Functional Encryption for Regular Languages

Brent Waters! *

The University of Texas at Austin
bwaters@cs.utexas.edu

Abstract. We provide a functional encryption system that supports
functionality for regular languages. In our system a secret key is associ-
ated with a Deterministic Finite Automata (DFA) M. A ciphertext CT
encrypts a message m and is associated with an arbitrary length string
w. A user is able to decrypt the ciphertext CT if and only if the DFA M
associated with his private key accepts the string w.

Compared with other known functional encryption systems, this is the
first system where the functionality is capable of recognizing an un-
bounded language. For example, in (Key-Policy) Attribute-Based En-
cryption (ABE) a private key SK is associated with a single boolean
formula ¢ which operates over a fixred number of boolean variables from
the ciphertext. In contrast, in our system a DFA M will meaningfully
operate over an arbitrary length input w.

We propose a system that utilizes bilinear groups. Our solution is a
“public index” system, where the message m is hidden, but the string w
is not. We prove security in the selective model under a variant of the
decision ¢-Bilinear Diffie-Hellman Exponent (BDHE) assumption that
we call the decision ¢-Expanded BDHE problem.

1 Introduction

Functional encryption is an emerging new way of viewing encryption. Instead of
encrypting data to a particular user, an encryptor will encrypt data under the
public parameters of a system. Users in the system will obtain a secret key SK
(issued from some authority) that is associated with a value k . What a user
learns about the data depends on the systems functionality and their key value
k.

Perhaps the most well known and representative functional encryption sys-
tem is Attribute-Based Encryption (ABE) [25,18]. In a (Key-Policy) ABE sys-
tem, a key is associated with a single boolean formula ¢ and a ciphertext is
associated with a pair of a message m and variables . A user can decrypt and
learn m if and only if x satisfies the formula ¢. One salient feature of this sys-
tem is that the formula ¢ only operates over a fized number of variables (i.e.,
a bounded description from the ciphertext). However, there are many applica-
tions where we might want the functionality key to operate over arbitrary sized

* Supported by NSF CNS-0952692, the Alfred P. Sloan Fellowship, and Microsoft
Faculty Fellowship, and Packard Foundation Fellowship.

input data. For example, we could imagine a network logging application where
an encryption input represents an arbitrary number of events logged. Another
example is an encryption of a database of patient data that includes disease
history paired with gene sequences where the number of participants is not a
priori bounded or known. This restriction on fixed size inputs is not limited to
Attribute-Based Encryption; other functional encryption systems such as Spa-
tial Encryption [10, 19] or Inner Product Encryption [21, 23, 24] also operate over
fixed size inputs.!

Functional Encryption over Arbitrary Size Inputs We initiate the study of func-
tional encryption systems that operate over arbitrary size inputs. We begin with
systems that support a regular language functionality. Regular languages pro-
vide a natural starting point since they are well studied and are used in various
practical applications such as specifying rules in firewall systems.

A general class of applications is where there is a family of documents that has
a public (not hidden) template along with some secret data that fits within that
template. For instance, one can consider tax returns — which can be arbitrarily
long — where the template consists of the deductions claimed and the private
data is the amount of these deductions. An auditor might be authorized to read
the private data of a return if the deductions match a certain regular expression.
Another example is a virus scanner for webpages. Here we might wish the scanner
to be able to take a deeper look into pages that match a certain pattern, but
have some content remain hidden otherwise.

In general there are multiple sources of data such as video and databases
that can be of arbitrary length. While a long term goal is to realize functional
encryption for arbitrary programs, regular languages capture interesting prop-
erties. For instance, one can check for the presence of substrings or check the
parity of data.

Our Contribution We construct what we call a Deterministic Finite Automata
(DFA)-based Functional Encryption system. In our system the encryption algo-
rithm takes in a pair of a message m and an arbitrary length string w over a
finite alphabet Y. The key generation algorithm takes as input the description
of a DFA M = (Q, X, 0,qo, F) and outputs a secret key. Briefly, @ is a set of
states, X the alphabet, § : Q x X — @ a next state transition function, gy € Q
a unique start state and F' C Q a set of accept states.? A user with a secret key
for DFA M will be able to decrypt a ciphertext CT associated with w if and
only if M accepts the string w. Our system is of the “public index” type [11]
(like ABE) in that while the message m is hidden w can be determined from the
ciphertext (without a secret key).

Designing an encryption system to support a DFA-type functionality pro-
vides a new set of challenges. It is useful to compare them to those in building

! While a regular language can be recognized by a family of boolean formulas, a secret
key in an ABE system is associated with a single formula.
2 We give an overview of DFAs in Section 2.

a boolean formula (ABE) type system. In existing ABE systems a ciphertext
had to represent the variables in @. This generally consisted of either including
or excluding a particular ciphertext component depending on whether a corre-
sponding variable was true. In our DFA system we must meaningfully represent
an arbitrary length string w. Here representing the order of the symbols com-
prising w is paramount. In an ABE key generation phase a boolean formula can
be mapped closely with the linear secret sharing of the master secret key in the
exponent. Similarly, decryption maps closely with the linear reconstruction of
these exponents (post pairing with pieces of the ciphertext). Building a DFA
description M into a secret key and enforcing its execution during decryption is
a more complex task.

