
Beyond Uniformity: Better Security/Efficiency Tradeoffs
for Compression Functions

Martijn Stam

martijn.stam@epfl.ch
EPFL, Switzerland

Abstract. Suppose we are given a perfect n+c-to-n bit compression function f
and we want to construct a larger m+s-to-s bit compression function H instead.
What level of security, in particular collision resistance, can we expect from H
if it makes r calls to f? We conjecture that typically collisions can be found in
2(nr+cr−m)/(r+1) queries. This bound is also relevant for building a m + s-to-s
bit compression function based on a blockcipher with k-bit keys and n-bit blocks:
simply set c = k, or c = 0 in case of fixed keys.
We also exhibit a number of (conceptual) compression functions whose collision
resistance is close to this bound. In particular, we consider the following four
scenarios:

1. A 2n-to-n bit compression function making two calls to an n-to-n bit prim-
itive, providing collision resistance up to 2n/3/n queries. This beats a re-
cent bound by Rogaway and Steinberger that 2n/4 queries to the underlying
random n-to-n bit function suffice to find collisions in any rate-1/2 com-
pression function. In particular, this shows that Rogaway and Steinberger’s
recent bound of 2(nr−m−s/2)/r) queries (for c = 0) crucially relies upon
a uniformity assumption; a blanket generalization to arbitrary compression
functions would be incorrect.

2. A 3n-to-2n bit compression function making a single call to a 3n-to-n bit
primitive, providing collision resistance up to 2n queries.

3. A 3n-to-2n bit compression function making two calls to a 2n-to-n bit prim-
itive, providing collision resistance up to 2n queries.

4. A single call compression function with parameters satisfying m ≤ n +
c, n ≤ s, c ≤ m. This result provides a tradeoff between how many bits you
can compress for what level of security given a single call to an n + c-to-n
bit random function.

1 Introduction

Hash function design based on idealized primitives has recently undergone a
surge in popularity. One of the earliest approaches is Merkle’s use of the ideal
cipher model to argue the collision resistance of his double length construc-
tion [10]. The use of the ideal cipher model has also been instrumental in prov-
ing security properties of single call blockcipher based compression functions
by Black, Rogaway and Shrimpton [3]. These 1-call blockcipher based con-
structions have the disadvantage of rekeying every round, which is expensive.

An alternative is the use of a blockcipher with its key fixed or, slightly re-
laxed, simply a a random n-to-n bit function. Black, Cochran and Shrimpton [2]
show that no compression function can exist making only a single call to a fixed
key ideal cipher yet still achieving collision resistance. Indeed, two queries suf-
fice to find a collision with certainty.

Rogaway and Steinberger [16] have recently generalized this result consid-
erably. They consider a compression function that maps m + s bits to s bits
using r calls to n-to-n bit random functions.1 Central to their results is the yield
of an adversary, that is the number of compression function evaluations that can
be made after q queries. It can be shown that if q = 2(nr−n−s/2)/r, a greedy ad-
versary can evaluate the compression function on at least 2s/2 different inputs.
Assuming the corresponding evaluations are uniformly distributed implies a col-
lision can be expected (birthday paradox). Consequently [16, Theorem 2], for
any compression function satisfying the uniformity assumption, 2(nr−n−s/2)/r

queries suffice to find a collision with high probability.
One could argue that any good compression function ought to be ‘collision-

uniform’. But what happens if the compression function is somehow ‘bad’ and
the assumption does not hold? In the case of standard birthday attacks on com-
pression functions [1], deviation from uniformity only reduces collision resis-
tance and it is tempting to generalize to the current scenario. In any case, in
the original2 interpretation of their results, Rogaway and Steinberger silently
drop any mention of the uniformity assumption and seemingly claim that, for
any compression function, an adversary will be able to find collisions with high
probability after only 2(nr−n−s/2)/r queries. In particular, this would imply that
around 2n/4 queries would typically suffice to find collisions in a 2-call 2n-to-n
bit compression function (a result also alluded to by Shrimpton and Stam [19]).

We show that this interpretation is incorrect. In particular, we demonstrate
a 2-call compression function that provably requires around 2n/3/n queries to
find a collision. A first impression why this might be possible is already con-
tained in the bound on the number of queries required under the uniformity
assumption. Indeed, if 2(nr−n−s/2)/r queries were required, this would indicate
that enlarging the state size s would actually reduce the collision resistance.3

This is clearly incorrect, since one can always just expand the state by keeping
part of it fixed, a measure that will not influence collision resistance. Nonethe-
less, the bound 2(nr−n−s/2)/r is useful, since it provides us with a means to

1 Our notation deviates from theirs; we emphasize the size s of the chaining variable, or state,
and the size m of message material to be hashed when the compression function would be
Merkle-Damgård iterated.

2 In a response to an early manuscript of this paper, the phrasing is more accurate in an updated
version [14].

3 This problem is actually less clear from Rogaway and Steinberger’s formulation of the bound.

2

identify the ideal state size for a given rate. Using an ordinary birthday attack
would require 2s/2 queries, intuitively the optimal state size is that for which the
yield-based bound coincides with the standard birthday bound. This crossover
occurs for s = 2(nr−m)/(r +1), heuristically yielding collision resistance up
to q = 2(nr−m)/(r+1) queries, or q = 2n(r−1)/(r+1) assuming m = n.

