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Abstract. We consider what constitutes identities in cryptography. Typ-
ical examples include your name and your social-security number, or your
fingerprint/iris-scan, or your address, or your (non-revoked) public-key
coming from some trusted public-key infrastructure. In many situations,
however, where you are defines your identity. For example, we know
the role of a bank-teller behind a bullet-proof bank window not because
she shows us her credentials but by merely knowing her location. In this
paper, we initiate the study of cryptographic protocols where the iden-
tity (or other credentials and inputs) of a party are derived from its
geographic location.
We start by considering the central task in this setting, i.e., securely ver-
ifying the position of a device. Despite much work in this area, we show
that in the Vanilla (or standard) model, the above task (i.e., of secure
positioning) is impossible to achieve. In light of the above impossibility
result, we then turn to the Bounded Storage Model and formalize and
construct information theoretically secure protocols for two fundamental
tasks:
– Secure Positioning; and
– Position Based Key Exchange.

We then show that these tasks are in fact universal in this setting – we
show how we can use them to realize Secure Multi-Party Computation.
Our main contribution in this paper is threefold: to place the problem
of secure positioning on a sound theoretical footing; to prove a strong
impossibility result that simultaneously shows the insecurity of previ-
ous attempts at the problem; and to present positive results by showing
that the bounded-storage framework is, in fact, one of the “right” frame-
works (there may be others) to study the foundations of position-based
cryptography.

1 Introduction

1.1 Motivation

In cryptography, typically a party will possess a set of credentials determining:
its identity, what tasks it can do, which protocols it can participate in and so on.
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These set of credentials will typically correspond to the party having some of the
following attributes: some secret information (e.g., a secret key), authenticated
information (e.g., a digitally signed certificate from a trusted entity), biometric
feature and so on. In this paper, we ask the following question: can the geograph-
ical position of a party be one of the credentials? The geographical position of a
party is valuable in a number of natural settings. We give a few examples:

– Position based Secret Communication. Consider communication be-
tween different military establishments. For example, the Pentagon in Wash-
ington D.C. might want to send a message (having some classified information)
such that it can only be read by an individual present at the US military base
in South Korea. In a traditional solution, the South Korean military base will
have a secret key to decrypt the message. However, the enemy might try to
break into the military base computers to capture this key. It would be desir-
able to add an additional layer of security that would guarantee that anyone
reading the message is physically present at the South Korean base.

– Position based Authentication/Signatures. In the above example, sup-
pose the South Korean military base wants to send some information to the
Pentagon. It would be desirable for the Pentagon to have a guarantee that the
message was indeed sent from the geographical position of the military base.

Indeed, the above list is not exhaustive. One could think about position
based access control (where access to a resource needs to be restricted to certain
locations, e.g., a printer or fax machine is accessible only to people inside some
set of offices) and pizza delivery (where the pizza company first wants to verify
that the person placing the order is indeed located at the delivery address he
specified). To perform such “position specific” tasks, we introduce the notion of
position based cryptography.

The first natural question that arises is: “Can you convince others about
where you are?”. More precisely, we have a prover who claims be at a geographi-
cal position P . There is a set of remote verifiers (or in other words, a positioning
infrastructure) who wish to make sure that the prover is indeed at position P
as claimed (for example, by executing a protocol with that prover). We call the
above problem as “Secure Positioning”. The question of secure positioning is a
fundamental one and deals with designing a system which enables a prover to
communicate back and forth with a group of verifiers to give them an interactive
proof of its geographic position.

The problem of secure positioning is well studied in the security community
(see e.g., [20, 21, 3, 6, 5]). The de-facto method to perform secure positioning is
based on the time of response technique where the messages travel with the
speed of radio waves which is equal to the speed of light (this is similar in
nature to how the commercial GPS systems work, see section 1.3). At a high
level, the verifiers will send messages to the device and will measure the time
taken to receive a response. Although there have been several proposed protocols
for secure positioning, all of them are completely insecure under the so called
“collusion attack”. That is, if a set of (possibly cloned) provers collude together



and work in a controlled manner during the protocol execution, the provers
will be able to convince the verifiers that the verifiers are talking to a prover
at position P (even though none of the adversarial provers may be at P ). We
in fact show that, unfortunately, such an attack is unavoidable. That is, it is
impossible to have secure protocols for positioning in this Vanilla model (even
if one is willing to make computational assumptions). Hence, we cannot hope to
realize most of the meaningful position based tasks.