We now give a high level overview of some of the main ideas of our con-
struction. We defer several details to Section 3 where the reader will have the
benefit of our construction description. Our construction makes use of (prime
order) bilinear groups and is focused on three main mechanisms for decryption.
We call these the initiation, transition, and completion mechanisms. At a high
level the only useful actions a decryptor or attacker should be able to take are by
applying them. These mechanisms are realized by how we structure ciphertexts
and private keys.

When encrypting a ciphertext for string w of £ symbols, the encryptor chooses
£+ 1 random exponents s, s1,...,S¢ € Z, where p is the order of the group. A
private key machine M = (Q, X, J, qo, F') will have |@Q| random group elements
chosen Dy, ..., D|g|—1, where D, is associated with state q,.

Suppose a user is trying to decrypt a ciphertext associated with string w
with a secret key SK for machine M. Throughout the process of decryption we
would like to enforce that the user (or attacker) can only compute e(g, D)% if
the machine M lands on state g, after reading j symbols of w.

First, the initiation mechanism allows the decryptor to obtain the value
e(g,Do)*® € Gp. This initiation mechanism should only be good for comput-
ing this value and not useable for other D;, s;. Next, the decryptor can repeat-
edly apply the transition mechnamism. The transition mechanism is structured
such that one can compute (e(g, D)%)~ te(g, Dy)%+! if and only if the j+ 1-th
symbol of w is o and the transition §(x,o) = y. Multiplying this into the ac-
cumulated value will allow the decryption algorithm to change the accumulated
value e(g, Dg)% to e(g, Dy)%+*. Thus, mirroring the computation of the DFA
M on w. Finally, we will end up with some accumulated value e(g, D,)*%¢. If the
state ¢, is an accept state in F', then one can apply the completion mechanism
which computes e(g,)% (e(g, D;)*)~! and this can be multiplied in to simply
obtain e(g, g)**¢. This is the term used to blind the message.

We prove security in the selective model under a variant of the decision /-
Bilinear Diffie-Hellman Exponent (BDHE) assumption that we call the decision
{-Expanded BDHE assumption. The parameter ¢ of the assumption depends
upon the length of the string w* associated with the challenge ciphertext. Our
proof uses what has been called a partitioning strategy where a string w* is
embedded into the public parameters in such a way that a reduction algorithm

can create private keys for any DFA M that does not accept w*. Our proof
will also need to somehow reflect the computation of M on w* when creating
private keys for M. The main reason for applying a parameterized assumption
is that our reduction needs to embed an arbitrary size w* into fixed small sized
parameters.

Efficiency We give a brief overview of the computation and storage costs asso-
ciated with our system. The public parameters contain 5 + || group elements,
where | Y| is the size of the alphabet. A ciphertext consists of 5+ 2|w| group ele-
ments and an encryption costs 5 4+ 3|w| exponentiations, where |w] is the string
associated with the ciphertext. A private key consists of 44 3|7 | group elements,
where |7 is the number of transitions in the DFA M associated with the key.
Finally, a successful decryption requires 4 + 3|w| pairing operations.

Backtracking, NFAs and Future Challenges One additional complexity to the
prior discussion of mechanisms is that the transition function can be applied in
reverse to “backtrack” through the computation. At first this does not seem to
be any issue at all since (using our above example) it seems an attacker will
only be able to go back from a value e(g, D,)%*!, representing that he was at
state ¢, after j + 1 symbols, to a prior value e(g, D)% which represents that
earlier the machine was at state ¢, after j symbols. However, a twist occurs if
there exists another state 2’ and the transition function é(2’, o) = y, where the
j + 1-th symbol of w is o.

In this case the attacker can actually backtrack along the “wrong” transition
and compute e(g, D,)%; falsely representing that after evaluating the first j
symbols of w M was in state g,-! It turns out that in the case of our DFA
system — reflected in our proof— this is not a problem as an attacker can only
go backwards so far. When it goes forward again the determinism of M means
that we will eventually return to the same state g, after j 4 1 symbols.

While this backtracking attack primarily complicates the proof of our DFA-
based system, it is indicative that realizing efficient constructions of Nondeter-
ministic Finite Automata (NFA) Functional Encryption systems will likely be
difficult. In particular, the most natural extension of our construction to NFAs
falls victim to a backtracking attack where an attacker used the inverse transi-
tions and followed by a different forward transitions (as could be allowed by the
nondeterminism). Creating efficient NFA constructions is an interesting problem
since the best generic way of representing an NFA (or regular expressions) in
terms of a DFA requires an exponential blowup in the number of states. How-
ever, we suspect that achieving this will be difficult and perhaps related to the
difficulty of building efficient ABE systems for circuits.

We also comment that our current proof techniques use both the selective
model and a parameterized assumption. An interesting question is if either or
both of these properties can be improved using Dual System Encryption [29]
proof techniques. While Dual System Encryption was used to prove ABE systems
fully secure under static assumptions [22], the core technique encumbered a
“one-use” restriction on attributes in formulas which had to be overcome using a

certain encoding technique. The encoding bounded at setup the number of times
an attribute could be used in a formula. The natural analog of this encoding and
its resulting setup bound would negate the motivation of having arbitrary string
sizes as the ciphertext input.

