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Abstract. We introduce a new definition of privacy called crowd-blending
privacy that strictly relaxes the notion of differential privacy. Roughly
speaking, k-crowd blending private sanitization of a database requires
that each individual i in the database “blends” with k other individu-
als j in the database, in the sense that the output of the sanitizer is
“indistinguishable” if i’s data is replaced by j’s.
We demonstrate crowd-blending private mechanisms for histograms and
for releasing synthetic data points, achieving strictly better utility than
what is possible using differentially private mechanisms. Additionally,
we demonstrate that if a crowd-blending private mechanism is combined
with a “pre-sampling” step, where the individuals in the database are
randomly drawn from some underlying population (as is often the case
during data collection), then the combined mechanism satisfies not only
differential privacy, but also the stronger notion of zero-knowledge pri-
vacy. This holds even if the pre-sampling is slightly biased and an adver-
sary knows whether certain individuals were sampled or not. Taken to-
gether, our results yield a practical approach for collecting and privately
releasing data while ensuring higher utility than previous approaches.

1 Introduction

Data privacy is a fundamental problem in today’s information age. Large amounts
of data are collected from people by government agencies, hospitals, social net-
working systems, and other organizations, and are stored in databases. There
are huge social benefits in analyzing this data, and in many situations, these
organizations would like to release the data in some form for people to analyze.
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However, it is important to protect the privacy of the people that contributed
their data; organizations need to make sure that sensitive information about
individuals is not leaked to the people analyzing the data.

Many privacy definitions and schemes for releasing data have been proposed
in the past (see [1] and [2] for surveys). However, many of them have been shown
to be insufficient due to realistic attacks on such schemes (e.g., see [3]). The
notion of differential privacy [4, 5], however, has remained strong and resilient to
these attacks. Differential privacy requires that when one person’s data is added
or removed from the database, the output distribution of the database access
mechanism changes very little (by at most an ε amount, where a specific notion
of closeness of distributions is used). Differential privacy has quickly become
the standard definition of privacy, and mechanisms for releasing a variety of
functions (including histogram queries, principal component analysis, learning,
and many more; see [6, 7] for a survey) have been developed.

One way to interpret the notion of differential privacy is that an attacker
does not learn more about an individual i than what can be deduced from the
data of everyone else in the database (see the appendix of [4]). In the context of
e.g., social networks, where the data of an individual may be strongly correlated
with the data of his/her friends, such a notion may not always provide sufficient
privacy guarantees. To address this issue, an even stronger privacy definition,
zero-knowledge privacy, was introduced in [8]. Roughly speaking, zero-knowledge
privacy requires that whatever an adversary learns about an individual i can be
“simulated” given just some “aggregate” information about the remaining in-
dividuals in the database; for instance, this aggregate information could be k
random samples of the remaining individuals in the database. If the aggregate
information contains all individuals (excluding i), zero-knowledge privacy col-
lapses down to differential privacy, but for more restrictive classes of aggregate
information (such as k random samples, where k is smaller than the number of
individual in the database) zero-knowledge privacy is strictly stronger, and pro-
vides stronger privacy guarantees in contexts where there is correlation between
individuals.

Privacy from Random Sampling of Data Both differential privacy and zero-
knowledge privacy provide strong privacy guarantees. However, for certain tasks,
mechanisms satisfying these privacy definitions have to add a lot of “noise”, thus
lowering the utility of the released data. Also, many of these mechanisms run in
exponential time (e.g., [9, 10]), so efficiency is also an issue. This leaves open the
question of whether there exists a practical approach to sanitizing data, without
harming utility too much.

One approach for circumventing the above-mentioned issues is to rely on the
fact that in many cases of interest, the data to be sanitized has been collected
via random sampling from some underlying population. Intuitively, this initial
random sampling already provides some basic privacy guarantees, and may thus
help us in decreasing the amount of noise added during sanitization. Indeed,
there are several results in the literature indicating that random sampling helps
in providing privacy: In [11] the authors quantify the level of the privacy that
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may be obtained from just random sampling of data (without any further sani-
tization); in [12] the authors consider a certain type of “sample-and-aggregate”
mechanism for achieving differential privacy (but the sampling technique here
is more elaborate than just random sampling from a population); a result in
[13] shows that random pre-sampling can be used to amplify the privacy level
of a differentially private mechanism; finally, in a manuscript [14], the authors
demonstrate that a random pre-sampling step applied to a particular mechanism
leads to a differentially private mechanism.

In this paper, we continue the investigation of using random sampling as a
means to achieve privacy. In particular, our goal is to provide a general defini-
tion of privacy that allows us to achieve both differential and zero-knowledge
privacy in situations where the data is collected using random sampling from
some population. In order to be realistic, we allow the random sampling during
data collection to be biased, and an adversary may even know whether certain
individuals were sampled or not. (Although the mechanisms in the earlier papers
rely on random sampling, the random sampling is usually thought of as being
part of the sanitization procedure and thus the mechanisms are only analyzed
under the assumption that the sampling has been done “ideally”.) Additionally,
we will require that the privacy notion is meaningful in its own right, also with-
out any pre-sampling; we believe this requirement is crucial for guaranteeing a
strong fall-back guarantee even in case the result of the pre-sampling is leaked
(and thus the attacker knows exactly who was sampled).