For the aforementioned 2-call compression function, the optimal state size is
2n/3, implying we could expect collision resistance up to 2n/3 for a 2-call 2n-
to-n bit compression function. We give a surprisingly simple compression func-
tion almost achieving this bound. For 3-call schemes, the optimal state size is
n, yielding collision resistance 2n/2, coinciding with the Rogaway-Steinberger
bound. Shrimpton and Stam [18] and Rogaway and Steinberger [15] already
gave distinct 3-call 2n-to-n bit compression functions achieving collision resis-
tance up to almost 2n/2 queries. For 4-call schemes, the optimal state size is
6n/5, yielding collision resistance 23n/5. Thus a 4-call double length 3n-to-2n
bit function can be expected to be broken within 23n/5 queries, not the 2n/4

queries as reported by Rogaway and Steinberger. In particular, this indicates
that one might already achieve more security with a 4-call double length func-
tion than what could be achieved with a single length function. However, we do
not yet have a construction matching this bound.

One could object to compression functions that are not as uniform when
it comes to their collision behaviour. We agree, but only up to a point. At the
core of our 2-call 2n-to-n bit construction is a 2-call 5

3n-to-2
3n bit compression

function, also with collision resistance up to about 2n/3 queries. This smaller-
state compression function is expected to behave collision-uniform. Thus, in this
particular case, the choice really is between a collision-uniform compression
function outputting n bits and being collision resistant up to 2n/4 queries on the
one hand, and a collision-uniform compression function outputting only 2

3n bits
yet being collision resistant up to 2n/3 queries. We believe the latter option is
more desirable in practice.

We stress that our work does not contradict or invalidate [16, Theorem 2] in
any way; we do show that by dropping uniformity, or rather state size, one can
do better. We also point out that many of the bounds obtained by Rogaway and
Steinberger do not have uniformity as a premise: for any compression function
just slightly over 2(nr−m)/r queries are guaranteed to give a collision [16, The-
orem 1] and similarly for any hash function that makes on average r calls per
message block, n2(nr−n)/r queries will suffice [16, Theorem 3].

We then ask ourselves the question what happens if the underlying primitive
already compresses, that is, if we use idealized n+c-to-n bit functions instead of
n-to-n bit ones as underlying primitive. This question is most interesting if the
compression function to be constructed has a larger input size than the idealized

3

primitive (i.e., m + s > n + c, cf. the examples above) or outputs more bits
(i.e., s > n), which is relevant for instance for the construction of double length
compression functions. We show that if we build a m + s-to-s bit compression
function H making r calls to an n + c-to-n bit primitive, we can expect to find
collision after 2(nr+cr−m)/(r+1) queries. We believe this bound to be tight up to
some pathological cases, namely when 2nr or 2s/2 is smaller than said bound.
We also prove an upper bound on indifferentiability.

Assuming our conjectured bound can be achieved has interesting implica-
tions for the construction of double-length hash functions, where m = n and
s = 2n. In particular, one call to a 3n-to-n bit primitive or two calls to a 2n-to-
n bit primitive would suffice to obtain optimal collision resistance in the com-
pression function. This contrasts starkly with earlier approaches, where either
more calls needed to be made, or the collision resistance can only (partially) be
proven in the iteration [5, 7, 8, 11–13, 17, 20]. For both scenarios we give a con-
struction that we believe offers the required collision resistance, up to a small
factor. Against non-adaptive adversaries the proof is surprisingly straightfor-
ward; against adaptive adversaries we need a reasonable assumption. Although
our compression functions sport impressive collision resistance, they do have
some obvious shortcomings when other properties are taken into account. As
such, we consider them more a proof of concept—the setting of a bar—than
actual proposals to be implemented and used as is. We leave open the problem
of designing cryptographically satisfactory compression functions reaching the
collision resistance bound provided in this paper.

Finally, we present a general single call construction for the case m ≤
n + c, n ≤ s, and c ≤ m, achieving collision resistance up to 2(n+c−m)/2

queries. This provides a tradeoff of how much message bits you can hash and
what collision resistance you can expect. It also fills the gap between the impos-
sibility result of Black et al. [2] for c = 0 and m = n and the trivial optimally
collision resistant solution when c = n and m = n.

Notwithstanding the emphasis in this paper on random n + c-to-n bit func-
tions, the bounds are also indicative for ideal ciphers with k bit keys and n bit
blocks, by setting c = k. Fixed-key ideal ciphers correspond to c = 0. No
constructions in this scenario are presented, although our constructions with the
public random functions replaced with ideal ciphers in Davies-Meyer mode are
obvious candidates.

Our paper is organized as follows. In Section 2 we introduce notation and
recall some relevant results. In Section 3, we discuss upper bounding the proba-
bility of finding collisions and, to a lesser extent, preimages in the compression
function. Finally, Section 4 consists of four parts, each detailing a construction
that (almost) meets the upper bound from its preceding section.

4

2 Background

2.1 General Notation

For a positive integer n, we write {0, 1}n for the set of all bitstrings of length
n. When X and Y are strings we write X ||Y to mean their concatenation and
X ⊕ Y to mean their bitwise exclusive-or (xor). Unless specified otherwise, we
will consider bitstrings as elements in the group ({0, 1}n,⊕).

For positive integers m and n, we let Func(m, n) denote the set of all func-
tions mapping {0, 1}m into {0, 1}n. We write f

$← Func(m, n) to denote ran-
dom sampling from the set Func(m, n) and assignment to f . Unless otherwise
specified, all finite sets are equipped with a uniform distribution.

2.2 Compression Functions

A compression function is a mapping from {0, 1}m × {0, 1}s to {0, 1}s for
some m, s > 0. For us, a compression function H must be given by a program
that, given (M,V), computes Hf1,...,fr(M,V) via access to a finite number of
specified oracles f1, . . . , fr, where we use the convention to write oracles that
are provided to an algorithm as superscripts.