A final open challenge is to design a functional encryption system where the
DFA M associated with a key is applied directly on encrypted data. That is the
string w itself would be hidden and a user would only learn whether M did or
did not accept w. Creating such a cryptosystem and moving beyond the public
index model in this setting appears challenging.

1.1 Other Related Work

Identity-Based Encryption (IBE), which is one of the most basic forms of func-
tional encryption, was introduced by Shamir [26] in 1984. It wasn’t until much
later that Boneh and Franklin [9] and Cocks [14] independently proposed IBE
systems. There have been multiple IBE constructions using bilinear maps [5, 28,
15] and more recently lattice-based constructions [16, 13,2, 3].

The beginning of functional encryption can be traced back to early Attribute-
Based Encryption systems [25, 18]. There exists a complimentary form of ABE
known as Ciphertext-Policy ABE [4,17,30] where the secret key is associated
with a set of variables and the ciphertext with a boolean formula ¢. A natural
analog in our DFA-based encryption is to associate a DFA M with the ciphertext
and a string with a private key.

In the terminology of [11] our scheme works in the public index model
since the string w is not hidden. Starting with Anonymous IBE systems [8, 1]
systems there have been multiple systems that attempt to hide this information.
Some examples include Hidden Vector Encryption [12,20] and Inner Product
functionalities [21, 23, 24] among others.

2 Functional Encryption for DFAs: Definitions and
Assumption

We now give a formal definition of our DFA-Based Functional Encryption scheme.
In the terminology of Boneh, Sahai, and Waters [11] we give a functional en-
cryption scheme for functionality F'(k,z = (w,m)) where k is the description
of a deterministic finite automata M and x is the the pair of a string w and a
message m. The functionality F' outputs the encrypted message m if the machine
M accepts w and otherwise outputs L. The functional encryption scheme is of
the “public index” type in that the string w is not hidden.

While our system fits within the framework of functional encryption [11]
(as sketched above), we choose to present a direct definition for DFA-based
functional encryption. We begin by giving a brief overview of DFAs. Then we
present our algorithms and game-based security definitions. Finally, we give our
bilinear group assumption used to prove security.

2.1 Overview of Deterministic Finite Automata

We give a brief overview of Deterministic Finite Automata (DFA) using termi-
nology and definitions from Sipser [27] and refer the reader to Sipser [27] for
further details. A Deterministic Finite Automata M is a 5-tuple (Q, X, §, qo, F')
in which:

1. @ is a set of states

2. X is a finite set of symbols called the alphabet

3. 0:0Q x X — (@ is a function known as a transition function
4. qo € Q is called the start state

5. F C @ is a set of accept states.

For convenience when describing our encryption systems we add the notation
of 7 as being the set of transitions associated with the function d, where t =
(x,y,0) € T iff 6(x,0) = y.

Suppose that M = (Q, X, 4, qo, F). We say that M accepts a string w =

wy,Ws, ..., wp € X* if there exists a sequence of states rg,71,...,7, € (Q where:
1. To = qo
2. For i =0 to n — 1 we have §(r;, wi+1) = rit1
3. r, € F.

We will use the notation ACCEPT(M,w) to denote that the machine M
accepts w and REJECT(M, w) to denote that M does not accept w. A DFA M
recognizes a language L if M accepts all w € L and rejects all w ¢ L; such a
language is called regular.

2.2 DFA-Based Functional Encryption

We now give our definition of a DFA-based Functional Encryption system. A
(Key-Policy) DFA-based encryption scheme consists of four algorithms: Setup,
Encrypt, KeyGen, and Decrypt. In addition to the security parameter, the setup
algorithm will take as input the description of an alphabet Y. This alphabet will
be used for all strings and machine descriptions in the system.? The algorithm
descriptions follow:

Setup (1™, X') The setup algorithm takes as input the security parameter and the
description of a finite alphabet Y. The alphabet used is shared across the entire
system. It outputs the public parameters PP and a master key MSK.

Encrypt(PP,w, m) The encryption algorithm takes as input the public param-
eters PP, an arbitrary length string w € X*, and a message m. It outputs a
ciphertext CT.

3 To fit our system properly in the framework of [11] we would need to have a sepa-
rate functionality for every alphabet Y. Then we would have a family of functional
encryption systems; one for each alphabet. Here we choose to let X' be a parameter
to the setup algorithm.

Key GenerationMSK, M = (Q,7,qo, F)) The key generation algorithm takes
as input the master key MSK and a DFA description M.The description passed
does not include the alphabet X since it is already determined by the setup
algorithm. In addition, we encode the transitions as a set 7 of three tuples as
described above. The algorithm outputs a private key SK.

Decrypt(SK, CT). The decryption algorithm takes as input a secret key SK and
ciphertext CT. The algorithm attempts to decrypt and outputs a message m if
successful; otherwise, it outputs a special symbol L.

Correctness Consider all messages m, strings w, and DFA M such that Ac-
CEPT(M,w). If Encrypt(PP,w,m) — CT and KeyGen(MSK, M) — SK where
PP, MSK were generated from a call to the setup algorithm, then Decrypt(SK, CT)
=m.