1.1 Towards a Weaker Notion of Privacy

We aim to develop a new privacy definition that allows us to design mechanisms
that have greater utility or efficiency than differentially private mechanisms, but
still provide a meaningful notion of privacy; furthermore, we want mechanisms
satisfying the new definition to achieve differential and zero-knowledge privacy
when the underlying data was collected via biased random sampling from some
population. To this end, we begin by reconsidering some older notions of privacy.

k-Anonymity and Blending in a Crowd k-anonymity [15] is a privacy definition
specifically for releasing data tables, where a data table is simply a table of
records (rows), each of which has values for the attributes (columns) of the table.
Roughly speaking, a released data table satisfies k-anonymity if every record in
the table is the same as k − 1 other records in the table with respect to certain
“identifying” attributes (chosen beforehand). k-anonymity imposes constraints
on the syntax of the released data table, but does not consider the way the
released data table was computed from the underlying database; this issue has
led to several practical attacks against the notion of k-anonymity (e.g., see [16,
17]). k-anonymity can be viewed as being based on the intuition of “blending
in a crowd”, since the records in the released output are required to “blend”
with other records. Intuitively, in many cases, if an individual blends in a crowd
of many people in the database, then the individual’s privacy is sufficiently
protected. However, as demonstrated by known attacks, k-anonymity does not
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properly capture this intuition as it does not impose any restrictions on the
algorithm/mechanism used to generate the released output. Indeed, one of the
key insights behind the notion of differential privacy was that privacy should be
a property of the sanitization mechanism and not just the output of it.

Relying on this insight, we aim to develop a privacy notion that captures
what it means for a mechanism to guarantee that individuals “blend in a crowd”.
(Another definition partly based on the intuition of blending in a crowd is (c, t)-
isolation [18], which requires adversaries to be unable to isolate an individual,
represented by a data point in Rd, by roughly determining the individual’s loca-
tion in Rd; we formalize the intuition of blending in a crowd in a very different
way.)

Crowd-Blending Privacy – A New Privacy Definition Let us now turn to de-
scribing our new privacy definition, which we call crowd-blending privacy. We
say that an individual blends with another individual with respect to a mech-
anism San if the two individuals are indistinguishable by the mechanism San,
i.e., whenever we have a database containing either one or both of the indi-
viduals, we can replace one of the individual’s data with the other individual’s
data, and the mechanism’s output distribution remains essentially the same. We
say that an individual t blends in a crowd of k people in the database D with
respect to the mechanism San if there exist at least k − 1 other individuals in
the database D that blend with individual t with respect to San. The intuition
behind this notion is that if an individual t blends in a crowd of k people in
the database, then the mechanism essentially does not release any information
about individual t beyond the general characteristics of the crowd of k people;
in particular, the mechanism does not release any personal information that is
specific to individual t and no one else.

Roughly speaking, we say that a mechanism San is crowd-blending private
if the following property holds: For every database and every individual in the
database, either the individual blends in a crowd of k people in the database with
respect to San, or the mechanism San essentially ignores the individual’s data.

We do not claim that crowd-blending privacy provides sufficiently strong
privacy protection in all scenarios: the key weakening with respect to differential
privacy is that an attacker who knows the data of everyone in an individual
i’s crowd (except i) may learn information about individual i, as long as this
information is “general” in the sense that it applies to the entire crowd. For
instance, if the attacker knows everyone in the crowd of individual i, it may
deduce that i has, say, three children, as long as everyone in i’s crowd has three
children. Although to some extent, this may be viewed as a privacy violation
(that would not be allowed by the notion of differential privacy), we would
argue that the attribute leaked about individual i is “non-sensitive” as it is
shared by a sufficiently large crowd. Thus, we view this weakening as desirable
in many contexts as it allows us to trade privacy of “non-sensitive information”
for improved utility.

A potentially more serious deficiency of the definition is that (in contrast
to differential and zero-knowledge privacy) crowd-blending privacy is not closed
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under composition: San1 and San2 may both be crowd-blending private, but
the crowds for an individual with respect to San1 and San2 could be essentially
disjoint, making the individual’s crowd for the combination of San1 and San2
very small. Although we view composition as an important property of a privacy
definition, our goal here is to study the weakest possible “meaningful” definition
of “stand-alone” privacy that when combined with pre-sampling leads to strong
privacy notions (such as differential and zero-knowledge privacy) that themselves
are closed under composition.

1.2 New Database Mechanisms

As it turns out, achieving crowd-blending privacy is significantly easier than
achieving differential privacy, and crowd-blending private mechanisms may yield
significantly higher utility than differentially private ones.

Privately Releasing Histograms with No Noise for Sufficiently Large Counts We
show that we can release histograms with crowd-blending privacy where no noise
is added to bins with a sufficiently large count (and only a small amount of noise
is added to bins with a small count). Intuitively, individuals in the same bin blend
with each other; thus, the individuals that belong to a bin with a sufficiently
large count already blend in a crowd, so no noise needs to be added to the
bin. It is easy to see that it is impossible to release the exact count of a bin
in a histogram while satisfying differential privacy or zero-knowledge privacy.
Using crowd-blending privacy, we can overcome this limitation (for bins with a
sufficiently large count) and achieve better utility. These results can be found in
Section 3.1.