Let f1, . . . , fr be random functions from {0, 1}n+c → {0, 1}n. Let Ci :
{0, 1}s × {0, 1}m × ({0, 1}n)i → {0, 1}n+c, for i = 0, . . . , r − 1, and Cr :
{0, 1}s×{0, 1}m×({0, 1}n)r → {0, 1}s, be processing functions. Compression
of a message block then proceeds as follows: Given an s-bit state V and m bit
message M , compute output H = Hf1,...,fr(M,V) by

Y1 ← f1(C0(M,V))
Y2 ← f2(C1(M,V, Y1))

...

Yr ← fr(Cr−1(M,V, Y1, . . . , Yr−1))
H ← Cr(M,V, Y1, . . . , Yr)

as illustrated by Figure 1. In particular, we assume the functions f1, . . . , fr

are always called in the same, fixed order. Dynamic, input-dependent order-
ing can to some extent be modelled by only considering the combined function
f̃(i, x) = fi(x), thus increasing c by lg r.

Normally one defines the rate as the reciprocal of the number of calls made
to the underlying primitive. For primitives have differing input sizes this could
skew the comparison: we suggest to use R = m/(rn + rc) as rate, that is the
number of bits compressed divided by the total number of input bits taken by

5

C0 f1 C1 Cr−1 fr Cr

V

M

H

m

n
+

c

n s

s
m + s

n
+

c

n

m + s + (r − 1)n

Fig. 1: General form of a m + s-to-s bit compression function based on r calls
to underlying n + c-to-n bit primitive.

the underlying primitives. However, most of the time we will concentrate on the
number of calls made, and simply talk of an r-call primitive.

A compression function can be made into a hash function by iterating it. We
briefly recall the standard Merkle-Damgård iteration [4, 10], where we assume
that there is already some injective padding from {0, 1}∗ → ({0, 1}m)∗ in place.
Given an initial vector V0 ∈ {0, 1}s define HH : ({0, 1}m)∗ → {0, 1}s as
follows for M = (M1, . . . ,M`):

1. Set Vi ← Hf1,...,fr(Mi, Vi−1) for i = 1, . . . , `.
2. OutputHH(M) = V`.

In particular, the hash of the empty message M = ∅ corresponds to ` = 0, so
HH(∅) = V0, the initial vector. Baring this iteration in mind, given a compres-
sion function H : {0, 1}m×{0, 1}s → {0, 1}s we will refer to the {0, 1}m part
of the input as ‘message’ and the {0, 1}s as the state. In particular, we refer to
s as the state size; increasing the state size will reflect the size of both the input
and output of the compression function.

A collision-finding adversary is an algorithm with access to one or more
oracles, whose goal it is to find collisions in some specified compression or
hash function. It is standard practice to consider information-theoretic adver-
saries only. Currently this seems to provide the only handle to get any provable
results. Information-theoretic adversaries are computationally unbounded and
their complexity is measured only by the number of queries made to their or-
acles. Without loss of generality, such adversaries are assumed not to repeat
queries to oracles nor to query an oracle outside of its specified domain.

Definition 1 Let n, c,m, s > 0 be integer parameters, and fix an integer r > 0.
Let H : {0, 1}m×{0, 1}s → {0, 1}s be a compression function taking r oracles
f1, . . . , fr : {0, 1}n+c → {0, 1}n. Let A be a collision-finding adversary for H

6

that takes r oracles. The collision-finding advantage of A is defined to be

Advcoll
H(n)(A) = Pr

[
f1..fr

$← Func(n + c, n), (M, V), (M ′, V ′)← Af1..fr :

(M,V) 6= (M ′, V ′) and Hf1..fr(M,V) = Hf1..fr(M ′, V ′)
]

Define Advcoll
H(n)(q) as the maximum advantage over all adversaries making at

most q queries to each of their oracles.

Definition 2 Let n, c,m, s > 0 be integer parameters, and fix an integer r > 0.
Let H : {0, 1}m×{0, 1}s → {0, 1}s be a compression function taking r oracles
f1, . . . , fr : {0, 1}n+c → {0, 1}n. LetA be a preimage-finding adversary for H
that takes r oracles. The preimage-finding advantage of A is defined to be

Advpreim
H(n) (A) = Pr

[
f1..fr

$← Func(n + c, n), (M, V) $←{0, 1}m+s,

H ← Hf1..fr(M, V), (M ′, V ′)← Af1..fr(H) : H = Hf1..fr(M ′, V ′)
]

Define Advpreim
H(n) (q) as the maximum advantage over all adversaries making at

most q queries in total to their oracles.

For future reference we offer the following little lemma, which basically
states that one can increase the state size of a compression function by simply
forwarding the extra state bits untouched, without aversely affecting preimage
or collision resistance. The lemma is mainly of theoretical use, since simply
outputting part of the input is counter to practical hash design.

Lemma 3 Let m, s, s′ be positive integers with s′ > s. Let H : {0, 1}m ×
{0, 1}s → {0, 1}s be a hash function. Define H ′ : {0, 1}m×{0, 1}s′ → {0, 1}s′

by H ′(M, V ||V ′) = (H(M, V)||V ′) where V ∈ {0, 1}s and V ′ ∈ {0, 1}s′−s.
Then H ′ inherits its collision resistance and preimage resistance from H , that
is, for any adversary A′ on H ′ there is an adversary A on H with essentially
the same complexity and advantage.

Proof: We first prove the statement for collision resistance. Let an adversary
A′ on the collision resistance of H ′ be given. Then A runs A′ and, supposing
A′ outputs a collision (M,V, V ′) and (M̃, Ṽ , Ṽ ′), outputs (M,V) and (M̃, Ṽ).
Then H(M,V) = H(M̃, Ṽ) and Ṽ = Ṽ ′. Because (M,V, V ′) 6= (M̃, Ṽ , Ṽ ′)
this implies that (M,V) 6= (M̃, Ṽ), making it a collision on H .