Security Model for DFA-Based Functional Encryption We now describe a game-
based security definition for DFA-Based Functional Encryption. As in other
functional encryption systems (e.g. [9,25]), an attacker will be able to query
for multiple keys, but not ones that can trivially be used to decrypt a cipher-
text. In this case the attacker can repeatedly ask for private keys corresponding
any DFA M of his choice, but must encrypt to some string w* such that every
machine M for which a private key was requested for rejects w*. The security
game follows.

Setup. The challenger first runs the setup algorithm and gives the public pa-
rameters, PP to the adversary and keeps MSK to itself.

Phase 1. The adversary makes any polynomial number of private keys queries
for machine descriptions M of its choice. The challenger returns KeyGen(MSK,
M).

Chal)lenge. The adversary submits two equal length messages mg and m;.
In addition, the adversary gives a challenge string w* such that for all M
requested in Phase 1, REJECT(M,w*). Then the challenger flips a random
coin b € {0,1}, and computes Encrypt(PP,w,mp) — CT*. The challenge
ciphertext CT* is given to the adversary.

Phase 2. Phase 1 is repeated with the restriction that for all M requested
REJECT(M, w*).

Guess. The adversary outputs a guess b’ of b.

The advantage of an adversary A in this game is defined as Pr[/ = b] — %

We note that the definition can easily be extended to handle chosen-ciphertext
attacks by allowing for decryption queries in Phase 1 and Phase 2.

Definition 1 A DFA-based Functional Encryption system is secure if all poly-
nomial time adversaries have at most a negligible advantage in the above game.

We say that a system is selectively secure if we add an Init stage before setup
where the adversary commits to the challenge string w* and alphabet X.

2.3 Expanded ¢-BDHE Assumption

We define the decision ¢-Expanded Bilinear Diffie-Hellman Exponent problem
as follows. Choose a group G of prime order p > 2™ for security parameter n.
Next choose random a, b, co, ..., ciy1,d € Z," and a random g € G. Suppose an
adversary is given X=

9,9% g%, g%, g*/4

a's a'bs/c;

Vielo,204+1],i0+1,5€0,6+1] 9° "5 g

/ci ci a'd abe; /d be;/d
) b

Viep.r 977, g%, g% % g g

a'bd/c;
Viclo,20+1],5€0,6+1] 9 /es

Vi, 5€]0,641],i5 gabeilei,
Then it must remain hard to distinguish e(g, g)aulbs € Gp from a random
element in Gy.
An algorithm B that outputs z € {0, 1} has advantage € in solving decision
{-FExpanded BDHE in G if

’ Pr [B(X,T = e(g,9)" ") = 0| = Pr[B(X,T = R) = 0] | > ¢

Definition 1. We say that the decision ¢-Ezxzpanded BDHE assumption holds
if no polytime algorithm has a mon-negligible advantage in solving the decision
{-Expanded BDHE problem.

We give a proof that the assumption holds in the generic group model in the
full version of our paper.

3 Construction

We now present our construction of a DFA-based Function Encryption system.
We first describe our construction and then provide some additional intuitive
discussion. Our formal proof appears in the next section.

3.1 Algorithms

Setup(1™, X)) The setup algorithm takes as input a security parameter n and an
alphabet X. It first chooses a prime p > 2™ and creates a bilinear group G of
prime order p. The algorithm then chooses random group elements g, 2, Astart, Rend
€ G. In addition, for all o € X it chooses random h, € G. Finally, an exponent
o € Zy, is randomly chosen. The master secret key MSK includes g~ along with

the public parameters. The public parameters are the description of the group
G and the alphabet X along with:

e(ga g)av g, %, hstart; hcnda Voez’ ha-

Encrypt(PP,w = (wy,...,w), m) The encryption algorithm takes in the public
parameters, an arbitrary length string w of symbols, and a message m € Gr.
Let w; denote the i-th symbol of w and ¢ denote the length of w. The encryption
algorithm chooses random sy, ..., s; € Z, and creates the ciphertext as follows.

First, it sets
Cmo =m-e(g,9)"° and

Cstart1 = CO,l = 9%, Cstarts = (hstart)so
Then, for i = 1 to £ it sets:
Ci1=9%, Cia=(hy)% 2% .
Finally, it sets
Cenda1 = Ce1 = g%, Cenda = (hena)™
The output ciphertext is

CT = (U}, Cm7 Cstartla Cstarth (Cl,la C‘1,2); sy (Cf,la CZ,Z); Cendla Cend2)

KeyGenMSK, M = (Q,7,qo, F)) The key generation algorithm takes as input
the master secret key and the description of a deterministic finite state machine
M. The description of M includes a set @ of states qq,...qg|—1 and a set of
transitions 7 where each transition ¢ € 7 is a 3-tuple (z,y,0) € Q@ x Q x X. In
addition, qg is designated as a unique start state and F' C @ is the set of accept
states. (Recall, X is given in the parameters.)

The algorithm begins by choosing |@Q| random group elements Dy, D1, ...,
D\g|-1 € G, where we associate D; with state ¢;. Next, for each t € 7 it chooses
random r; € Z,; it also chooses random 7.t € Z, and Vg, € F' it chooses
random 7endy, € Zyp -

It begins creating the key with

Ktartr = Do(hstart)rsmrta Ktartz = grsmrt
For each t = (z,y,0) € T the algorithm creates the key components
Ktvl = Dz_lzrtv Kt,2 = grtv Kt,3 = Dy(ha')”.