Privately Releasing Synthetic Data Points in Rd for Computing Smooth Func-
tions Given a class C of counting queries whose size is not too large, it is shown
in [10] how to release a synthetic database for approximating all the queries
in C simultaneously while satisfying differential privacy; however, the mecha-
nism is not necessarily efficient. It is known that it is impossible (assuming the
existence of one-way functions) to efficiently and privately release a synthetic
database for approximating certain classes of counting queries, such as the class
of all 2-way marginals (see [19, 20]). However, these query functions are non-
smooth in the sense that even slightly changing one row of the input database
can affect the output of the query functions quite a lot. Here, we focus on ef-
ficiently and privately releasing synthetic data for approximating all “smooth”
functions g : (Rd)∗ → Rm.

Roughly speaking, a function g : (Rd)∗ → Rm is smooth if the value of g does
not change much when we perturb the data points of the input slightly. We show
that we can efficiently release synthetic data points in Rd for approximating all
smooth functions simultaneously while satisfying crowd-blending privacy. On
the other hand, we show that there are smooth functions that cannot even be
approximated with non-trivial utility from any synthetic data that has been
released with differential privacy (even if the differentially private mechanism is
inefficient). These results can be found in the full version of this paper.
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1.3 From Crowd-Blending Privacy to Zero-Knowledge Privacy

Our main technical result shows that if we combine a crowd-blending private
mechanism with a natural pre-sampling step, then the combined algorithm sat-
isfies zero-knowledge privacy (and thus differential privacy as well). We envision
the pre-sampling step as being part of the data collection process, where indi-
viduals in some population are sampled and asked for their data. Thus, if data is
collected using random sampling of individuals from some population, and next
sanitized using a crowd-blending private mechanism, then the resulting process
ensures zero-knowledge privacy.

We first prove our main theorem for the case where the pre-sampling step
samples each individual in the population with probability p independently. In
reality, the sampling performed during data collection may be slightly biased
or done slightly incorrectly, and an adversary may know whether certain indi-
viduals were sampled or not. Thus, we next extend our main theorem to also
handle the case where the sampling probability is not necessarily the same for
everybody, but the sampling is still “robust” in the sense that most individuals
are sampled independently with probability in between p and p′ (this probability
can even depend on the individual’s data), where p and p′ are relatively close
to one another, while the remaining individuals are sampled independently with
arbitrary probability. As a result, we have that in scenarios where data has been
collected using any robust sampling, we may release data which both ensures
strong utility guarantees and satisfies very strong notions of privacy (i.e., zero-
knowledge privacy and differential privacy). In particular, this methodology can
allow us to achieve zero-knowledge privacy and differential privacy while guaran-
teeing utility that is better than that of previous methods (such as for releasing
histograms or synthetic data points as described above). Our main theorems can
be found in Section 4.

It is worthwhile to note that the particular mechanism considered in [14]
(which in fact is a particular mechanism for achieving k-anonymity) can easily
be shown to satisfy crowd-blending privacy; as a result, their main result can
be derived (and significantly strengthened) as a corollary of our main theorem.1

(See Section 3.1 and 4 for more details.)

2 Preliminaries and Existing Privacy Definitions

A database is a finite multiset of data values, where a data value is simply an
element of some fixed set X, which we refer to as the data universe. Each data
value in a database belongs to an individual, so we also refer to a data value in
a database as an individual in the database. For convenience, we will sometimes

1 As mentioned, none of the earlier work using random pre-sampling focus on the
case when the sampling is biased; furthermore, even for the case of perfect random
sampling, the authors of [14] were not able to provide a closed form expression of
the level of differential privacy achieved by their mechanism, whereas a closed form
expression can be directly obtained by applying our main theorem.
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order the individuals in a database in an arbitrary way and think of the database
as an element of X∗, i.e., a vector with components in X (the components are
referred to as the rows of the database). Given a database D and a data value
v ∈ X, let (D, v) denote the database D∪{v}. A (database) mechanism is simply
an algorithm that operates on databases.

Given ε, δ ≥ 0 and two distributions Z and Z ′ over {0, 1}∗, we shall write
Z ≈ε,δ Z ′ to mean that for every Y ⊆ {0, 1}∗ we have

Pr[Z ∈ Y ] ≤ eε Pr[Z ′ ∈ Y ] + δ

and

Pr[Z ′ ∈ Y ] ≤ eε Pr[Z ∈ Y ] + δ.

We shall also write Z ≈ε Z ′ to mean Z ≈ε,0 Z ′. Differential privacy (see [4, 5])
can now be defined in the following manner:

Definition 1 ([4, 5]). A mechanism San is said to be ε-differentially private
if for every pair of databases D and D′ differing in only one data value, we have
San(D) ≈ε San(D′).

There are two definitions in the literature for “a pair of databases D and
D′ differing in only one data value”, leading to two slightly different definitions
of differential privacy. In one definition, it is required that D contains D′ and
has exactly one more data value than D′. In the other definition, it is required
that |D| = |D′|, |D \D′| = 1, and |D′ \D| = 1. Intuitively, differential privacy
protects the privacy of an individual t by requiring the output distribution of the
mechanism to be essentially the same regardless of whether individual t’s data
is included in the database or not (or regardless of what data value individual t
has).

We now begin describing zero-knowledge privacy, which is a privacy defini-
tion introduced in [8] that is strictly stronger than differential privacy. In the
definition of zero-knowledge privacy, adversaries and simulators are simply ran-
domized algorithms that play certain roles in the definition. Let San be any
mechanism. For any database D, any adversary A, and any auxiliary informa-
tion z ∈ {0, 1}∗, let OutA(A(z) ↔ San(D)) denote the output of A on input z
after interacting with the mechanism San operating on the database D. San can
be interactive or non-interactive. If San is non-interactive, then San(D) simply
sends its output (e.g., sanitized data) to A and then halts immediately.

