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Abstract. We propose a general multiparty computation protocol se-
cure against an active adversary corrupting up to n — 1 of the n players.
The protocol may be used to compute securely arithmetic circuits over
any finite field . Our protocol consists of a preprocessing phase that
is both independent of the function to be computed and of the inputs,
and a much more efficient online phase where the actual computation
takes place. The online phase is unconditionally secure and has total
computational (and communication) complexity linear in n, the number
of players, where earlier work was quadratic in n. Moreover, the work
done by each player is only a small constant factor larger than what one
would need to compute the circuit in the clear. We show this is optimal
for computation in large fields. In practice, for 3 players, a secure 64-bit
multiplication can be done in 0.05 ms. Our preprocessing is based on a
somewhat homomorphic cryptosystem. We extend a scheme by Brakerski
et al., so that we can perform distributed decryption and handle many
values in parallel in one ciphertext. The computational complexity of our
preprocessing phase is dominated by the public-key operations, we need
O(n2/s) operations per secure multiplication where s is a parameter that
increases with the security parameter of the cryptosystem. Earlier work
in this model needed 2(n?) operations. In practice, the preprocessing
prepares a secure 64-bit multiplication for 3 players in about 13 ms.

1 Introduction

A central problem in theoretical cryptography is that of secure multiparty com-
putation (MPC). In this problem n parties, holding private inputs z1, ..., z,,
wish to compute a given function f(z1,...,2,). A protocol for doing this se-
curely should be such that honest players get the correct result and this result is
the only new information released, even if some subset of the players is controlled
by an adversary.

In the case of dishonest majority, where more than half the players are cor-
rupt, unconditionally secure protocols cannot exist. Under computational as-
sumptions, it was shown in [6] how to construct UC-secure MPC protocols that
handle the case where all but one of the parties are actively corrupted. The
public-key machinery one needs for this is typically expensive so efficient solu-
tions are hard to design for dishonest majority. Recently, however, a new ap-
proach has been proposed making such protocols more practical. This approach



works as follows: one first designs a general MPC protocol in the preprocessing
model, where access to a “trusted dealer” is assumed. The dealer does not need
to know the function to be computed, nor the inputs, he just supplies raw ma-
terial for the computation before it starts. This allows the “online” protocol to
use only cheap information theoretic primitives and hence be efficient. Finally,
one implements the trusted dealer by a secure protocol using public-key tech-
niques, this protocol can then be run in a preprocessing phase. The current state
of the art in this respect are the protocols in Bendlin et al., Damgard/Orlandi
and Nielsen et al. [3,9, 16]. The “MPC-in-the-head” technique of Ishai et al. [13,
12] has similar overall asymptotic complexity, but larger constants and a less
efficient online phase.

Recently, another approach has become possible with the advent of Fully
Homomorphic Encryption (FHE) by Gentry [10]. In this approach all parties
first encrypt their input under the FHE scheme; then they evaluate the desired
function on the ciphertexts using the homomorphic properties, and finally they
perform a distributed decryption on the final ciphertexts to get the results. The
advantage of the FHE-based approach is that interaction is only needed to sup-
ply inputs and get output. However, the low bandwidth consumption comes at
a price; current FHE schemes are very slow and can only evaluate small cir-
cuits, i.e., they actually only provide what is known as somewhat homomorphic
encryption (SHE). This can be circumvented in two ways; either by assuming
circular security and implementing an expensive bootstrapping operation, or by
extending the parameter sizes to enable a “levelled FHE” scheme which can eval-
uate circuits of large degree (exponential in the number of levels) [4]. The main
cost, much like other approaches, is in terms of the number of multiplications in
the arithmetic circuit. So whilst theoretically appealing the approach via FHE
is not competitive in practice with the traditional MPC approach.