Finally, for each ¢, € F' it computes

Kendx,l = gia : Dx(hend)rendma Kendx,Q = grendz

SK = (M7 Kstarth KstartZu vVt € T (Kt,h Kt,2v Kt,3)7 qu erF (Kendz,lu Kendac,Z))

Decrypt(SK, CT) Suppose we are given a ciphetext CT associated with a string
w = wy,...,we and a secret key SK associated with a DFA M = (Q, 7T, qo, F)
where ACCEPT(M,w). Then there exist a sequence of £+ 1 states ug, u1, ..., us
and £ transitions t1,...,t; where ug = qo and uy € F and for i = 1,...,¢ we
have t; = (u;—1,u;,w;) € T.

The algorithm begins by computing:
By = G(Cstartla Kstartl) : e(cstart27Kstart2)71 = 6(97D0)50~

Then for ¢ = 1 to ¢ it iteratively computes:
B; = Bi_1 - e(Cli—1),1, Kt.1)e(Ci2, K¢, 2) ' e(Cin, Ky, 3) = e(g, Dy,)*

Since the machine accepts we have that u;, = ¢, for some ¢, € F and B, =

e(g, D).
It finally computes

Bcnd = BZ . e(Ccndx,laKcndz,l)il : e(ccndm,Zv Kendz,Q) = e(g,g)asg'

This value can then be divided from C,, to recover the message m.

3.2 Further Discussion

As discussed in the introduction, our construction contains three primary mech-
anisms used for decryption. The first step of the decryption process gives what
in the introduction we called the initiation mechanism, which starts by comput-
ing e(g, Dg)*®°. This used the “start” values from the keys and ciphertexts. We
observe that this mechanism has structural similarities to the Boneh-Boyen [5]
Identity-Based Encryption system.

The next several steps of decryption provide the transition mechanism. The
evaluation of 6(0(1‘71),1,Kt,-,1)€(ci,2,Kti,z)_le(ci,thi,:g) results in the term
(e(g, Dy)*=*)"te(g, D)%, which updates the accumulated value to e(g, Dy)%.
Representing that the machine M is in state y after processing i symbols of w.
A paramount feature is that the C; o components of the ciphertext “chain” adja-
cent symbols together. This along with the structure of the private key enforces
that (e(g, D;)%-*)"'e(g, D,)* can only be computed if the i-th symbol is o and
the transition from state x to y on symbol ¢ is in the DFA for some o.

Finally, the completion mechanism allows for the computation of e(g, g)**¢ if
the accumulated value reaches e(g, D,)*®¢ for ¢, € F. The completion mechanism
is very close in design to the initiation mechanism, but has the master key g—¢
multiplied into its key component.

As described in the introduction, an attacker can backtrack to get some
accumulated value that may not represent the actual computation of M on w.
However, the attacker intuitively will only be able to backtrack so far and since
M is deterministic must eventually go forward again to the same spot if he is to
decrypt. This intuition is captured rigorously in the security proof in the next
section.

3.3 Rerandomization of Ciphertexts and Secret Keys

We give two algorithms for the rerandomization of ciphertexts and private keys.
Our ciphertext rerandomization algorithm takes in any well formed ciphertext
for string w and produces a new ciphertext for the string w which encrypts the
same message as the original. Moreover, the output ciphertext has the same
distribution as one created fresh from the encryption algorithm. Similarly, the
key rerandomization algorithm takes any valid secret key SK for DFA M and
outputs a new secret key for DFA M that where the distribution is the same as
the KeyGen algorithm.

These algorithms will be used for proving security of our system in the next
section. Our main reduction techniques will produce valid challenge ciphertexts
and private keys; however, these might not be well distributed. The random-
ization algorithms can then be applied to get the properly distribution on ci-
phertexts and keys. We segregate rerandomization as a separate step to help
simplify the presentation of our proofs.* Our algorithms do simple additive (in
the exponent) rerandomization. The presentation of these algorithms is in the
full version of our paper.

4 Security Proof

We now prove security of our construction in the selective mode. We assume a
successful attacker A against our system. Our reduction algorithm 5 will run A
and use it to break the decision £*-Expanded BDHE assumption, where £* is the
length of the string w* used in creating the challenge ciphertext. Our reduction
describes how B simulates the Setup, Key Generation, and Challenge Ciphertext
generation phases of the security game.

We prove the following theorem.

Theorem 1. Suppose the decision £*-FExpanded BDHE assumption holds. Then
no poly-time adversary can selectively break our DFA-based encryption system
where the challenge string w* encrypted is of length £*.

Suppose we have an adversary A with non-negligible advantage € = Adv 4
in the selective security game against our construction for alphabet Y. More-
over, suppose it chooses a challenge string w* of length ¢*. Then B runs A and
simulates the security game as follows.

Init B takes a decision £*-Expanded BDHE challenge X ,T. The attacker, A,
declares a challenge string w* of length £*. We let w*; denote the j-th symbol
of w*. In addition, we define w*y-11 = w*y = L for a special symbol L ¢ X.