Let agg be any class of randomized algorithms. agg is normally a class of ran-
domized aggregation functions that provide aggregate information to simulators,
as described in the introduction.

Definition 2 ([8]). A mechanism San is said to be (ε, δ)-zero-knowledge
private with respect to agg if there exists a T ∈ agg such that for every
adversary A, there exists a simulator S such that for every database D, every
individual t ∈ D, and every auxiliary information z ∈ {0, 1}∗, we have

OutA(A(z)↔ San(D)) ≈ε,δ S(z, T (D \ {t}), |D|).
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Intuitively, zero-knowledge privacy requires that whatever an adversary can
compute about individual t by accessing (i.e., interacting with) the mechanism
can also be essentially computed without accessing the mechanism but with
certain aggregate information about the remaining individuals; this aggregate
information is provided by an algorithm in agg. The adversary in the latter
scenario is represented by the simulator S. This ensures that the adversary
essentially does not learn any additional information about individual t beyond
the aggregate information provided by an algorithm in agg on the remaining
individuals.

agg is normally some class of randomized aggregation functions, such as the
class of all functions T that draws r random samples from the input database
and performs any computation (e.g., computes the average or simply outputs
the samples) on the r random samples (note that in the definition, T is applied
to D \ {t} instead of D so that the aggregate information from T does not
depend directly on individual t’s data). Zero-knowledge privacy with respect to
this class of aggregation functions ensures that an adversary essentially does
not learn anything more about an individual beyond some “r random sample
aggregate information” of the other individuals. One can also consider zero-
knowledge privacy with respect to other classes of aggregation functions, such
as the class of (randomized) functions that first sample each row of the input
database with probability p (or in between p and p′) independently and then
performs any computation on the samples. We will actually use such classes
of aggregation functions when we prove our main theorems later. It can be
easily shown that zero-knowledge privacy (with respect to any class agg) implies
differential privacy (see [8]).

3 Crowd-Blending Privacy – A New Privacy Definition

We now begin to formally define our new privacy definition. Given t, t′ ∈ X,
ε ≥ 0, and a mechanism San, we say that t and t′ are ε-indistinguishable by San,
denoted t ≈ε,San t′, if San(D, t) ≈ε San(D, t′) for every database D. Intuitively,
t and t′ are indistinguishable by San if for any database containing t, we can
replace the t by t′ and the output distribution of San remains essentially the
same. Usually, t and t′ are the data values of two individuals, and if t and t′ are
indistinguishable by San, then this roughly means that San cannot distinguish
these two individuals regardless of who else is in the database. If t and t′ are
ε-indistinguishable by San, we also loosely say that t blends with t′ (with respect
to San). We now describe what it means for an individual to blend in a crowd
of people in the database (with respect to a mechanism).

Definition 3. Let D be any database. An individual t ∈ D ε-blends in a crowd
of k people in D with respect to the mechanism San if |{t′ ∈ D : t′ ≈ε,San
t}| ≥ k.

In the above definition, {t′ ∈ D : t′ ≈ε,San t} should be regarded as a
multiset. When the mechanism San is clear from context, we shall simply omit
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the “with respect to the mechanism San”. Intuitively, an individual t ∈ D blends
in a crowd of k people in D if t is indistinguishable by San from at least k − 1
other individuals in D. Note that by the definition of two individuals being
indistinguishable by San, t ∈ D must be indistinguishable by San from each of
these k − 1 other individuals regardless of what the database is, as opposed to
only when the database is D. (A weaker requirement would be that for each of
these k − 1 other individuals t′, t and t′ only need to be “indistinguishable by
San with respect to D”, i.e., if we take D and replace t by t′ or vice versa, the
output distributions of San on D and the modified D are essentially the same;
we leave investigating this and other possible weaker requirements for future
work.) We are now ready to state our new privacy definition.

Definition 4 (Crowd-blending privacy). A mechanism San is (k, ε)-crowd-
blending private if for every database D and every individual t ∈ D, either t
ε-blends in a crowd of k people in D, or San(D) ≈ε San(D \ {t}) (or both).

Crowd-blending privacy requires that for every individual t in the database,
either t blends in a crowd of k people in the database, or the mechanism es-
sentially ignores individual t’s data (the latter case is captured by San(D) ≈ε
San(D\{t}) in the definition). When an individual t blends in a crowd of k peo-
ple in the database, the mechanism essentially does not release any information
about individual t beyond the general characteristics of the crowd of k people.
This is because the mechanism cannot distinguish individual t from the people
in the crowd of k people, i.e., individual t’s data can be changed to the data
of another person in the crowd of k people and the output distribution of the
mechanism remains essentially the same. A consequence is that the mechanism
does not release any personally identifying information about individual t.