1.1 Contributions of this paper.

Optimal Online Phase. We propose an MPC protocol in the preprocessing model
that computes securely an arithmetic circuit C' over any finite field F,». The
protocol is statistically UC-secure against active and adaptive corruption of up
to n — 1 of the n players, and we assume synchronous communication and secure
point-to-point channels. Measured in elementary operations in I, the total
amount of work done is O(n - |C| + n3) where |C| is the size of C. All earlier
work in this model had complexity £2(n?-|C|). A similar improvement applies to
the communication complexity and the amount of data one needs to store from
the preprocessing. Hence, the work done by each player in the online phase is
essentially independent of n. Moreover, it is only a small constant factor larger
than what one would need to compute the circuit in the clear. This is the first
protocol in the preprocessing model with these properties>.

3 With dishonest majority, successful termination cannot be guaranteed, so our proto-
cols simply abort if cheating is detected. We do not, however, identify who cheated,
indeed the standard definition of secure function evaluation does not require this.



Finally, we show a lower bound implying that w.r.t the amount of data
required from the preprocessing, our protocol is optimal up to a constant factor.
We also obtain a similar lower bound on the number of bit operations required,
and hence the computational work done in our protocol is optimal up to poly-
logarithmic factors.

All results mentioned here hold for the case of large fields, i.e., where the
desired error probability is (1/p*¥)¢, for a small constant c. Note that many
applications of MPC need integer arithmetic, modular reductions, conversion to
binary, etc., which we can emulate by computing in F, with p large enough to
avoid overflow. This naturally leads to computing with large fields. As mentioned,
our protocol works for all fields, but like earlier work in this model it is less
efficient for small fields by a factor of essentially [losge;ﬂ for error probability
2—8(5ec)

, see the full version for details.

Obtaining our result requires new ideas compared to [3], which was previously
state of the art and was based on additive secret sharing where each share in a
secret is authenticated using an information theoretic Message Authentication
Code (MAC). Since each player needs to have his own key, each of the n shares
need to be authenticated with n MACs, so this approach is inherently quadratic
in n. Our idea is to authenticate the secret value itself instead of the shares, using
a single global key. This seems to lead to a “chicken and egg” problem since one
cannot check a MAC without knowing the key, but if the key is known, MACs can
be forged. Our solution to this involves secret sharing the key as well, carefully
timing when values are revealed, and various tricks to reduce the amortized cost
of checking a set of MACs.

Efficient use of FHE for MPC. As a conceptual contribution we propose what
we believe is “the right” way to use FHE/SHE for computationally efficient MPC,
namely to use it for implementing a preprocessing phase. The observation is that
since such preprocessing is typically based on the classic circuit randomization
technique of Beaver [2], it can be done by evaluating in parallel many small
circuits of small multiplicative depth (in fact depth 1 in our case). Thus SHE
suffices, we do not need bootstrapping, and we can use the SHE SIMD approach
of [17] to handle many values in parallel in a single ciphertext.

To capitalize on this idea, we apply the SIMD approach to the cryptosys-
tem from [5] (see also [11] where this technique is also used). To get the best
performance, we need to do a non-trivial analysis of the parameter values we
can use, and we prove some results on norms of embeddings of a cyclotomic
field for this purpose. We also design a distributed decryption procedure for our
cryptosystem. This protocol is only robust against passive attacks. Nevertheless,
this is sufficient for the overall protocol to be actively secure. Intuitively, this
is because the only damage the adversary can do is to add a known error term
to the decryption result obtained. The effect of this for the online protocol is
that certain shares of secret values may be incorrect, but this will caught by the

Identification of cheaters is possible but we do not know how to do this while main-
taining complexity linear in n.



check involving the MACs. Finally we adapt a zero-knowledge proof of plaintext
knowledge from [3] for our purpose and in particular we improve the analysis of
the soundness guarantees it offers. This influences the choice of parameters for
the cryptosystem and therefore improves overall performance.

An Efficient Preprocessing Protocol. As a result of the above, we obtain a
constant-round preprocessing protocol that is UC-secure against active and static
corruption of n—1 players assuming the underlying cryptosystem is semantically
secure, which follows from the polynomial (PLWE) assumption. UC-security for
dishonest majority cannot be obtained without a set-up assumption. In this pa-
per we assume that a key pair for our cryptosystem has been generated and the
secret key has been shared among the players.