In light of the above drawbacks, in this paper we explore the intriguing
possibility if secure positioning protocols exist which can resist collusion attacks.
In search of an answer to this question, we turn to the bounded storage model
(BSM), introduced by Maurer [18]. Quite surprisingly, this model turns out
to be a right model for proving the security of position-based cryptographic
tasks. We first construct a protocol for information theoretic secure positioning
in this model. To our knowledge, this is the first protocol which is secure even
against collusion attacks. Although secure positioning is an important step, the
full power of position based cryptography can only be realized if we achieve
key exchange with the device at a particular geographic position. Hence we
introduce position based key exchange and present two protocols to achieve it in
the BSM. Our first protocol achieves security against a computationally bounded
adversary (in the BSM). In this protocol, we achieve key exchange between the
verifiers and any device at position P that is enclosed within the tetrahedron
formed between 4 verifiers in 3-dimensional space. Our second protocol achieves
information theoretic key exchange between the verifiers and devices at positions
P that lie in a specific geometric region (characterized by a condition that P
must satisfy) within the tetrahedron.

Note that we are interested only in verifying the position claim of devices
that are within the tetrahedron enclosed between the 4 verifiers. This is not a
limitation, since apriori, we are restricting, by geographical bounds, the locations
where an honest device can be located (such as inside a room, to get access to
a printer or a hard drive). If a device makes a position claim that lies outside
of this region, we reject the claim without any verification. We stress, however,
that we do not make any assumption about the positions of adversaries in the
system. In particular, this freedom for the adversarial devices guarantees that
no set of adversaries (some of whom may even be outside of the tetrahedron)
can falsely prove that any one of them is at position P inside the tetrahedron as
long as none of them are at position P .

1.2 The Two Models Considered

The Vanilla Model. We now informally describe the Vanilla model. We have a
device (also referred to as the prover) who is located at a position P (where
P is a point in a d-dimensional Euclidean space). There exists a set of verifiers
{V1, V2, ........., Vm} at different points in the d-dimensional space, such that P
lies inside the tetrahedron enclosed by the verifiers. The verifiers are allowed
to execute a protocol with the prover to achieve some task. More precisely,
a verifier can send messages to the prover at different points in time (with a



speed up to the speed of radio waves) and also record the messages which are
received from it (along with the time when they are received). The verifiers
have a secret channel among themselves using which they can coordinate their
actions by communicating before, during or after protocol execution. There could
be multiple adversaries with possibly cloned devices who share a covert channel
and collude together. This setting is referred to as the Vanilla model.

The Bounded Storage Model. The bounded storage model (BSM) was introduced
by Maurer in [18] and has been the subject of much work [18, 4, 1, 9, 17, 22, 19,
13, 10]. Very roughly, this model assumes that there is a bound on the amount
of information that parties (including an adversary) can store. It assumes the
existence of random strings, having high min-entropy, available to the parties at
the beginning of the protocol. An adversary is allowed to retrieve and store an
arbitrary function of this random string, as long as the length of the output of
the function is not longer than the adversary’s storage bound. We assume that
parties can broadcast random strings having high min-entropy, but cannot store
these strings. A closely related model to the BSM is the bounded retrieval model
(BRM), introduced and studied in various related contexts by Di Crescenzo
et al [8] and Dziembowski [11, 12]. This model assumes that parties can store
information having high min entropy, but an adversary can only retrieve part
of it. Recently, Dziembowski and Pietrzak [14] introduced intrusion resilient
secret sharing where shares of a secret (stored on different machines) are made
artificially large so that it is hard for an adversary to retrieve a share completely,
even if it breaks into the storage machine. We note that in the current work, we
use the work of [14] on Intrusion Resilient Secret Sharing schemes as a starting
point. We build and extend these techniques by combining them with geometric
arguments to prove the security of our protocol.

In the context of position based cryptography, by bounded storage model,
we mean the Vanilla model setting where the verifiers can broadcast information
having high entropy (or control a randomness source which can) such that the
adversaries can only retrieve and store, say, a constant fraction of this informa-
tion as it passes by at high speed. The assumption that the adversaries cannot
retrieve (and store) all the information that goes by seems plausible in our set-
ting since the information travels at a very high speed (particularly when, e.g.,
the verifiers have several sources broadcasting information at different frequen-
cies). The reason we call our model bounded storage (as opposed to bounded
retrieval) is that we do not assume that verifiers (and the honest prover) can
fully store the broadcasted information themselves.

1.3 Related Work

Secure Positioning. We remark that the problem of position-based cryptography
as such has not been studied before. However, secure positioning is a well-studied
problem in the field of wireless security. There have been several proposed pro-
tocols ([2, 20, 23, 3, 6, 21, 24]). All these protocols are susceptible to the collusion
attack outlined earlier. One can get around this problem of multiple cloned



adversaries by assuming a setup phase where the verifiers give an unclonable
tamper-proof hardware [16, 15](having some secret information) to all possible
future provers. However in the current work, we focus on the setting where the
only credential needed by a prover is its geographical position.