As mentioned in the introduction, crowd-blending privacy is not closed under
composition (see the full version of this paper for an example); however, we note
that the privacy guarantee of blending in a crowd of k people in the database
(described above) holds regardless of the amount of auxiliary information the
adversary has (i.e., the definition is agnostic to the adversary’s auxiliary infor-
mation). Additionally, as mentioned previously, we show in Section 4 that when
crowd-blending privacy is combined with “robust pre-sampling”, we get zero-
knowledge privacy and thus differential privacy as well, both of which satisfy
composition in a natural way. Thus, as long as robust sampling is used during
data collection before running a crowd-blending private mechanism on the col-
lected data, independent releases from crowd-blending private mechanisms do
compose and satisfy zero-knowledge privacy and differential privacy. (We also
mention that one can compose a crowd-blending private mechanism with a dif-
ferentially private mechanism to obtain a crowd-blending private mechanism;
see the full version of this paper for details.)

Relationship with Differential Privacy Differential privacy implies crowd-blending
privacy.
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Proposition 1 (Differential privacy =⇒ Crowd-blending privacy). Let
San be any ε-differentially private mechanism. Then, San is (k, ε)-crowd-blending
private for every integer k ≥ 1.

Proof. This immediately follows from the two privacy definitions.

(k, ε)-crowd-blending privacy for some integer k does not imply differential
privacy in general; this will be clear from the examples of crowd-blending private
mechanisms that we give later. Crowd-blending privacy requires that for every
database D and every individual t ∈ D, at least one of two conditions hold. The
second condition San(D) ≈ε San(D \ {t}) is similar to the condition required
in differential privacy. Thus, we can view crowd-blending privacy as a relaxation
of differential privacy. If we remove the first condition “t ε-blends in a crowd of
k people in D” from crowd-blending privacy, we clearly get the same definition
as differential privacy. If we remove the second condition instead, it turns out
that we also get differential privacy. (When we remove the second condition
San(D) ≈ε San(D\{t}), we also change the definition to only consider databases
of size at least k, since otherwise it would be impossible for individual t to blend
in a crowd of k people in the database.)

Proposition 2 (Removing the condition San(D) ≈ε San(D\{t}) in crowd-
blending privacy results in differential privacy). Let San be any mech-
anism, let ε ≥ 0, and let k be any integer ≥ 2. Then, San is ε-differentially
private2 if and only if San satisfies the property that for every database D of
size at least k and every individual t ∈ D, t ε-blends in a crowd of k people in
D with respect to San.

See the full version of this paper for the proof of Proposition 2.

3.1 Examples of Crowd-Blending Private Mechanisms

Given a partition P of the data universe X, and given a database D, one can
compute the histogram with respect to the partition P using the database D; the
histogram specifies for each block of the partition (which we refer to as a “bin”)
the number of individuals in D that belong to the block (which we refer to as
the “count” of the bin). We first give an example of a crowd-blending private
mechanism that computes a histogram and suppresses (i.e., sets to 0) bin counts
that are considered too small.

Example 1 (Histogram with suppression of small counts). Let P be any partition
of X. Fix k ∈ Z≥0. Let San be a mechanism that, on input a database D,
computes the histogram with respect to the partition P using the database D,
suppresses each bin count that is < k (by setting the count to 0), and then
releases the resulting histogram.

2 Here, we are using the version of differential privacy that considers a pair of databases
of equal size.
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Then, San is (k, 0)-crowd-blending private. To see this, we note that an
individual t in a database D is 0-indistinguishable by San from all the individuals
in D that belong to the same bin as t. If there are at least k such people,
then individual t blends with k people in D; otherwise, we have San(D) ≈0

San(D \ {t}) since San suppresses each bin count that is < k.

It is easy to see that it is impossible to release the exact count of a bin while
satisfying differential privacy. Thus, crowd-blending privacy is indeed weaker
than differential privacy. For crowd-blending privacy, we can actually get better
utility by adding a bit of noise to bins with low counts instead of completely
suppressing them.

Example 2 (Histogram with noise for small counts and no noise for large counts).
Let P be any partition of X. Fix ε > 0 and k ∈ Z≥0. Let San be a mechanism
that, on input a database D, computes the histogram with respect to the par-
tition P using the database D. Then, San replaces each bin count i < k with
A(i), where A is any (randomized) algorithm that satisfies A(j) ≈ε A(j − 1) for
every 0 < j < k (A(i) is normally a noisy version of i). San then releases the
noisy histogram.

Then, San is (k, ε)-crowd-blending private. To see this, we note that an
individual t in a database D is ε-indistinguishable (in fact, 0-indistinguishable)
by San from all the individuals in D that belong to the same bin as t. If there are
at least k such people, then individual t blends with k people in D, as required. If
not, then we have San(D) ≈ε San(D \ {t}), since the histogram when using the
database D is the same as the histogram when using the database D\{t} except
for individual t’s bin, which differs by one; however, San replaces the count i for
individual t’s bin with A(i), and the algorithm A satisfies A(i) ≈ε A(i − 1), so
San(D) ≈ε San(D \ {t}), as required.

We can choose the algorithm A to be A(j) = j+Lap( 1
ε ), where Lap(λ) is (a

random variable with) the Laplace distribution with probability density function
fλ(x) = 1

2λe
|x|/λ. The proof that A(j) ≈ε A(j − 1) for every 0 < j < k is simple

and can be implicitly found in [4].

The differentially private mechanism in [4] for computing histograms has to
add noise to every bin, while our mechanism here only adds noise to the bins
that have a count that is < k.

Example 3 (Sanitizing a database by generalizing records safely). Many mecha-
nisms for achieving k-anonymity involve “generalizing” the records in the input
table by replacing specific values with more general values, such as replacing a
specific age with an age range. If this is not done carefully, the privacy of individ-
uals can be breached, as shown by many attacks in the past (e.g., see [16, 17]).
Most of these mechanisms do not satisfy crowd-blending privacy. However, if
the generalization of records is done carefully, achieving crowd-blending privacy
may be possible.