4 Most prior reductions of a similar nature (e.g. [5,6,28]) build the rerandomization
directly in the main reduction.

Setup The reduction algorithm first chooses random exponents® v, Ustart, Vend €
Z, and Yo € X v,. The parameter values are chosen as follows:
e(g,9)* = e(g”,9"), 9 =g,2 = "= g/

This implicitly sets a = ab. Next it sets:

star —a’b/c; _ n —aib/e;
hs‘cart:gvt t H g “ /C]7 hend—gﬂed H g ¢ /CJ'

Jel,ex] JE[2,6%+1]
Finally,
_ g 1) .)
Voes hy = g'7g7"/¢ - I s blece v1-g),
JE0,0%41] s.t.
w* jF#o

The reduction algorithm embeds its knowledge of w* into the the public
parameters. The parameter h, will have a term g_al*ﬂﬂ'b/%*ﬂﬂ' if and only
if the j-th symbol of w* is not o. As we will see this embedding will be crucial
to simulating a challenge ciphertext, while maintaining the ability to generate
keys. The terms are well distributed since a is chosen randomly in the assumption
and due to the ‘v’ exponents, which randomize the other parameters. We also
observe that this equation is well defined since we defined w*p«11 = w*y = L.
Since L ¢ X we have that for all o the parameter h, always contains the terms

—ba* +1)/C(€*+1) and g—bao/col

Challenge We describe how B creates a challenge ciphertext. The reduction will
intuitively set s; = sa’ € Z,. B first chooses a coin 8 and begins to create a
ciphertext CT. It first sets w = w* (from Init) and sets C,, = mg - T. Next, it
sets)
Cstartl = gs’ Cstart2 = (hstart)s = (gs)vsmrt H g_ajbs/cj
JE[1,e7]

Then, for ¢ =1 to £*:

i i i—1 _gtT -ty)

__,a’'s _ a"S\Vy* . [Q s\v a s/c;

Ciir=g""% Cia=1(9"")""i(g)’ Il A /e,
JE[0,£*+1]

s.t. wrjFEw;

We make two observations. First, the algorithm B does not receive from the
assumption the term g_az*ﬂbs/ ¢ for any j. Thus, it is important that such a
term not be included in C; 5. We see that such a term can only appear in the
product above when ¢ = j, however, this cannot be the case since if ¢ = j then

w*; = w*;, which is explicitly excluded from the product.

5 These values will be used to sure that are public parameters are distributed as in the
real system. While this is of course necessary, they are not central to the core ideas
of the reduction. As a simplification, a reader might choose to ignore these (imagine
they are all 0) to help understand the main ideas.

Second, we remark that z%-* produces a term g% /¢ which B does not have.
However, (hy~,)% produces a term which is the inverse of this and these cancel
each other out in the computation of C; 3 = 2%~ (hy~,)% . The remaining terms
shown above are produceable from the assumption.

These two observations reflect important points in the proof. The first shows
how the embedding of the challenge string w* in the h, values allows us the cre-
ation of the challenge ciphertext. The second cancellation reflects the “linking”
of adjacent symbols of w* that is at the core of the security of the ciphertext
construction.

Finally, it creates

o e I g
a a® s a Ven —a bs/c;
C'endl =4 év C'endQ = (hend) = (g é) end H g s/ei
JE[2,0*+1]

To finish, the B must run the ciphertext rerandomization algorithm (specified
in the full version) on CT to get a well distributed challenge ciphertext CT*. Tt

then returns CT* to A. If T = gaé*ﬂbs — is a valid Expanded BDHE tuple —
then (the rerandomized) CT* is an encryption of mg. Otherwise the ciphertext
will reveal no information about J3.

Key Generation The key generation phases (1 and 2) are the most complex part
of this reduction. We describe how B can respond to a private key request for
DFA M = (Q, T, qo, F).

Before showing how B creates the actual key components we start by doing
some prep work to show how the D, values will implicitly be assigned. B will
not actually be able to directly create these. We will describe the terms which
comprise each D, value and will create the keys to be consistent with these.
Intuitively, the assignments should in some way match the execution of machine
M on w*.

We begin by introducing some notation. First we let w*® denote the last
1 symbols of w*. It follows that w @) = w* and w*® is the empty string. In
addition, we for k € [0,|Q| — 1] we let My = (Q,7T,qx, F). That is M}, is the
same DFA as M except the start state is changed to ¢i. (Note that My = M.)

Now for each ¢ € @ we create a set Si of indices between 0 and ¢*. For
i=0,1,...,0* we put i € Sy if and only if ACCEPT(Mj, w*(i)). Then we assign

| P

1€SE

This assignment of Dy, values is meant to “mark” the computation of M on
the challenge string w*. The term g“mb will appear in Dy, if it is possible to
reach an accepting final state using the last ¢ symbols of w* starting at state g.
We make two important observations for creating private keys. First, the term
gae*ﬂb does not appear in Dg. This follows from the fact that any valid request
of a DFA M must reject w* and is crucial to creating Kgtartq. Next for all x € F,
we have that the term g“lb does appear in D,. This occurs since M, will accept

the empty string if it starts at an accepting state and is a critical fact needed
for creating Kendg,1-

The values embedded in Dy, reflect more than just the computation of M on
w*. It embeds the execution of all My, (M with all possible starting states) from
all positions of the string w*. This is done to reflect the possible backtracking
attacks described in the last section. We emphasize that B cannot actually pro-
duce these Dy, values using the terms given from the assumption. Instead it will
construct the key components to be consistent with these values. Uncomputable
terms will cancel when creating the components. B begins with creating the start
and end key terms.