In [5], a model is considered, that makes the assumption that there can exist
verifiers that are covert or hidden to provers and adversaries. Based on this, they
provide solutions to secure positioning. The protocols in [5] are also susceptible to
multiple colluding adversaries, although the attack required is more subtle than
in other cases. We describe this attack, as well as give a detailed description of
related work on secure positioning and the BSM in the full version of this paper
[7].

Global Positioning System. The problem addressed by the global positioning
system (GPS) is complementary to the one considered in our work. In GPS,
there is device trying to determine its own geographic position with the aid of
various satellites (in a non-adversarial setting). The GPS satellites continually
broadcast information in a synchronized manner with the speed of light. The time
taken by the information broadcast by various satellites to reach a GPS receiver
enables the receiver to compute its position using triangulation techniques.

1.4 Our Contributions

In this paper, we give the following results towards developing a theory of posi-
tion based cryptography:

– We begin with a lower bound for the Vanilla model in Section 3. We show that
there does not exist a protocol in the Vanilla model using which a group of
verifiers can securely verify the location claim of a prover. The impossibility
is obtained via an explicit attack which does not depend on the computa-
tional power of the parties. To begin with, the lower bound holds if all the
parties (i.e., the verifiers, the honest prover and the adversaries) are given un-
bounded computational power. Further, it holds even if the verifiers are given
unbounded computational power but the adversaries (and thus obviously the
honest prover) are restricted to being probabilistic polynomial time (PPT)
machines (i.e., one may make cryptographic hardness assumptions). Finally,
the protocols in [5] additionally assume the existence of hidden and mobile
base stations and present protocols for secure positioning. In the full version of
this paper [7], we describe explicit attacks breaking the security of these pro-
tocols in common settings (where a prover learns the response of the success
or failure of the protocol). With the impossibility of this most fundamental
task, we cannot hope to perform most other meaningful position based tasks
(including position based key exchange) in the Vanilla model.

– Given the above severe lower bound, the task of now choosing a model in which
protocols for secure positioning exist becomes a tricky one. One of the main
technical contributions of this paper is to connect the bounded storage model



to position based cryptography. Remarkably, bringing these seemingly unre-
lated ideas together enables us to achieve meaningful and elegant protocols
and proofs of security for position based cryptography.

– In the BSM, we give a protocol for secure positioning (in Section 5) which is
provably secure against any number of (possibly computationally unbounded)
adversaries colluding together, as long as the total amount of information
they can retrieve and store is bounded. To our knowledge, this is the first
protocol for positioning which does not fail against collusion attacks. We also
describe, in Section 6, how our protocol for secure positioning can be compiled
with any unauthenticated computationally secure key exchange protocol (like
Diffie-Hellman) to achieve computationally secure position based key exchange
in the BSM. That is, only a prover who is at a designated position P will
receive the key to be shared (even under the presence of any number of PPT
adversaries with bounded storage).

– We then present a protocol (in Section 7) that does information theoretically
secure key exchange between the verifiers and a device at P . The construction
of such a protocol turns out to be surprisingly intricate. While our secure posi-
tioning (and computationally secure position based key exchange) can handle
claims of all positions P that lie within the tetrahedron formed between 4 ver-
ifiers in 3-dimensional space, our information theoretic key exchange protocol
can handle positions P that lie in a specific region (which we characterize,
using a geometric argument, by a condition that P must satisfy) within the
tetrahedron. In the full version, we show (for a few example cases) that this
region is a large fraction of the enclosed tetrahedron and also provide some
figures containing what this region looks like (for various placements of the
4 verifiers). In order to show the security of our protocol, we need to prove
delicate timing arguments (based on geometric properties) as well as prove
that the protocol of [14] is secure even in the case when multiple parallel ad-
versaries can gain access to the machines and may collude after they have
finished accessing the machines.

– Using the above two fundamental protocols as building blocks, we demon-
strate that the protocols for more complex tasks can be readily constructed.
We consider the problem of establishing a secure channel between two devices
(such that each device has a guarantee on the geographic position of the de-
vice at the other end). After establishing pairwise secure channels, a group of
devices can perform “position based” multi-party computation, where asso-
ciated with each input, there is a guarantee about the position of the device
giving that input. We also discuss the setup of a position based public key
infrastructure, where a certificate provides a guarantee about the position (as
opposed to the identity) of the owner of the public key in question (We discuss
these applications in further detail in the full version.). We remark that the
above is obviously not intended to be an exhaustive list of applications and
one can construct protocols for several other tasks.