One example is the mechanism of [14]: Let Y be any set, and let f : X → Y
be any function. We think of Y as a set of possible “generalized records”, and f is
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a function that maps a record to its generalized version. Let San be a mechanism
that, on input a database D, applies the function f to each individual in D; let
f(D) be the multi-set of images in Y . San then removes each record in f(D) that
appears fewer than k times in f(D), and then outputs the result. It is easy to see
that San is (k, 0)-crowd-blending private. To see this, we note that an individual
t in a database D is 0-indistinguishable by San from all the individuals in D
that also get mapped to f(t). If there are at least k such people, then individual
t blends with k people in D; otherwise, we have San(D) ≈0 San(D \ {t}) since
San removes each record in f(D) that appears fewer than k times in f(D).

Example 4 (Privately Releasing Synthetic Data Points in Rd for Computing
Smooth Functions). Roughly speaking, a function g : (Rd)∗ → Rm is smooth
if the value of g does not change much when we perturb the data points of the
input slightly. In the full version of this paper, we show that we can efficiently
release synthetic data points in Rd for approximating all smooth functions si-
multaneously while satisfying crowd-blending privacy. On the other hand, we
show that there are smooth functions that cannot even be approximated with
non-trivial utility from any synthetic data that has been released with differen-
tial privacy (even if the differentially private mechanism is inefficient). See the
full version of this paper for details.

4 Our Main Theorem

In this section, we prove our main theorem that says that when we combine a
crowd-blending private mechanism with a natural pre-sampling step, the com-
bined algorithm is zero-knowledge private (and thus differentially private as
well). The pre-sampling step should be thought of as being part of the data
collection process, where individuals in some population are sampled and asked
for their data. A crowd-blending private mechanism is then run on the samples
to release useful information while preserving privacy.

We first prove our main theorem for the case where the pre-sampling step
samples each individual in the population with probability p independently. In
reality, the sampling performed during data collection may be slightly biased or
done slightly incorrectly, and an adversary may know whether certain individuals
were sampled or not. Thus, we later extend our main theorem to the case where
the sampling probability is not necessarily the same for everybody, but the sam-
pling is still robust in the sense that most individuals are sampled independently
with probability in between p and p′ (this probability can even depend on the
individual’s data), where p and p′ are relatively close to one another, while the
remaining individuals are sampled independently with arbitrary probability.

We begin with some necessary terminology and notation. A population is a
collection of individuals, where an individual is simply represented by a data
value in the data universe X. Thus, a population is actually a multiset of data
values, which is the same as a database. (If we want individuals to have unique
data values, we can easily modify X to include personal/unique identifiers.)
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Given a population P and a real number p ∈ [0, 1], let Sam(P, p) be the outcome
of sampling each individual in P with probability p independently.

Although zero-knowledge privacy was originally defined for mechanisms op-
erating on databases, one can also consider mechanisms operating on populations,
since there is essentially no difference between the way we model populations
and databases. (In the definition of zero-knowledge privacy, we simply change
“database” to “population” and D to P.) We now describe a class of (random-
ized) aggregation functions that we will use in the definition of zero-knowledge
privacy.

– iidRS(p) = i.i.d. random sampling with probability p : the class of algorithms
T such that on input a population P, T chooses each individual in P with
probability p independently, and then performs any computation on the data
of the chosen individuals.3

We now state and prove the basic version of our main theorem.

Theorem 1 (Sampling + Crowd-Blending Privacy ⇒ Zero-Knowledge
Privacy). Let San be any (k, ε)-crowd-blending private mechanism with k ≥ 2,
and let p ∈ (0, 1). Then, the algorithm Sanzk defined by Sanzk(P) = San(Sam(P, p))
for any population P is (εzk, δzk)-zero-knowledge private4 with respect to iidRS(p),
where

εzk = ln

(
p ·
(

2− p
1− p

eε
)

+ (1− p)
)

and δzk = e−Ω(k·(1−p)2).

The proof of Theorem 1 can be found in the full version of this paper, but
the main ideas of the proof will be explained here. To prove Theorem 1, we will
first prove two supporting lemmas. The first lemma essentially says that if an
individual t blends with (i.e., is indistinguishable by San from) many people in
the population, then t’s privacy is protected when we sample from the population
and run San on the samples:

Lemma 1 (Protection of individuals that blend with many people in
the population). Let San be any mechanism, P be any population, p ∈ (0, 1),
and ε ≥ 0. Let t be any individual in P, and let A be any non-empty subset of
P \ {t} such that t′ ≈ε,San t for every individual t′ ∈ A. Let n = |A|. Then, we
have

San(Sam(P, p)) ≈εfinal,δfinal
San(Sam(P \ {t}, p)),

where εfinal = ln(p · ( 2−p
1−pe

ε) + (1− p)) and δfinal = e−Ω((n+1)p(1−p)2).

3 To make zero-knowledge privacy compose naturally for this type of aggregate infor-
mation, we can extend iidRS(p) to iidRS(p, r), where T is now allowed to perform
r rounds of sampling before performing any computation on the sampled data. It is
not hard to see that zero-knowledge privacy with respect to iidRS(p, r) composes in
a natural way.