Whereas previous work in the preprocessing/online model [3,9] use 2(n?)
public-key operations per secure multiplication, we only need O(n?/s) opera-
tions, where s is a number that grows with the security parameter of the SHE
scheme (we have s &~ 12000 in our concrete instantiation for computing in F,
where p ~ 264). We stress that our adapted scheme is exactly as efficient as the
basic version of [5] that does not allow this optimization, so the improvement is
indeed “genuine”.

In comparison to the approach mentioned above where one uses FHE through-
out the protocol, our combined preprocessing and online phase achieves a result
that is incomparable from a theoretical point of view, but much more practi-
cal: we need more communication and rounds, but the computational overhead
is much smaller — we need O(n?/s - |C]) public key operations compared to
O(n - |C]) for the FHE approach, where for realistic values of n and s, we have
n?/s < n. Furthermore, we only need a low depth SHE which is much more
efficient in the first place. And finally, we can push all the work using SHE into
a, function independent, preprocessing phase.

Performance in practice. Both the preprocessing and online phase have been
implemented and tested for 3 players on up-to-date machines connected on a
LAN. The preprocessing takes about 13 ms amortized time to prepare one mul-
tiplication in I, for a 64-bit p, with security level corresponding roughly to 1024
bit RSA and an error probability of 2740 for the zero-knowledge proofs (the er-
ror probability can be lowered to 278° by repeating the ZK proofs which will at
most double the time). This is 2-3 orders of magnitude faster than preliminary
estimates for the most efficient instantiation of [3]. The online phase executes a
secure 64-bit multiplication in 0.05 ms amortized time. These rough orders of
magnitude, and the ability to deal with a non-trivial number of players, are born
out by a recent implementation of the protocols described in this paper [7].

Concurrent Related Work. In recent independent work [15, 1, 11], Meyers at al.,
Asharov et al. and Gentry et al. also use an FHE scheme for multiparty compu-
tation. They follow the pure FHE approach mentioned above, using a threshold
decryption protocol tailored to the specific FHE scheme. They focus primarily
on round complexity, while we want to minimize the computational overhead.



We note that in [11], Gentry et al. obtain small overhead by showing a way to
use the FHE SIMD approach for computing any circuit homomorphically. How-
ever, this requires full FHE with bootstrapping (to work on arbitrary circuits)
and does not (currently) lead to a practical protocol.

In [16], Nielsen et al. consider secure computing for Boolean Circuits. Their
online phase is similar to that of [3], while the preprocessing is a clever and very
efficient construction based on Oblivious Transfer. This result is complementary
to ours in the sense that we target computations over large fields which is good
for some applications whereas for other cases, Boolean Circuits are the most
compact way to express the desired computation. Of course, one could use the
preprocessing from [16] to set up data for our online phase, but current bench-
marks indicate that our approach is faster for large fields, say of size 64 bits or
more.

We end the introduction by covering some basic notation which will be
used throughout this paper. For a vector x = (z1,...,z,) € R™ we denote
by [[x[loo := maxicicn |zil, X[l := 2o1<icy [7i] and [[xl2 := /37 |22 We let
e(k) denote an unspecified negligible function of «. If S is a set we let x «+ S
denote assignment to the variable z with respect to a uniform distribution on
S; we use & < s for a value s as shorthand for z « {s}. If A is an algorithm
x < A means assign to z the output of A, where the probability distribution is
over the random coins of A. Finally x := y means “x is defined to be y”.

2 Online Protocol

Our aim is to construct a protocol for arithmetic multiparty computation over
I, for some prime p. More precisely, we wish to implement the ideal functional-
ity Fampc, presented in . Our MPC protocol is structured in a preprocessing (or
offline) phase and an online phase. We start out in this section by presenting the
online phase which assumes access to an ideal functionality Fprgp . In Section
5 we show how to implement this functionality in an independent preprocessing
phase.

In our specification of the online protocol, we assume for simplicity that a
broadcast channel is available at unit cost, that each party has only one input,
and only one public output value is to be computed. In the full version we explain
how to implement the broadcasts we need from point-to-point channels and lift
the restriction on the number of inputs and outputs without this affecting the
overall complexity.