The proof for preimage resistance is similar. Let an adversary A′ on the
preimage resistance of H ′ be given and suppose A needs to find a preimage of

7

Z ∈ {0, 1}s, where Z is distributed by applying H to the uniform distribution
over {0, 1}m+s. ThenA randomly selects V ′ ∈ {0, 1}s′−s and runsA′ on input
Z ′ = (Z||V ′). By construction, Z ′ is distributed correctly (as if applying H ′

to the uniform distribution over {0, 1}m+s′), so suppose A′ outputs a preimage
(M,V, V ′). Then A outputs (M,V) as preimage of Z under H . Q.E.D.

2.3 Collisions in Uniform Samples

With ({0, 1}n)q we denote the set of q-element vectors, or q-vectors, in which
each element is an n-bit string. When a ∈ ({0, 1}n)q, we will write a =
(a1, . . . , aq) when we wish to stress its components. We will use U to denote
the uniform distribution over ({0, 1}n)q (where n and q will often follow from
the context). Thus U corresponds to sampling q strings from {0, 1}n uniformly
and independently with replacement.

If in a random sample some value appears exactly k times, we say there is a
k-way collision in that sample. Let MU (k) be the random variable describing the
number of k-way collisions when the samples are drawn according to the dis-
tribution U . We recall the following well known “urns and balls” result [6]. The
expected number of k-way collisions is E [MU (k)] = N

(
q
k

) (
1
N

)k (1− 1
N

)q−k,
where N = 2n. Thus, E[MU (k)] follows a (scaled) binomial distribution with
parameters 1/N and q. Asymptotically, this would correspond to a scaled Pois-
son distribution with parameter q/N (provided q/N remains bounded).

The probability of finding any sort of collision is at most q2

2N . We can also
bound the probability of finding a k-way collision, see Lemma 4 below. In par-
ticular, for q = 2n/n and k = n the probability Pr(MU (n) > 0] < (2/n)n

tends to zero for increasing n and with a little bit more work
∑

k≥n Pr[MU (n) >
0] ≤ 2(2/n)n, also tending to zero.

Lemma 4 Let q, n, and k be positive integers. Then Pr[MU (k) > 0] ≤ 2n(q/2n)k.

3 Upper Bounding Collision and Preimage Resistance

3.1 Introduction

Let us consider an m+s-to-s bit compression function that uses one call to each
of r independent n + c-to-n bit random functions f1, . . . , fr. We are interested
in what kind of collision respectively preimage resistance we can expect. Before
we discuss the main line of attack, we mention two other attacks.

Firstly, since the compression function maps to s-bit strings, we know that
collisions can be expected after 2s/2 queries, whereas preimages will be found

8

after just under 2s queries. Note that these complexities depend only on the size
of the compression functions output and not on the dimensions of the underlying
primitive, how often it is called, or how many bits are compressed.

Collisions (and in many cases preimages as well) can often also be found us-
ing 2nr queries, essentially by guessing the output of the queries corresponding
to a certain H-input. Consider Cr, the final function mapping m + s + rn bits
to s bits. To find a collision, evaluate the compression function for a random
value. If Cr is balanced, every possible output has 2m+rn preimages, each of
m+s+rn bits. Parse into M×V ×Y1×· · ·×Yr and evaluate the compression
function on input (M,V). With probability 2−nr the Yi values will correspond
with that of the chosen Cr preimage, resulting in a collision. Since there are
2m+rn preimages we can hope that these all have distinct (M,V), so a collision
can be found in 2nr queries. If n is relatively small compared to c, this attack
might beat the other two.

For the final and main attack the adversary tries to maximize the number of
compression function evaluations it can make given his queries. Shrimpton and
Stam [18] call this the yield.

Definition 5 Let Hf1,...,fr be a compression function based on a primitives
f1, . . . , fr. The yield of an adversary after a set of queries to f1, . . . , fr, is the
number of inputs to H for which he can compute Hf1,...,fr given the answers
to his queries. With yield(q) we denote the maximum expected yield given q
queries to each of the oracles f1, . . . , fr.

The central theorem is the following generalization of a result by Rog-
away and Steinberger [16], who give the result for c = 0 only (Shrimpton and
Stam [19] give the result for c = 0 and r = 2 only).

Theorem 6 Let Hf1,...,fr be an m + s-to-s bit compression function making
one call to each of the n + c-to-n bit primitives f1, . . . , fr. Then yield(q) ≥
2m+s(q/2n+c)r.

Proof: Consider the following greedy adversary. Let 0 < i < r. Suppose
that after q queries to each of the oracles f1, . . . , fi the adversary can compute
Y0, . . . , Yi for Qi input pairs (M, V) ∈ {0, 1}m × {0, 1}s. Since there are 2n+c

possible inputs to fi+1, on average for each possible input to fi+1 there are
Qi/2n+c inputs to the compression function for which the adversary can com-
pute all intermediate chaining values Y0, . . . , Yi. If the adversary queries fi+1

on the q values for which he knows most intermediate chaining paths, he will be
able to compute Yi+1 for at least Qiq/2n+c values (by the pigeon hole principle).
With finite induction and using that Q0 = 2m+s it follows that this adversary

9

can compute Yr, and hence the compression output, for at least 2m+s(q/2n+c)r

values. Q.E.D.