4 The constant hidden by the Ω(·) in δzk can be easily computed; however, we did not
try to optimize the constant in any way.
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In the lemma, A is any non-empty set of individuals in P \ {t} that blend
with individual t. (We could set A to be the set of all individuals in P \{t} that
blend with individual t, but leaving A more general allows us to more easily
extend the lemma to the case of “robust” sampling later.) We note that δfinal is
smaller when n = |A| is larger, i.e., when t blends with more people. Intuitively,
if an individual t is indistinguishable by San from many other people in the
population, then t’s presence or absence in the population does not affect the
output of San(Sam(·, p)) much, since the people indistinguishable from t can
essentially take the place of t in almost any situation (and the output of San
would essentially be the same). Since it does not matter much whether individual
t is in the population or not, it follows that t’s privacy is protected.

The proof of the lemma roughly works as follows: Consider two scenarios, one
where individual t is in the population (i.e., San(Sam(P, p)) in the lemma), and
one where individual t has been removed from the population (i.e., San(Sam(P\
{t}, p)) in the lemma). Our goal is to show that the output of San is essentially
the same in the two scenarios, i.e., San(Sam(P, p)) ≈εfinal,δfinal

San(Sam(P \
{t}, p)). Conditional on individual t not being sampled in the first scenario, the
two scenarios are exactly the same, as desired. Thus, we now always condition
on individual t being sampled in the first scenario. In the lemma, A is a set
of individuals in the population (excluding t) that are indistinguishable from t
by San. Let m̃ denote the number of people in A that are sampled. The proof
involves showing the following two properties:

1. m̃ is relatively smooth near its expectation: For every integer m near the
expectation of m̃, Pr[m̃ = m] is relatively close to Pr[m̃ = m+ 1].

2. For every integer m ∈ {0, . . . , n− 1}, the output of San in the first scenario
conditioned on m̃ = m (and t being sampled) is essentially the same as the
output of San in the second scenario conditioned on m̃ = m+ 1.

For the first property, we note that m̃ follows a binomial distribution, which
can be shown to be relatively smooth near its expectation. To show the second
property, we note that when we condition on m̃ = m (and t being sampled)
in the first scenario, m random samples are drawn uniformly from A (one at a
time) without replacement, and also t /∈ A is sampled for sure (and the remaining
individuals are sampled independently with probability p). This is very similar to
the second scenario conditioned on m̃ = m+1, where m+1 random samples are
drawn uniformly from A without replacement, since if we replace the (m+ 1)th

sample by t, we get back the first scenario conditioned on m̃ = m (and t being
sampled). Since the (m + 1)th sample is indistinguishable from t by San, the
output of San is essentially the same in both scenarios.

Using the two properties above, one can show that when m̃ is close to its
expectation, the output of San is essentially the same in both scenarios. δfinal
in the lemma captures the probability of the bad event where m̃ is not close to
its expectation, which we bound by essentially using a Chernoff bound. See the
full version of this paper for the proof of Lemma 1.



15

We now show how pre-sampling combined with a crowd-blending private
mechanism can protect the privacy of individuals who blend with (i.e., are in-
distinguishable by San from) few people in the population.

Lemma 2 (Protection of individuals that blend with few people in
the population). Let San be any (k, ε)-crowd-blending private mechanism with
k ≥ 2, let P be any population, and let p ∈ (0, 1). Let t be any individual in P,
and let n = |{t′ ∈ P \ {t} : t′ ≈ε,San t}|. Then, if n ≤ k−1

p(2−p) , we have

San(Sam(P, p)) ≈εfinal,δfinal
San(Sam(P \ {t}, p)),

where εfinal = ln(peε + (1− p)) and δfinal = pe−Ω(k·(1−p)2).

The proof of the lemma roughly works as follows: In the lemma, n is the
number of people in the population that individual t blends with, and is assumed
to be small. We will show that when we remove individual t from the population,
the output of San does not change much.

Consider two scenarios, one where individual t is in the population, and one
where individual t has been removed from the population. Conditional on indi-
vidual t not being sampled in the first scenario, the two scenarios are exactly the
same, as desired. Thus, we now always condition on individual t being sampled
in the first scenario. Since individual t blends with few people in the population,
we have that with very high probability, the database obtained from sampling
from the population would contain fewer than k people that blend with individ-
ual t; since San is (k, ε)-crowd-blending private and individual t does not blend
in a crowd of k people in the database, San must essentially ignore individual t’s
data; thus, the first scenario is essentially the same as the second scenario, since
individual t’s data is essentially ignored anyway. δfinal in the lemma captures
the probability of the bad event where the database obtained from sampling
actually contains k people that blend with individual t. See the full version of
this paper for the proof of Lemma 2.

We are now ready to prove Theorem 1. The proof of the theorem roughly
works as follows: By definition of iidRS(p), a simulator in the definition of zero-
knowledge privacy is able to obtain the aggregate information Sam(P \ {t}, p).
With Sam(P \ {t}, p), the simulator can easily compute San(Sam(P \ {t}, p)),
which it can then use to simulate the computation of the given adversary. It is not
hard to see that the simulation works if San(Sam(P, p)) ≈εzk,δzk San(Sam(P \
{t}, p)) holds. Thus, consider any population P and any individual t ∈ P. Recall
that Lemma 1 protects the privacy of individuals that blend with many people
in P, while Lemma 2 protects the privacy of individuals that blend with few
people in P. Thus, if individual t blends with many people in P, we use Lemma
1; otherwise, we use Lemma 2. It then follows that San(Sam(P, p)) ≈εzk,δzk
San(Sam(P \{t}, p)), as required. See the full version of this paper for the proof
of Theorem 1.
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4.1 Our Main Theorem Extended to Robust Sampling

We now extend our main theorem to the case where the sampling probability
is not necessarily the same for everybody, but the sampling is still “robust” in
the sense that most individuals are sampled independently with probability in
between p and p′ (this probability can even depend on the individual’s data),

where p and p′ are relatively close to one another (i.e., p
′

p is not too large), while
the remaining individuals are sampled independently with arbitrary probability.