Before presenting the concrete online protocol we give the intuition and mo-
tivation behind the construction. We will use unconditionally secure MACs to
protect secret values from being manipulated by an active adversary. However,
rather than authenticating shares of secret values as in [3], we authenticate the
shared value itself. More concretely, we will use a global key « chosen randomly
in Fpx, and for each secret value a, we will share a additively among the play-
ers, and we also secret-share a MAC «a. This way to represent secret values is
linear, just like the representation in [3], and we can therefore do secure multi-



plication based on multiplication triples & la Beaver [2] that we produce in the
preprocessing.

An immediate problem is that opening a value reliably seems to require
that we check the MAC, and this requires players know «. However, as soon
as a is known, MACs on other values can be forged. We solve this problem by
postponing the check on the MACs (of opened values) to the output phase (of
course, this may mean that some of the opened values are incorrect). During
the output phase players generate a random linear combination of both the
opened values and their shares of the corresponding MACs; they commit to the
results and only then open « (see Figure 1). The intuition is that, because of
the commitments, when « is revealed it is too late for corrupt players to exploit
knowledge of the key. Therefore, if the MAC checks out, all opened values were
correct with high probability, so we can trust that the output values we computed
are correct and can safely open them.

Representation of values and MACSs. In the online phase each shared value a €
[F,x is represented as follows

(a) := (6, (a1, ..., an), (v(a)1, -, 7v(a)n))

where ¢ = a1 + -+ + ay, and y(a)1 + --- + v(a), = a(a + ). Player P; holds
ai,v(a); and ¢ is public. The interpretation is that vy(a) < y(a)1 + - + v(a)x
is the MAC authenticating a under the global key a.

Computations. Using the natural component-wise addition of representations,
and suppressing the underlying choices of a;,v(a); for readability, we clearly
have for secret values a, b and public constant e that

(a)+ (b) ={a+Db) e-{a)={(ea), and e+ (a)={e+a),

where e+ {(a) := (0 —e, (a1 +e,az,...,a,), (v(a)1,...,7(a),)). This possibility to
easily add a public value is the reason for the “public modifier” ¢ in the definition
of (). It is now clear that we can do secure linear computations directly on values
represented this way.

What remains is multiplications: here we use the preprocessing. We would like
the preprocessing to output random triples (a), (b}, (c), where ¢ = ab. However,
our preprocessing produces triples which satisfy ¢ = ab + A, where A is an
error that can be introduced by the adversary. We therefore need to check the
triple before we use it. The check can be done by “sacrificing” another triple
(£, (9), (h), where the same multiplicative equality should hold (see the protocol
for details). Given such a valid triple, we can do multiplications in the following
standard way: To compute (xy) we first open () — (a) to get €, and (y) — (b) to
get §. Then xy = (a+¢€)(b+ ) = c+ eb+ da + €d. Thus, the new representation
can be computed as

(x) - (y)y = (c) + €(b) + §{a) + €.



Protocol Hoxiwe

Initialize: The parties first invoke the preprocessing to get the shared secret key
[a], a sufficient number of multiplication triples ({a), (b), (c)), and pairs of
random values (r), [r], as well as single random values [t], [e]. Then the steps
below are performed in sequence according to the structure of the circuit to
compute.

Input: To share P;’s input z;, P; takes an available pair (r),[r]. Then, do the
following;:

1. [r] is opened to P; (if it is known in advance that P; will provide input,
this step can be done already in the preprocessing stage).

2. P; broadcasts € < x; — 7.

3. The parties compute (z;) < () + €.

Add: To add two representations (z), (y),the parties locally compute (z) + (y).

Multiply: To multiply (z), (y) the parties do the following;:

1. They take two triples ({(a), (b), {c)), ({f}, (g), (h)) from the set of the avail-
able ones and check that indeed a - b = c.
— Open a representation of a random value [¢].
— partially open t - {a) — (f) to get p and (b) — (g) to get &
— evaluate t - (¢) — (h) — o - (f) — p- (g) — o - p, and partially open the
result.
— If the result is not zero the players abort, otherwise go on with
(a), (B), (c).
Note that this check could in fact be done as part of the preprocessing.
Moreover, it can be done for all triples in parallel, and so we actually need
only one random value ¢.
2. The parties partially open (z) — (a) to get € and (y) — (b) to get J and
compute (z) < {c) + €(b) + 5{a) + €

Output: We enter this stage when the players have (y) for the output value y, but
this value has been not been opened (the output value is only correct if players
have behaved honestly). We then do the following:

1. Let ai,...,ar be all values publicly opened so far, where
(aj) = (05, (az,1,---,ajn), (v(aj)1, ..., v(a;j)n)). Now, a random value [el
is opened, and players set e; = e’ for ¢ = 1,...,T. All players compute

a< 2, €5a;.