3.2 Rogaway and Steinberger’s Bounds (Generalized)

Rogaway and Steinberger [16] observe that if yield(q) > 2s a collision is guar-
anteed. Moreover, if yield(q) > 2s one expects to be able to find preimages, pro-
vided the compression function has sufficiently uniform behaviour.4 Similarly,
if yield(q) > 2s/2 one would expect a collision, again provided sufficiently
uniform behaviour. The following formulation captures the loosely stated uni-
formity assumption, taking into account preimages as well. See [14] for a fine-
grained description (also of Theorem 8 with c = 0).

Assumption 7 Let Hf be an m + s-to-s bit compression function making r
calls to n + c-to-n bit primitive f . Let A be the adversary that optimizes its
yield according to the proof of Theorem 6. Then the spread and occurence of
collisions for the adversary’s compression function evalutions behave as if these
yield(q) elements were drawn at random.

Theorem 8 (Case c = 0 corresponds to [16, Theorem 2]) Let Hf be an m+ s-
to-s bit compression function making r calls to n + c-to-n bit primitive f .

1. If q ≥ 2(nr+cr−m−s/2)/r then yield(q) ≥ 2s/2 and, under Assumption 7 a
collision in Hf can be found with high probability.

2. If q ≥ 2(nr+cr−m)/r then yield(q) ≥ 2s and a collision in Hf can be found
with certainty.

3. If q ≥ 2(nr+cr−m)/r then yield(q) ≥ 2s and, under Assumption 7 preimages
in Hf can be found with high probability.

Proof: Given the lower bound on the yield (Theorem 6) it suffices to deter-
mine those q for which 2m+s(q/2n+c)r ≥ 2s/2 respectively 2m+s(q/2n+c)r ≥
2s holds. Q.E.D.

3.3 New Bounds

It is easy to see that Assumption 7 cannot be true for all possible H and exam-
ples, for which the greedy adversary does not find collisions within the required
amount of queries suggested by Theorem 8, are easy to find (another more ef-
ficient adversary might exist). Moreover, upon closer inspection the bound of

4 The preimage result erroneously omits a uniformity assumption [16, Theorem 4], corrected
in [14, Theorem 4].

10

Lemma 8 has a very strange consequence: increasing the state size reduces the
security! (Note that this problem does not exist for the bound on preimage resis-
tance.) This is counterintuitive; indeed, given a m+s-to-s bit compression func-
tion one can easily increase the state size without affecting collision or preimage
resistance by simply forwarding the extra state bits untouched (Lemma 3).

The solution to this problem presents itself naturally: first determine the op-
timal state size. For this we need to determine for which state size the direct
yield-based bound and the generic birthday bound coincide. That is, for which
s do we have 2s/2 = 2(nr+cr−m−s/2)/r. Taking logarithms and some simple
formula manipulation leads to s = 2(nr + cr −m)/(r + 1), corresponding to
collision resistance q = 2(nr+cr−m)/(r+1). All in all this leads us to the follow-
ing conjecture.

Conjecture 9 Let Hf be an m+s-to-s bit compression function making r calls
to n+c-to-n bit primitive f . Then collisions can be found for q ≤ 2(nr+cr−m)/(r+1).

The yield can also be used to obtain bounds on the indifferentiability of a
construction (we refer to [9] for an introduction to hash function indifferentia-
bility).

Theorem 10 Let Hf be an m + s-to-s bit compression function making r calls
to n + c-to-n bit primitive f . Then Hf is differentiable with high probability
from a random m + s-to-s bit function after q > 2n+c(nr

s 2n+c−m−s)1/(r−1)

queries.

Proof: (Sketch) We claim that if yield(q) > nqr/s the construction cannot
possibly be indifferentiable. Suppose the adversary is communicating with a real
m+s-to-s bit public random function H and simulated f1, . . . , fr. After q calls
to each of f1, . . . , fr, the adversary has received a total of qrn bits in answers.
Yet he can now predict the outcome of H for yield(q) values, i.e., a total of
yield(q)s completely random bits. The claim follows from incompressibility of
completely random bitstrings.

Using Theorem 6 we get differentiability for 2m+s(q/2n+c)r > nqr/s or
q > 2n+c(nr

s 2n+c−m−s)1/(r−1). Q.E.D.

3.4 Interpretation

In Tables 1 and 2 we look at the maximal attainable security under our con-
jecture and theorem. Both tables are for non-compressing n-to-n bit underlying
public random functions (so c = 0), similar to the random permutation setting
studied by Rogaway and Steinberger. Their bounds for compression functions

11

Collision Collision Preimages Indifferentiable
Conjecture 9 [16, Theorem 2] [16, Theorem 4] Theorem 10
2n(1−2/(r+1)) 2n(1−3/(2r)) 2n(1−1/r) ≈ 2n(1−1/(r−1))

r = 2 2n/3 2n/4 2n/2 2
r = 3 2n/2 2n/2 22n/3 2n/2

r = 4 23n/4 22n/3

r = 5 24n/5 23n/4

Table 1: Security Bounds for Single-Length Constructions (s = n). Listed are
the approximate number of queries after which a certain property will be broken.

Collision Collision Preimages Indifferentiable
Conjecture 9 [16, Theorem 2] [16, Theorem 4] Theorem 10
2n(1−2/(r+1)) 2n(1−2/r) 2n(1−1/r) ≈ 2n(1−2/(r−1))

r = 3 2n/2 2n/3 22n/3 2
r = 4 23n/5 2n/2 23n/4 2n/3

r = 5 22n/3 23n/5 24n/5 2n/2

Table 2: Security Bounds for Double-Length Constructions (s = 2n). Listed are
the approximate number after which a certain property will be broken.

satisfying the uniformity assumption are included in the tables. Table 1 focuses
on single length compression functions, that is s = n, and Table 2 focuses on
double length compression functions, so s = 2n. In both cases m = n bits of
message are compressed.