Our results do not require any pre-sharing of data (cryptographic keys and
so on) between the prover and the verifiers. The only required credential of a



prover is its real geographic position. We present the high level ideas of the model
and constructions and defer the full formal proofs to the full version [7].

Open Problem: Other Models for Position Based Cryptography. By turning to
the bounded storage model, we are able to provide the first provably secure
constructions of cryptographic tasks that use position as an identity. Given our
strong impossibility results in the Vanilla model, an important open question is:
do there exist other natural models that allow us to obtain positive results of
similar nature?

2 The Model

In this section, we briefly discuss our model. More details can be found in the
full version. There are three types of parties in our model: Prover, Verifier and
Adversary. We treat time and space as “continuous” (rather than discrete). We
assume that messages travel at a speed equal to that of radio waves (which is
the same as the speed of light). In the beginning, each party (prover, verifiers
and adversaries) is given as input, party’s own position (as a point in the d-
dimensional space), the position of all verifiers and the security parameter κ.
The verifiers and the adversaries are given the claimed position of the prover.

The parties can send out the following two types of messages : (a) Broadcast
messages: A broadcast message originating at a position P travels in concentric
hyperspheres centered at P in all directions, (b) Directional messages: A direc-
tional message, instead of traveling in all directions, travels only in a specific
direction specified by a sector. Such messages can be sent using directional an-
tennas. Additionally, verifiers have a private channel among themselves which
allows them to talk to each other secretly. Adversaries also have a private (and
covert) channel among themselves which allows them to talk to each other se-
cretly such that no verifier suspects any adversarial activity. More details about
these messages (along with formal definitions of secure positioning and key ex-
change) can be found in the full version.

The above is our so called Vanilla Model where we prove the impossibility of
realizing the most basic position based task (i.e., secure positioning). We assume
that parties can send directional messages in the Vanilla model in order to prove
a strong lower bound. As noted earlier, all our positive results are in the BSM.
Our bounded storage model is the same as the Vanilla model except for the
following changes:

– Verifiers “possess” a reverse block entropy source (defined formally in the full
version) capable of generating strings with high min-entropy, say (δ + β)n,
where n is the length of the string (and 0 < δ + β < 1; it is also called min-
entropy rate). By possessing a reverse block entropy source, we mean that
either the verifier itself is capable of generating such a stream of high min-
entropy, or it has a randomness source (located at the same point in space as
itself) which generates and broadcasts such a stream. We do not assume that



the verifiers can retrieve and store the broadcasted stream of data themselves.
Generating a lot of entropy is easy; one can think of an “explosion” which
generates a lot of noise that can be measured but not stored.

– There exists a bound βn on the total amount of information the adversaries
can store as the information passes at a high speed. The storage bound βn
could be any constant fraction of the min-entropy (δ+β)n. The honest parties
(including the verifiers) are required to have a storage capacity of only O(κ ·
log(n)).

– Verifiers and provers cannot send directional messages. We however do not
restrict the adversary from sending directional messages.

– Let X be a string having large min-entropy as before. The sender (which is
a verifier) generates X and sends it out. Any receiver gets to retrieve and
store f(X) (for any arbitrary f) in a way such that the total amount of
information which it has retrieved does not exceed the storage bounds. In case
a party receives multiple strings simultaneously, it can retrieve information
from these strings, in any order, any number of times (i.e., we do not restrict
the adversaries to retrieve information from a string only once) as long as the
total memory bound is not violated on the amount retrieved.

Observe that the last step above also enforces that any information about a
string X (having large min-entropy) that is sent from one adversary to the other
is also bounded (since an adversary gets to retrieve and resend only f(X)). This
rules out simple “reflection attacks” to create a huge storage (where a pair of
adversaries close to each other just keep reflecting the string X to each other
hence essentially storing X thus violating the bounded storage assumption).

Relaxing Assumptions. For clarity of exposition during our positive results, we
make the assumption that the devices can read bits from the stream and perform
computations instantaneously. We refer the reader to the full version for details
on how to remove this assumption.

3 Lower Bound on Secure Positioning in the Vanilla
Model

We now show a lower bound for the Vanilla model. We show that there does not
exist a protocol in the Vanilla model using which a group of verifiers can securely
verify the location claim of a prover. The impossibility is obtained via an explicit
attack which does not depend on the computational power of the parties. To
begin with, the lower bound holds if all the parties (i.e., the verifiers, the honest
prover and the adversaries) are given unbounded computational power. Further,
it holds even if the verifiers are given unbounded computational power but the
adversaries (and thus obviously the honest party) are restricted to being PPT
machines (i.e., one may make cryptographic hardness assumptions). Finally, we
present a few extensions of our lower bound in the full version.



