 2.948, if t ≤ n/R, there exists a black box
t-private protocol for fG with communication complexity O(nt2) group elements.
Moreover, for any δ > 0, we can construct a probabilistic algorithm, with run-
time polynomial in n and log(δ−1), which outputs a protocol Π for fG such that
the communication complexity of Π is O(nt2 log2(δ−1)) group elements and the
probability that Π is not t-private is at most δ.

Remark 9. Our computational experiments indicate that t > n/2.948 can be
achieved with moderate values of ` – for example, for n = 24, t = 11 (i.e.
t ≈ n/2.182), we found a t-Reliable n-Colouring of Gtri(`, `) with ` = 350, which
is much smaller than

(
n
t

) ≈ 2.5 · 106.

4.5 Generalisations and Other Results

General functions over G. Some applications may require n-party computation
of more general functions over G (using only the group operation) instead of
fG. The most general such function is of the form f ′G(x1, . . . , xm) = x1 . . . , xm,
where m ≥ n and each of the n parties holds one or more xi’s. Our reduction
from Section 4.2 (and hence all our protocols) trivially extends to this most
general case in the natural way.



General adversary structures. One may also consider more general adversary
structures in place of the t-threshold structure. With the exception of our second
construction in Section 4.4, all other results in the paper trivially generalise to the
case of a Q2 adversary structure A, in which no pairwise union of collusions in A
covers all n parties [11]. In particular, the generalisation of the first construction
in Section 4.4 has communication complexity O(n|A|2) group elements.

More efficient protocols for small t. For the cases t ∈ {1, 2}, we have managed
to design explicit t-private black-box protocols for fG with linear communica-
tion complexity (O(n) group elements) and optimal collusion resistance. These
protocols and their analysis can be found in [6]. We have also implemented a com-
puter program for finding t-Reliable n-Colourings of a given graph, with which
one can easily construct efficient protocols for small values of n, t (avoiding the
error probability δ of Theorem 3).

5 Conclusions

We showed how to design black-box t-private protocols for computing the n-
product function over any finite group by reducing the problem to a combinato-
rial graph colouring problem, using tools from communication security [7]. Our
work raises some interesting combinatorial questions. For example, for our PDAG
Gtri(`, `), what is the shape of the ‘tradeoff’ curve Rmax(`) relating the maximal
achievable (using a suitable colouring) secure collusion resistance Rmax = t/n
to the graph size `? (we showed that Rmax(`) ≥ 1/2.948 for ` = O(t) and
Rmax(`) = 1/2 for ` ≥ (

2t+1
t

)
). More generally, what is the largest collusion

resistance achievable with an admissible PDAG of size polynomial in n, and
what kind of PDAG achieves this optimum? There are also interesting crypto-
graphic questions. First, can our black-box protocols be efficiently strengthened
to yield black-box protocols secure against active adversaries? Second, can the
communication complexity O(nt2) of our t-private protocols be reduced further?
Third, does there exist an efficient (run-time polynomial in n) deterministic al-
gorithm to generate a Weakly t-Reliable n-Colouring of Gtri(`, `) (or some other
admissible PDAG) given n, t as input?
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