In the interesting cases where our upper bound on collision resistance is
higher than Rogaway and Steinbergers, notably r = 2 for Table 1 and all of Ta-
ble 2 we suggest to actually reduce the state size to match the provided collision
resistance (e.g., s = 2n/3 for r = 2 in Table 1). Increasing the state size would
either reduce collision resistance or introduce questionable behaviour invalidat-
ing the uniformity assumption (cf. Lemma 3).

One can also look at the maximum number of message bits one can hope to
compress given a targeted leved of collision resistance and number of calls to
the underlying public random function. For a collision resistance level of 2n/2

queries, Conjecture 9 implies one can hash at most m ≤ (n
2 + c)r− n

2 message
bits. For double-length constructions and corresponding target of 2n queries the
number of bits increases to m ≤ cr − n.

Finally, for c = 0 and writing rate R = m/nr, the bound can be rewritten as
q ≤ 2n(1−1/R)(r+1)/r indicating that asymptotically (in r) one can get collision

12

M f1

V (V ||0n/3)

⊕
f2

⊕
msb2n/3 H

n nn

n

n

2
3n

2
3n

Fig. 2: The 2-call compression function H based on public random n-to-n bit
functions f1 and f2.

resistance up to 2n(1−1/R) queries. Up to constants this is the same as the bound
by Rogaway and Steinberger [16, Theorem 3], but an important difference is
that their bound is rigorously proven, whereas ours follows from a conjecture.

4 Matching Collision Resistant Constructions

4.1 Case I: A Rate-1/2 Single Length Compression Function

Our main result in this section is a compression function with state size s =
2n/3 and almost optimal collision resistance, making only 2 calls to a n-to-
n bit public random function. Let M ∈ {0, 1}n and V ∈ {0, 1}2n/3. Define
(Figure 2)

Hf1,f2(M,V) = V ⊕msb2n/3(f2((V ||0n/3)⊕ f1(M)))

The state size can be expanded by forwarding the extra chaining bits un-
touched (Lemma 3), giving rise to a 2n-to-n bit compression function beating
the upper bound of 2n/4 queries for compression functions satisfying the uni-
formity assumption.

Theorem 11 Let Hf1,f2 be as given above. Then

Advcoll
H(n)(q) ≤ q2/2n+1 + 2n/3(q/2n/3)n + q(q − 1)n2/22n/3 .

Since the third term is initially dominant, an adversary needs to asks roughly
2n/3/n queries for a reasonable advantage.

Proof: Let an adversaryA be given. We need to bound its success probability.
Suppose that, whenever A makes a query to f1, we do not answer with f1’s
answer, but with a randomly drawn value in {0, 1}n. From the adversary’s point

13

of view, this is the same distribution. What’s more, we can even decide upon a
list of answers to the adversary’s f1 queries ahead of time. Since the input to f1

is not used elsewhere in the compression function and f2 is independent of f1,
we could even give this list to the adversary in advance of any query.

Thus we can replace the q queries to f1 by a list a of q values drawn at ran-
dom with replacement from {0, 1}n, given to the adversary before any queries to
f2 are made. Let us consider the probability that the adversary finds a collision
on the i-th query to f2. Let Xi be the value queried by the adversary. This will
allow the adversary to evaluate H for those a ∈ a whose first n/3 bits coincide
with Xi. Let’s call this number ki. Moreover, unless two values a, a′ ∈ a are
identical, this cannot lead to a collision based on the i’th f2-query alone. Note
that collisions in a occur with probability ≤ q2/2n+1.

Suppose that after i− 1 queries the adversary can evaluate H for Qi−1 dif-
ferent values. Then the probability of a collision is on the i-th query is at most
kiQi−1/22n/3. Note that Qi =

∑i−1
j=1 kj . With probability at most 2n/3(q/2n/3)n

some n-way collision occurs (Lemma 4), otherwise all ki < n and Qi <
(i−1)n. Thus the probability of a collision (provided no n-way collisions occur
in the n/3 upper most bits of a) is upper bounded by

∑q
i=1(i − 1)n2/22n/3 =

q(q − 1)n2/22n/3. Q.E.D.

As an aside, our construction shares some of the disadvantages of the rate-
1/3 construction by Shrimpton and Stam [19]. In particular, finding a collision
in f1 leads to many collisions in H (although the gap between finding a single
collision in H and one in f1 is significantly bigger this time). Implementing f1

using a fixed key ideal cipher in Davies-Meyer mode does not affect the security
(PPP Switching Lemma [18, Lemma 6]), but the effect of replacing f2 with a
fixed-key ideal cipher is less clear.

4.2 Case II: A Single-Call Double Length Compression Function

We will now consider a 3n-to-2n bit compression function based on a single
call to a random 3n-to-n bit function. We show that there exists a compression
function for which the number of random function queries to find a collision
is of the order 2n for non-adaptive adversaries, that need to commit to all their
queries in advance of receiving any answers. Subsequently we indicate why we
expect the advantage not to drop significantly when taking into account adaptive
adversaries and discuss a variant based on two random 2n-to-n bit functions.