Theorem 1 There does not exist a protocol to achieve secure positioning in the
Vanilla model.

Proof. Let there be n verifiers {V1, V2, ......, Vn} that take part in a protocol to
verify that a prover is at a position P . We show that for any protocol, there
exists a set of l adversaries (l to be defined later) who can interact with the
verifiers in such a manner that it is impossible to distinguish if the verifiers are
interacting with an adversary or the actual prover.

Consider the hypersphere of radius r around position P such that the distance
between Vi and P for all i be strictly greater than r. In other words, we require
that r is such that no verifier is present within the hypersphere of radius r
centered at position P . For all i, let the straight line joining Vi and P intersect
the hypersphere at position Ii. Let there exist l ≤ n such intersection points. We
note that l could be less than n because, two (or more) verifiers Vi, Vj , i 6= j may
be such that P, Vi and Vj lie on the same straight line in d-dimensional space.
We place adversaries A1, A2, ....., Al at points I1, I2, ....., Il. The verifiers may run
an interactive protocol with the prover in order to verify that the prover is at
position P . We show that these l adversaries together can simulate the execution
of the protocol in such a way that the verifiers cannot distinguish between an
execution in which they are interacting with the prover at P and an execution
in which they are interacting with these set of adversaries.

Any verification protocol is a series of messages (along with corresponding
times), each being from one of the n verifiers to the prover or vice-versa. The
verifiers can then verify the position of the prover by analyzing the message
they sent and the response they got (along with corresponding times). We give
a strategy for every Am such that the adversaries together can prove that they
are at position P .

Let the time taken for any message to travel between Vi and P be Ti. Note
that the distance between Am, for all m, and P is fixed (equal to r). Hence, let
the time taken for a message to travel between Am (for all m) and P be α. Let
the set of verifiers that lie on the same straight line that connects Am and P be
Vm. Let the distance between two adversaries Am and Am′ be dist(m,m′) (note
that dist(m,m) = 0).

Now during the protocol execution, every Am does the following. Am only
listens to messages sent by all Vi ∈ Vm and ignores messages sent by other
verifiers. Am is at a location such that all the messages sent by Vi (s.t., Vi ∈
Vm) to the point P would be received by it (irrespective of whether Vi sends
a broadcast message or a directional message). Lets say that a message M is
received from a verifier Vi. For every adversary Am′ (including itself, i.e., 1 ≤
m′ ≤ l), Am internally delays M by the duration of time delay(m, m′) = 2α −
dist(m,m′), and then sends it to Am′ over the covert channel. Hence, every single
adversary (including Am itself) would receive the message at time 2α (over the
covert channel) after the time when Am receives it from Vi (over the broadcast
or directional channel).

For every adversary Am, now assume that the protocol requires the honest
prover to send a reply message, at time t, in directions such that verifiers in



set Vm would receive it (note that since all of them are in a straight line in the
same direction of point P , either all of them would receive it or none would).
In that case, Am computes the response message using its view over the covert
channel so far and sends it at time t + α using a directional message (such that
only verifiers in Vm receive it). However, Am does not send any messages to Vi

for Vi 6∈ Vm (if the verifiers in other sets are required to receive this message as
well, they will be “taken care of” by other adversaries near them).

The following simple argument shows that every adversary Am runs exactly
a copy of the execution of the prover, only at a time α later. Once this is shown,
since it takes time Ti for a prover to send a response to Vi when Vi ∈ Vm, and
it takes Am only time Ti − α, the exact same response will reach Vi at exactly
the same instance of time (irrespective of whether it originated at P or at the
location of Am).

We show that the following two statements are true. delay(m,m′) is a non-
negative value for all m, m′ and every message which reaches the prover at P will
reach all the adversaries after exactly time α. This will prove that all adversaries
run exactly the same copy of the prover, but at a later instance of time.

The first statement follows trivially from triangle inequality. For the second
statement, assume that verifier Vi sends a message to the prover at time t. Let
m be such that Vi ∈ Vm and t′ be the time taken for a message to travel between
Vi and Am. The honest prover clearly receives the message at time t+t′+α. The
adversary Am receives the message at time t + t′ and hence all the adversaries
receive it at time t + t′ + 2α over the covert channel.

This proves that all adversaries run exactly the same copy of the prover, but
at an instance α later. Hence, any execution of a protocol run between the n
verifiers and the prover can be simulated by l adversaries running the protocol
with the n verifiers. ¤

We remark here that the above impossibility result holds even in a stronger
model where there is a fixed bound on the number of adversaries, as long as
this bound can depend on the number of verifiers in the system (but not on
the secure positioning protocol itself). This motivates our search for alternative
models, where we do not restrict the number of adversaries and still achieve
positive results.