B starts by implicitly setting rstare = Xies, Cit+1-

Kstartz = grsmrt = H gC’iJrl
€S0

Kstartl = l)O(h‘staurt)rstMt - (I(startQ)vstart . H g_ancH—l/Cj
JEl1,e%],ie Sy
jAi+1

Our assignments canceled out the terms of the form g“l“b from Dy and the
remaining terms that are given in K. are those that we are given from the
assumption. Notice that since the term g“l*“b was not in Dy it did not need to
be canceled; this is important since the setting of hgiart gave no way to do this.
(The term g“z*ﬂb/cewl is not in Aggars.)

Next, for all g, € F' it creates the key components. It first creates starts by
implicitly setting rend, = Zics, iz0 Cit1-

Ten — Ci
KendQ,ac =g i = H gt

i€Sy
i#0
—o Tend; v, —albe; cj
Kendl,z =9 D:v(hend> onde = (Kend2,g:) ond H g /e
JE[2,6*+1],i€ Sy
1#0,j7#1+1

Our assignment of Kcpnqs, canceled out the terms of the form g“”lb from D,
except for when i = 0. Here, D, has the term ¢® and this cancels with g~ =
g*ab. It is essential that D, contain the term g“b since hepq 1S structured such
there is no other way of canceling with g=%. (The term galb/cl is not in henq.)

We finally need to create the key components for each t = (x,y,0) € 7. We
organize this into a set of intermediate computations. For ¢ = 0 to £* + 1 we will
define (Kt,l,i;Kt,Q,i7Kt,3,i)- Then we will let Kt,l = Hie[O,é*-{-l] Kt,l,i, Kt,Q =
Hi6[0,£*+1] Kipi Kiz= Hie[o,l*+1] Ky

Intuitively, for each transition ¢ = (x,y,0) we step through each ¢ from 0
to ¢*. 6 For each i we describe how to set K 2 such that it will cancel g‘““b

5 We explicitly note that —1 and £* +1 ¢ Sy, for all k, which allows these cases to all
be well defined for the range of .

from D, if this term appears in D, and how to cancel g“ib from D, if this term
appears in D, in computing the Ky i, K;3 key components. We step through
four possible cases.

Case 1: i ¢ S, N(i—1) ¢ S,

Set K14, Kt 2,4, Kt ,3; =1 (the identity element). This is when there are not
term gawlb in either D, nor term g% in D, so nothing needs to be canceled.

Case 2: i€ S, AN(i—1) €S,

Set Kt’gyi = gald and Kt,l,i = (Kt’gvi)vz.

(£*+1—j41)
v, —a bd/cio* 11—
Kis;,=(Ki2:)" - || g /e +1-5)

JE[0,6% +1] s.t.
w* jF#o

This is when there are terms galﬂb in D, and ¢*? in D,. The setting of
K, allows them to both be canceled and the remaining terms above are
“collateral” which can be taken from the assumption. This action is inde-
pendent of the symbol w*; ;. We can think of the setting of K; »; as a “copy

action” in that a similar cancellation happens on both sides of the transition.
Case 3: i ¢ S; N(i—1) € SyANw*peq1_i # 0

Set Kt,277; = gci and Kt,l,i = (Kt,2,i)vzgabci/d_

Vo —be; /d 7a(1/‘*+1_-7‘)bci Clp¥41—7
Kisi=(Kyz.)" g /4. H g /e +1-9)

GE[0,£*+1] st
JELH1—i A w* jF#o

In this case there is not a term g“i“b in D., but there is a term g“ib in
D,. Therefore we cannot apply the above “copy” technique from Case 2.
Instead we use the fact that w*p«11_; # 0. (Note that w*p«y1_; is the first
symbol of the string w* @ — the string of the last ¢ symbols of w*.) We
set Ky 2 = g which cancels the only g“i term in D,. Since w*px41-; # 0
we have that h, contains the term g_“ib/ ¢ Raising this to ¢; provides the
desired cancellation. The remaining terms shown above are “collateral” that

can be taken from the assumption.
Case 4: i€ S, AN(i—1) ¢ SyANw'p=q1-s #0

First set, Kt2; = g% %g~ and K, = (Ky,)= g~ bei/d,
Then, K;3; = (K 2,:)" .gbci/d_

—a(z*+1*j+'i>bd/c(e*+1,j) a<2*+1*j)bc,;/C(z*+1,j)
))
J€0,e*+1] s.t. J€[0,£%+1] s.t.
w* jF#o JECH1—i N w*j#o

How we handle this case can best be understood as a+clombination of how
we handle Cases 2 and three. Here there is a term ¢* ? in D,, but there

is a not term g** in D,. We first put a term g% ¢ in K, ; to invoke the
“copy” mechanism from Case 2. This gives us the desired cancellation for
part of D, but also creates an undesirable term ¢ ® that cannot be cancelled
with D,. Therefore we also include a term of g~ in in Ko ; to invoke the
cancelation of the “undesirable term”. As in Case 3, we have that w*ys41_; #
o and h,, contains the term g~ /¢ Again, remaining terms shown above are
“collateral” which can be taken from the assumption. We observe that these
terms are basically just those generated from Case 2 and Case 8 combined.