Let us first define the hash function. For ease of exposition, we consider
the hash function to have three n-bit inputs U, V, and W . Moreover, we will
interpret n-bit strings as elements in F2n . The input U, V, W is then used to
define a quadratic polynomial over F2n . The hash consists of the output of f (on

14

f Y

WY 2 + V Y + U

⊙⊕⊙⊕

U

V

W

n

n

n

n

n

Fig. 3: A single call double length compression function with close to optimal
collision resistance. Arithmetic over F2n .

input U, V, W) and the polynomial evaluated in this output. In other words, to
compute Hf (U, V, W) do the folowing (and see Figure 3):

1. Set Y ← f(U, V, W)
2. Output Hf (U, V, W) = (Y ||WY 2 + V Y + U).

Theorem 12 Let Hf be as given above. Then

Advcoll
H(n)(q) ≤ q(q − 1)/22n ,

for non-adaptive adversaries. Hence a non-adaptive adversary needs to ask
roughly 2n queries for a reasonable advantage.

Proof: Suppose an adversary wants to find a collision (U, V, W) and (U ′, V ′, W ′).
Let Y = f(U, V, W) and Y ′ = f(U ′, V ′, W ′). Then we need that Y = Y ′ and
(W −W ′)Y 2 + (V − V ′)Y + (U −U ′) = 0. Since (U, V, W) 6= (U ′, V ′, W ′)
for a collision, this means that Y needs to be a root of a non-zero quadratic
polynomial. There are at most two roots over F2n . The probability that both
f(U, V, W) and f(U ′, V ′, W ′) evaluate to the same root is at most 2/22n. Since
we assume a non-adaptive adversary, we can use a union bound over all pairs
(U, V, W) and (U ′, V ′, W ′) to obtain an upper bound on the adversary finding
a collision of

(
q
2

)
2/22n = q(q − 1)/22n. Q.E.D.

The question that remains to be answered is what happens if the adversary
is adaptive. In this case, given a list of queries (Uj , Vj , Wj) with answers Yj

for j = 1, . . . , i − 1 with i < q, the adversary will already know when he
makes a new query (Ui, Vi, Wi) for which 0 < j < i it holds that Yj satis-
fies (Ui − Uj)Y 2

j + (Vi − Vj)Yj + (Wi −Wj) = 0. He finds a collision if Yi

15

will equal one of those Yj , so he optimizes his probability querying (Ui, Vi, Wi)
that maximizes the number of 0 < j < i for which this query could result in
a collision. Suppose there are several j’s we target, let’s say j1, . . . , j`. Then
one can express Wi as a function of (Uj , Vj , Wj , Yj), Ui, and Vi for any of the
j’s. Because Wi is unique, one can subsequently express Vi in Ui and any two
of the (Uj , Vj , Wj , Yj)’s. Taking this one step further leads to Ui expressed in
any triple of the (Uj , Vj , Wj , Yj). For ` > 3 the corresponding (Uj , Vj , Wj , Yj)
already need to satisfy an increasing (in `) number of conditions. Since the Yj

are random, we believe one can upper bound the probability p` of an `-tuple oc-
curring satisfying these conditions, leading to an overall bound on the collision
probability of p` +

∑q
i=1 `/2n = p` + q`/2n.

In the full version we show that if one instantiates the 3n-to-n bit func-
tion f with a cascade of two random 2n-to-n bit functions f1 and f2 (i.e.,
f(U, V, W) = f2(f1(U, V), W)) the construction remains secure. For any quasi-
adaptive adversary that provides a list of queries to f1 and, only after receiving
the answers to this list, will prepare a list of queries to f2, we bound the advan-
tage

Advcoll
H(n)(q) ≤ n2q2/22n + (2q/2n)n ,

so again 2n/n queries are needed for a reasonable advantage.

4.3 Case III: Single Call Efficiency/Security Tradeoff

In this section we show that our conjectured upper bound can be achieved for
single call schemes when m ≤ n + c, n ≤ s and c ≤ m, achieving collision
resistance up to 2(n−c+m)/2 queries. This parameter set might seem a bit artifi-
cial at first, but it neatly fills the gap between Black et al.’s impossibility result
of creating a 2n-to-n bit compression function using a single n-to-n bit random
function and the trivial construction of making a 2n-to-n bit compression func-
tion based on a single call to a random 2n-to-n bit function. Indeed, we have
n + c ≤ m + s in this case, so unless the equality holds, we need to compress
before calling f .

For the moment we concentrate on the case s ≤ n + c, we deal with s >
n + c at the end of this section. Recall that the hash function Hf (M,V) has
two inputs, M and V and a single oracle f . Split V = V0||V1 in two where
|V0| = n + c−m and |V1| = m + s− n− c. Split M = M0||M1 in two where
|M0| = n+c−s and |M1| = m+s−n−c. Finally split f ’s output F = F0||F1

in two where |F0| = n + c−m and |F1| = m− c. Then define

C0(M, V) = (M0||M1 ⊕ V1||V0)
C1(M, V, F) = (F0||(F1||0s−n)⊕ V1)

16

Theorem 13 Let Hf be as given above. Then

Advcoll
H(n)(q) ≤ q2/2n+c−m+1 .

Hence an adversary needs to ask roughly 2(n+c−m)/2 queries for a reasonable
advantage.

Proof: Suppose an adversary wants to find a collision (M, V) and (M ′, V ′)
on Hf . Let X = C0(M,V), F = f(X), and H = C1(M,V, F). Similar for
X ′, F ′, and H ′. A collision means (M, V) 6= (M ′, V ′) yet H = H ′. A priori,
there are two possibilities in such a case. Either X = X ′ or not. If X = X ′

then also F = F ′ and in particular F1 = F ′1. Since H = H ′ implies F1 ⊕ V1 =
F ′1 ⊕ V ′1 , we get V1 = V ′1 . This combined with X = X ′ would already imply
(M,V) = (M ′, V ′), hence no collision.