4 Preliminaries

Vadhan [22], introduced BSM pseudorandom generators (PRG). Informally, for
string X sampled from a distribution having high min-entropy and for a uni-
formly random seed K, the distribution of the output of the BSM PRG (denoted
by PRG(X, K)), is statistically close to the uniform distribution of appropriate
length even when given K and A(X) where A is any arbitrary function with
bounded output length. We introduce a relaxation of BSM PRGs, which we
call BSM entropy generators (EG). The difference between a BSM EG and a
BSM PRG is that the output distribution of a BSM EG is only guaranteed to



have high min-entropy, and not necessarily be close to the uniform distribution.
We refer the reader to the full version for formal details about the definitions,
constructions and instantiations.

5 Secure Positioning in the Bounded Storage Model

In this section, we propose protocols for secure positioning in the BSM. We shall
build upon the primitives described in Section 4. To make the intuition clear,
we first give a secure positioning protocol for 1-dimension.

5.1 Secure Positioning in 1-dimension

For 1-dimension, we employ two verifiers, denoted by V1 and V2 (which send
messages with the speed of radio waves). We assume that the position P being
claimed by the prover is located between V1 and V2. Our protocol is secure against
an arbitrary number of adversaries colluding together to prove a position P , as
long as the total information that these adversaries can store during the protocol
is bounded. We let βn denote the aforementioned storage bound. Verifier V1 is
assumed to possess a random source X1, X2, · · · which is a reverse block entropy
source of minimum entropy rate δ + β, where Xi ∈ {0, 1}n.

We shall use a (ε, ψ)-secure BSM entropy generator EG: {0, 1}n × {0, 1}` →
{0, 1}m as discussed in the previous section. We choose the input size ` such that
ε+2−ψ is negligible in the security parameter κ. An example of a fast BSM EG,
which is just a random sampler requiring no computations at all, is presented in
the full verison.

Before the protocol starts, the verifier V1 selects a key K
R← {0, 1}` and sends

it to verifier V2 over the private channel (using a private multicast message). Let
t and t′ be the time taken for radio waves to reach P from V1 and V2 respectively.
Verifier V1 sends out X from the reverse block entropy source such that X has
min-entropy (δ + β)n. At the same time, V1 computes EG(X, K) and stores it
on its output tape. Let T be the time at which X reaches P . Verifier V2 sends
the key K out at a time such that it meets X at time T at the position P .
More precisely, X and K are sent at times (T − t) and (T − t′) by V1 and V2

respectively.
At time T , the prover claiming to be at position P evaluates y = EG(X, K)

and sends it back to the verifier V1. Verifier V1 verifies that the string y is received
at time (T + t) and that it equals EG(X, K). If these verifications succeed, the
position claim of the prover is accepted and it is assumed to be indeed at position
P . Otherwise, the position claim is rejected.

The protocol clearly satisfies the completeness property since an honest
prover at position P will have both X and K available at time T and hence
it can compute y (by asking the hypothetical ITM Penv to compute the function
EG(., K).) and report it back to V1 by time (T + t). We discuss the security
below:



Theorem 2 The 1-dimension secure positioning protocol is secure against an
arbitrary number of adversaries colluding together, with the total adversary in-
formation storage bounded by βn.

Proof. Suppose there exists an adversarial strategy with which a set of adver-
saries, none of which is at position P , are able to report back the correct y to
the verifier V1 at time (T + t) with a non-negligible probability in the security
parameter. We show that the above contradicts the properties of the EG.

We consider the state of the system at time T . X and K are at position P . Let
there be g adversaries between V1 and P and the information they have retrieved
about X be S1, S2, ..., Sg respectively. Let S denote the combined information
S1∪S2∪...∪Sg. Clearly since K has not yet crossed P , S is an arbitrary function
of X alone. Further, |S| ≤ βn since βn is the total storage bound. Now we have
the following:

Lemma 1. The string y to be sent to the verifier Vi at time (t + T ), can be
an arbitrary function of S and K alone. More formally, given an adversarial
strategy to compute y in our setting, there exists a simulator that outputs y only
given S and K (and not the stream X).

The above lemma holds because (a) S is the only information stored by the
adversaries between V1 and P , (b) there is no adversary at P , and, (c) any
information about X between P and V2 at time T cannot reach V1 by time
(t + T ).