These four cases cover all possibilities. By the definition of a DFA when
w*pr41—; = 0 we have that ¢ € S, if and only if i —1 € S. This is a consequence
of the fact that M is deterministic. (If M were instead a Nondeterministic Finite
Automata, the prior statement would not hold.)

This shows how B creates all the key components. 5 must run the key reran-
domization algorithm from the previous section on SK to get a well distributed
key SK for the machine M. Then it returns SK to 4.

Guess The adversary will eventually output a guess 5’ of 8. If 3 = ', then B
then outputs 0 to guess that T = e(g,g)“[s ; otherwise, it and outputs 1 to
indicate that it believes T' is a random group element in G.

When T is a tuple the simulator B gives a perfect simulation so we have that

Pr [B (y,T = e(g,g)ae*ﬂbs) = 0} = % + Adv 4.

When T is a random group element the message Mg is completely hidden from
the adversary and we have Pr[B(X,T = R) = 0] = 3. Therefore, B can play
the decision ¢*-Expanded BDHE game with non-negligible advantage.

5 Conclusions

We introduced a new type of functional encryption system that works over reg-
ular languages. Our system has secret keys that encode a Deterministic Finite
Automata M and ciphertexts that are associated with an arbitrary length string
w and an encrypted message m. A user with a secret key for DFA M can decrypt
a ciphertext associated with w if and only if M accepts w. Our construction
makes use of bilinear maps and constructs mechanisms that enforce the DFA
evaluation.

Interesting future challenges include developing a system that can be proved
adaptively secure and under a non-parameterized assumption. Looking farther
out, one would like to be able to extend the functionality further, eventually all
the way to support Turing Machines.

Acknowledgements

We thank Dan Boneh, Allison Lewko, and Amit Sahai for helpful comments and
feedback.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja
Lange, John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Search-
able encryption revisited: Consistency properties, relation to anonymous ibe, and
extensions. J. Cryptology, 21(3):350-391, 2008.

Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (h)ibe in the
standard model. In EUROCRYPT, pages 553-572, 2010.

Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed
dimension and shorter-ciphertext hierarchical ibe. In CRYPTO, pages 98-115,
2010.

John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-
based encryption. In IEEE Symposium on Security and Privacy, pages 321-334,
2007.

Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryp-
tion without random oracles. In FUROCRYPT, pages 223-238, 2004.

Dan Boneh and Xavier Boyen. Secure identity based encryption without random
oracles. In CRYPTO, pages 443-459, 2004.

Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption
with constant size ciphertext. In EUROCRYPT, pages 440-456, 2005.

. Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano.

Public key encryption with keyword search. In FUROCRYPT, pages 506-522,
2004.

Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil
pairing. SIAM J. Comput., 32(3):586-615, 2003. extended abstract in Crypto
2001.

Dan Boneh and Mike Hamburg. Generalized identity-based and broadcast encryp-
tion schemes. In Proc. of Asiacrypt, pages 455-470, 2008.

Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions
and challenges. In TCC, pages 253273, 2011.

Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In T'CC, pages 535-554, 2007.

David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how
to delegate a lattice basis. In EUROCRYPT, pages 523-552, 2010.

Clifford Cocks. An identity based encryption scheme based on quadratic residues.
In IMA Int. Conf., pages 360-363, 2001.

Craig Gentry. Practical identity-based encryption without random oracles. In
EUROCRYPT, pages 445-464, 2006.

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lat-
tices and new cryptographic constructions. In STOC, pages 197-206, 2008.

Vipul Goyal, Abhishek Jain, Omkant Pandey, and Amit Sahai. Bounded ciphertext
policy attribute based encryption. In ICALP (2), pages 579-591, 2008.

Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In ACM Conference
on Computer and Communications Security, pages 89-98, 2006.

Mike Hamburg. Spatial encryption. TACR Cryptology ePrint Archive, 2011:389,
2011.

Vincenzo lovino and Giuseppe Persiano. Hidden-vector encryption with groups of
prime order. In Pairing, pages 75-88, 2008.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In EUROCRYPT, pages
146-162, 2008.

Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and
Brent Waters. Fully secure functional encryption: Attribute-based encryption and
(hierarchical) inner product encryption. In EUROCRYPT, pages 62-91, 2010.
Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryption
for inner-products. In ASTACRYPT, pages 214-231, 2009.

Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption
with general relations from the decisional linear assumption. In CRYPTO, pages
191-208, 2010.

Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
pages 457473, 2005.

Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO,
pages 47-53, 1984.

M. Sipser. Introduction to the theory of computation. Thomson Course Technology,
2006.

Brent Waters. Efficient identity-based encryption without random oracles. In
EUROCRYPT, pages 114-127, 2005.

Brent Waters. Dual system encryption: Realizing fully secure ibe and hibe under
simple assumptions. In CRYPTO, pages 619-636, 2009.

Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, effi-
cient, and provably secure realization. PKC, 2011.