We begin with some more notation. Given a population P and a function
π : X → [0, 1], let Sam(P, π) be the outcome of sampling each individual t
in P with probability π(t) independently. We note that for Sam(P, π), two
individuals in P with the same data value in X will have the same probability
of being sampled. However, we can easily modify the data universe X to include
personal/unique identifiers so that we can represent an individual by a unique
data value in X. Thus, for convenience, we now define a population to be a subset
of the data universe X instead of being a multiset of data values in X. Then,
each individual in a population would have a unique data value in X, so π does
not have to assign the same sampling probability to two different individuals. We
now describe a class of aggregation functions that we will use in the definition
of zero-knowledge privacy.

– iRS(p, p′, `) = independent random sampling with probability in between p
and p′ except for ` individuals: the class of algorithms T such that on input
a population P, T independently chooses each individual t ∈ P with some
probability pt ∈ [0, 1] (possibly dependent on t’s data), but all except for at
most ` individuals in P must be chosen with probability in {0} ∪ [p, p′]; T
then performs any computation on the chosen individuals’ data.

We now state the extended version of our main theorem.

Theorem 2 (Robust Sampling + Crowd-Blending Privacy ⇒ Zero-
Knowledge Privacy). Let San be any (k, ε)-crowd-blending private mecha-
nism with k ≥ 2, let 0 < p ≤ p′ < 1, let π : X → [0, 1] be any function, let
` = |{x ∈ X : π(x) /∈ {0} ∪ [p, p′]}|, and let pmax = supx∈X π(x). Suppose
` < k − 1.

Then, the algorithm Sanzk defined by Sanzk(P) = San(Sam(P, π)) for any
population P is (εzk, δzk)-zero-knowledge private with respect to iRS(p, p′, `),
where

εzk = ln

(
pmax ·

(
p′

p

(1− p)(2− p)
(1− p′)2

eε
)

+ (1− pmax)

)
and

δzk = max

{
pmax

p
,
pmax

1− p′

}
e−Ω((k−`)·(1−p′)2).

In the theorem, ` represents the number of individuals that are sampled with
probability outside of {0} ∪ [p, p′]. We prove the theorem by extending Lemmas
1 and 2 to the case of “robust” sampling. We now describe some (but not all)
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of the main changes to the lemmas and their proofs (see the full version of this
paper for the proof of Theorem 2 and the extended lemmas).

Let us first consider Lemma 1, which protects the privacy of individuals that
blend with many people in the population. Like before, consider two scenarios,
one where individual t is in the population, and one where individual t has been
removed. Let m̃ denote the number of people in A that are sampled (recall that
A is a set of individuals that blend with individual t). Recall that in the proof
of Lemma 1, we had to show two properties: (1) m̃ is relatively smooth near
its expectation, and (2) the output of San in the first scenario conditioned on
m̃ = m (and t being sampled) is essentially the same as the output of San in
the second scenario conditioned on m̃ = m+ 1.

For the first property, we used the fact that the binomial distribution is
relatively smooth near its expectation. Here, since the sampling is no longer
i.i.d. but is still robust, we need the Poisson binomial distribution (the sum of
independent Bernoulli trials, where the success probabilities are not necessarily
the same) to be relatively smooth near its expectation. This can be shown as
long as the success probabilities are all relatively close to one another; this is
ensured by changing the lemma so that everyone in the set A is required to have
a sampling probability in [p, p′].

For the second property, we used the fact that when we condition on m̃ =
m+1 in the second scenario, we are drawing m+1 random samples from A (one
at a time) uniformly without replacement, and if we replace the (m+1)th sample
by t, we get the first scenario conditioned on m̃ = m and t being sampled. This
idea still works in the new setting where the sampling probabilities are no longer
the same, since there is still a “draw-by-draw” selection procedure for drawing
samples from A (one at a time) in a way so that right after drawing the jth

sample, the distribution of samples we currently have is the same as if we have
conditioned on m̃ = j (e.g., see Section 3 in [21]).

We now consider Lemma 2, which protects the privacy of individuals that
blend with few people in the population. The extension of Lemma 2 to robust
sampling redefines what is meant by “few people”, since even if an individual
blends with few people, many of them could be sampled with probability 1. With
this modification, the proof of the extended lemma is similar to the proof of the
original lemma.

When we prove the extended theorem using the extended lemmas, when we
are trying to show that privacy holds for individual t, we look at how many
people blend with t that are sampled with probability in [p, p′] (in particular, we
exclude the ` people that are sampled with probability outside of {0} ∪ [p, p′]);
similar to before, if this number is large, we use the extended version of Lemma
1; otherwise, we use the extended version of Lemma 2. See the full version of
this paper for the proof of Theorem 2.
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