Hence we have y = A(S,K), where A(., .) is any arbitrary adversarial algo-
rithm. However, given S and K, using properties of the BSM EG, the probability
of an adversary correctly guessing y is upper bounded by ε + 2−ψ. But ε + 2−ψ

is negligible in the security parameter by our choice of `. Thus we have reached
a contradiction. ¤

5.2 Secure Positioning in 3-dimensions

We generalize the above protocol to obtain a protocol for secure positioning in 3-
dimensional space. βn is the total adversary information storage bound. We use
4 verifiers denoted by V1, · · · , V4 possessing reverse block sources of minimum
entropy (δ +β)n that output strings Xi. Position P being claimed by the prover
is enclosed in the tetrahedron defined by these 4 verifiers. ti is the time taken
for radio waves to reach the point P from verifier Vi. PRG:{0, 1}n×{0, 1}m →
{0, 1}m is an ε-secure BSM pseudorandom generator. We choose the parameters
such that ε+2−m is negligible in the security parameter. In order for the verifiers
to themselves compute the response expected from the prover, we first assume
that verifiers can store the Xi values. We later show how this assumption can
be removed. The protocol is illustrated in Figure 1. For more details, refer the
full version.

The completeness follows from the fact that verifiers can compute K4 from
the stored Xi values and the prover can also compute K4 since all the information
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Fig. 1. Secure positioning protocol in 3-Dimensions

required is present jointly at P at time T . The security of this protocol is proven
using techniques from the proof of security of the protocol for 3-dimensional
position based key exchange that is discussed in Section 7 (note that position
based key exchange implies a protocol for secure positioning).

We now describe, how to remove the assumption that verifiers can store
strings drawn from their respective reverse block entropy sources. Note that the
problem we face when verifiers cannot store the large strings is that verifiers have
no way of verifying the response of the prover. This is because, when for example,
V3 broadcasts string X2, it does not know the key K2 used to compute K3 from
X2. We get around this problem as follows. The verifiers pre-determine the keys
K1, K2,K3,K4 that are to be used at every iteration of the application of the
PRG. Now, the expected response of the prover, K4 is known before protocol
execution to all verifiers. The protocol is as follows:

1. V1, V2, V3 and V4 pick keys K1,K2,K3,K4
R← {0, 1}m and broadcast them

over their private channel.
2. V1 broadcasts key K1 at time T − t1. V2 broadcasts X1 at time T − t2

and simultaneously also broadcasts K ′
2 = PRG(X1,K1)⊕K2. Similarly, V3

broadcasts (X2, K
′
3 = PRG(X2,K2)⊕K3) at time T − t3 and V4 broadcasts

(X3,K
′
4 = PRG(X3,K3)⊕K4) at time T − t4.

3. At time T , the prover at position P computes messages Ki+1 =
PRG(Xi,Ki)⊕K ′

i+1 for 1 ≤ i ≤ 3. The prover returns K4 to all verifiers.
4. All verifiers check that the string K4 is received at time (T + ti) and that it

equals the K4 that they pre-picked. If these verifications succeed, the position
claim of the prover is accepted and it is assumed to be indeed at position P .
Otherwise, the position claim is rejected.



The completeness of this protocol is as follows. Note that since the verifiers
picked K4 before the execution of the protocol, they can verify the response of
a prover without storing any of the large random strings. To informally argue
security of the protocol, note that in this protocol, instead of using the output of
the PRG as an input key in the next round, one treats the output as one secret
share of the key to be used. The other share of this key is broadcast in the clear.
Now, if one of the shares of an additive secret sharing scheme is random, then
the secret is hidden. Hence, by the security of the protocol in which verifiers
could store the large random strings, it follows that this protocol is also secure.

6 Computational Position based Key Exchange

Informally, position based key exchange should have the property that if there is
a prover at the claimed position P , then at the end of the protocol, the verifiers
should share a uniform key K with it while for a group of colluding adversaries
(none of whom is at P ) K should look indistinguishable from a key drawn uni-
formly at random. This also implies that in the absence of a prover at position P ,
such a group of adversaries should be unable to execute the key exchange proto-
col on their own to obtain a shared key with the verifiers. In the full version [7],
we show how to compile any 1-round information theoretically secure positioning
protocol SP in our bounded storage model along with any unauthenticated key-
exchange protocol KE to obtain an authenticated computational position based
key exchange protocol CKE in the BSM.