Thus we are left with the case X 6= X ′. In that case H = H ′ requires F0 =
F ′0. This is outside the adversary’s control, his advantage after q queries follows
the birthday bound based on F0’s length, so is upper bounded by 1

2q2/|F0| =
q2/2n+c+1−m, so roughly |F0|1/2 queries are needed to find a collision for F0.

Q.E.D.

Note that, in the proof above, once an F0-collision has been obtained, one
can pick V1 freely and (uniquely) complete the collision given F1, F

′
1, X and X ′.

Thus the adversary needs about 2(n+c−m)/2 queries to find his first collision, but
it will immediately be a 2m+s−n−c-way collision.

If s > n + c this multicollision behaviour can be changed slightly. In that
case one can simply feed forward s−n−c bits of the state to the next without any
processing (and apply the construction above on the s′ = n + c remaining bits).
Finding a collision will still take time 2(n+c−m)/2, but this time the adversary
will find 2s−n−c collisions that are 2m-way.

5 Conclusion

Thanks to Phil Rogaway, John Steinberger, Stefano Tessaro and the anonymous
Crypto’08 referees for their valuable feedback. Thanks to the folks in Bristol
for their hospitality during a vital phase in the writing of this paper and special
thanks to Tom Shrimpton for great discussions and feedback on this work from
the initial stages to the end.

References

1. M. Bellare and T. Kohno. Hash function balance and its impact on birthday attacks. In Ad-
vances in Cryptology – EUROCRYPT ’04, volume 3027 of LNCS, pages 401–418. Springer-
Verlag, 2004.

17

2. J. Black, M. Cochran, and T. Shrimpton. On the impossibility of highly efficient blockcipher-
based hash functions. In Advances in Cryptology – EUROCRYPT ’05, volume 3494 of LNCS,
pages 526–541. Springer-Verlag, 2005.

3. J. Black, P. Rogaway, and T. Shrimpton. Black-box analysis of the block-cipher-based hash-
function constructions from PGV. In Advances in Cryptology – CRYPTO ’02, volume 2442
of LNCS. Springer-Verlag, 2002.

4. I. Damgård. A design principle for hash functions. In G. Brassard, editor, Advances in
Cryptology – CRYPTO ’89, volume 435 of LNCS. Springer-Verlag, 1990.

5. S. Hirose. Some plausible constructions of double-length hash functions. In FSE’06, volume
4047 of LNCS, pages 210–225. Springer-Verlag, 2006.

6. N. L. Johnson and S. Kotz. Urn Models and Their Applications. John Wiley and Sons, Inc.,
1977.

7. L. Knudsen and F. Muller. Some attacks against a double length hash proposal. In Advances
in Cryptology – ASIACRYPT’06, volume 4284 of LNCS, pages 462–473. Springer-Verlag,
2006.

8. S. Lucks. A collision-resistant rate-1 double-block-length hash function. In E. Biham,
H. Handschuh, S. Lucks, and V. Rijmen, editors, Symmetric Cryptography, number 07021 in
Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2007. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

9. U. Maurer and S. Tessaro. Domain extension of public random functions: Beyond the birth-
day barrier. In Advances in Cryptology – CRYPTO ’07, volume 4622 of LNCS, pages 187–
204. Springer-Verlag, 2007.

10. R. Merkle. One way hash functions and DES. In G. Brassard, editor, Advances in Cryptol-
ogy – CRYPTO ’89, volume 435 of LNCS, pages 428–466. Springer-Verlag, 1990.

11. I. Mironov and A. Narayanan. Domain extension for random oracles: Beyond the birthday-
paradox bound. ECRYPT Hash Workshop 2007, May 24–25, Barcelona, 2007.

12. M. Nandi, W. Lee, K. Sakurai, and S. Lee. Security analysis of a 2/3-rate double length
compression function in black-box model. In Fast Software Encryption – FSE’05, volume
3557 of LNCS, pages 243–254. Springer-Verlag, 2005.

13. T. Peyrin, H. Gilbert, F. Muller, and M. Robshaw. Combining compression functions and
block cipher-based hash functions. In Advances in Cryptology – ASIACRYPT’06, volume
4284 of LNCS, pages 315–331. Springer-Verlag, 2006.

14. P. Rogaway and J. Steinberger. Security/efficiency tradeoffs for permutation-based hashing.
Full version of [16], available through authors’ website.

15. P. Rogaway and J. Steinberger. Constructing cryptographic hash functions from fixed-key
blockciphers. In Advances in Cryptology – CRYPTO ’08, volume This Proceedings of LNCS.
Springer-Verlag, 2008.

16. P. Rogaway and J. Steinberger. Security/efficiency tradeoffs for permutation-based hashing.
In Advances in Cryptology – EUROCRYPT ’08, volume 4965 of LNCS, pages 220–236.
Springer-Verlag, 2008.

17. Y. Seurin and T. Peyrin. Security analysis of constructions combining FIL random oracles. In
Fast Software Encryption (FSE’07), volume 4593 of LNCS, pages 119–136. Springer-Verlag,
2007.

18. T. Shrimpton and M. Stam. Efficient collision-resistant hashing from fixed-length random
oracles. ECRYPT Hash Workshop 2007, May 24–25, Barcelona, 2007.

19. T. Shrimpton and M. Stam. Building a collision-resistant compression function from non-
compressing primitives. In ICALP 2008, Part II, volume 5126, pages 643–654. Springer-
Verlag, 2008. Supersedes [18].

20. J. Steinberger. The collision intractability of MDC-2 in the ideal-cipher model. In Advances
in Cryptology – EUROCRYPT’07, volume 4515 of LNCS, pages 34–51. Springer-Verlag,
2007.

18