7 Information theoretic Position based Key-Exchange

In this section, we present an information theoretic protocol to achieve position
based key exchange. The overview of our protocol can be found in Figure 2. We
start with some intuition behind our protocol and the techniques required to
prove its security. Let us first consider the case of one dimension. We extend
the protocol for secure positioning in one dimension presented earlier for the
case of key exchange as follows. Instead of only one verifier V2 sending a “large”
string (drawn from a reverse block entropy source), both the verifiers send one
large string each. More precisely, the verifier V1 sends a key K1 and a large
string X2 while the verifier V2 sends a large string X1 such that all of them meet
at the claimed position P at the same instance of time T . The computation
of the final key K3 is done by the prover as follows: set K2 = PRG(X1, K1),
K3 = PRG(X2,K2).

To see the intuition behind why this protocol is a secure one dimensional
information theoretic position based key exchange, let us consider the state of the
system at time T . Adversaries between V1 and P (say, adversaries of type I) have
stored (K1, A(X2, K1)) while adversaries between P and V2 (say, adversaries of
type II) have stored A(X1). After time T , the adversaries of type I can compute
K2 thus transitioning their state to (K2, A(X2,K1)) while adversaries of type
II can only transition their state to A(X1),K1, A(X2,K1). Thus it seems that
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Fig. 2. Position based key exchange in 3-Dimensions

to both these types of adversaries together, the final key K3 remains uniform.
Indeed it turns out that this intuition is sound and the above is a secure one
dimensional information theoretic position based key exchange protocol.

For three dimensions, we have the prover to be inside the tetrahedron defined
by the four verifiers. Now, one can similarly try to extend the three-dimensional
information theoretic secure positioning protocol presented earlier to achieve
three-dimensional information theoretic position based key exchange. Simply
add a fourth long string X4 to be sent by V1 in the natural way. However, it turns
out that the above idea is not sufficient because of the fact that there might be
adversaries (far) outside this tetrahedron trying to compute the key exchanged
between the verifiers and an honest prover. In the case of secure positioning, such
adversaries would be too late in sending their response to the verifiers (there is
no honest prover to aid these adversaries). However, the key exchange scenario
requires that once the verifiers and the honest prover get a shared key after
running the protocol, this key should be uniform to the adversaries even at a
much later point in time.

In contrast to what the intuition might suggest, the first problem we face
is that there are certain regions in the tetrahedron defined by the verifiers such
that if the claimed position P lies within one of these regions, there exists points,
other than the point P , in the three dimensional space (but outside the tetrahe-
dron) where the messages broadcast by the four verifiers all meet simultaneously.
Thus, if there is an adversary located at such a point, it can compute the final
key shared between the verifiers and the honest prover simply by following the
algorithm of the honest prover. To overcome this problem, we characterize such
regions of the tetrahedron (we further show that the remaining region is a still
a large fraction of the tetrahedron) and exclude them from the area from which
position claims are accepted (refer the full version for the Lemma characterizing



such regions and for further details). That is, given an area from which position
claims need to be accepted, our lemma depicts the acceptable positioning of the
verifiers so that they can verify the position claims from that area.

The second main problem that arises is that even if the messages broadcast
by the verifiers do not all meet at a single point (other than P ), there of course
could be multiple colluding adversaries which utilize different information avail-
able at multiple different points at different time instances to try to compute the
final key. Indeed, it can be shown that there is in fact an explicit attack on the
protocol discussed earlier (that is, the protocol resulting from a natural extension
of our three-dimensional secure positioning protocol where the verifiers broad-
cast four long strings) which allows multiple colluding adversaries to completely
recover the key exchanged between the verifiers and an honest prover. To solve
the above problem, we introduce a fifth long string in a similar way as before.
Introducing this fifth long string allows us to construct a geometric argument,
along with a reduction argument relying on techniques from [14], that multiple
colluding adversaries do not have sufficient information, and our security proofs
go through. Our final protocol is given in Figure 2. Our security proofs are a
careful combination of the following two components:

– A geometric argument which rules out a “nice” way for adversaries to recover
the final key exchanged. In other words, very roughly, there does not exist a
strategy for multiple colluding adversaries to perform the operation Ki+1 =
PRGi(Xi, Ki) in sequence for each i ∈ [5] to recover the final key K6.

– A reduction argument relying on the techniques from [14] to prove the final
security of our protocol. In more detail, given the above geometric argument,
if there exists an adversarial strategy that can distinguish the final key K6

from uniform in our protocol, then we can construct an adversarial strategy
to contradict the security guarantees of an intrusion resilient secret sharing
scheme (as defined and constructed in [14]).

All details of our protocol and the security proofs are given in the full
version [7] of this paper. The completeness of the above protocol described relies
on the assumption that the verifiers can store the long strings they generated
to be able to compute the final key K6 themselves. In the full version, we show
that, as with the case of secure positioning, this assumption can be relaxed by
using the same secret sharing technique introduced in Section 5.
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