2. Each P; calls Fcou to commit to y; < Zj e;v(aj);. For the output value

(y), P; also commits to his share y;, and his share v(y); in the corresponding

MAC.

[] is opened.

4. Bach P; asks Fcou to open 7;, and all players check that a(a+37; €;4;) =
>-; vi- If this is not OK, the protocol aborts. Otherwise the players conclude
that the output value is correctly computed.

5. To get the output value y, the commitments to y;,v(y); are opened. Now,
y is defined as y := Y, y; and each player checks that a(y+96) = >, v(v)s,
if so, y is the output.

@

Fig. 1. The online phase.

An important note is that during our protocol we are actually not guaranteed
that we are working with the correct results, since we do not immediately check



the MACs of the opened values. During the first part of the protocol, parties
will only do what we define as a partial opening, meaning that for a value {(a),
each party P; sends a; to Py, who computes a = a; + - - - + a,, and broadcasts a
to all players. We assume here for simplicity that we always go via P;, whereas
in practice, one would balance the workload over the players.

As sketched earlier we postpone the checking to the end of the protocol in
the output phase. To check the MACs we need the global key . We get o from
the preprocessing but in a slightly different representation:

[[a]] = ((alv e 7an)a (ﬂla V(O‘)ia cee 77(a)i)i:1,...,n))7

where a = 37, a; and 3, y(@)! = af;. Player P; holds o, B, y(a)i, ..., v()i.
The idea is that v(a); « >, v(@)] is the MAC authenticating a under P;’s
private key f3;. To open [a] each P; sends to each P; his share «; of o and his
share 'y(a)g of the MAC on a made with P;’s private key and then P; checks
that Zj 'y(a){ = af;. (To open the value to only one party P;, the other parties
will simply send their shares only to P;, who will do the checking. Only shares
of @ and af; are needed.)

Finally, the preprocessing will also output n pairs of a random value r in
both of the presented representations (r), [r]. These pairs are used in the Input
phase of the protocol.

The full protocol for the online phase is shown in Figure 1. It assumes access
to a commitment functionality Fcoy that simply receives values to commit to
from players, stores them and reveals a value to all players on request from the
committer. Such a functionality could be implemented efficiently based, e.g., on
Paillier encryption or the DDH assumption [8, 14]. However, we show in the full
version that we can do ideal commitments based only on Fprgp and with cost
O(n?) computation and communication.

Complexity. The (amortized) cost of a secure multiplication is easily seen to
be O(n) local elementary operations in F,x, and communication of O(n) field
elements. Linear operations have the same computational cost but require no
communication. The input stage requires O(n) communication and computation
to open [r] to P; and one broadcast. Doing the output stage requires opening
O(n) commitments. In fact, the total number of commitments used is also O(n),
so this adds an O(n?) term to the complexity. In total, we therefore get the
complexity claimed in the introduction: O(n-|C|+n?) elementary field operations
and storage/communication complexity O(n - |C| + n?) field elements.

We can now state the theorem on security of the online phase, and its proof
can be found in the full version.

Theorem 1. In the Fprgp, Foou-hybrid model, the protocol Iloyyng implements
Fanpc with statistical security against any static* active adversary corrupting
up ton — 1 parties.

4 The protocol is in fact adaptively secure, here we only show static security since our
preprocessing is anyway only statically secure.



Based on a result from [18], we can also show a lower bound on the amount
of preprocessing data and work required for a protocol. The proof is in the full
version.

Theorem 2. Assume a protocol w is the preprocessing model can compute any
circuit over Fr of size at most S, with security against active corruption of
at most n — 1 players. We assume that the players supply roughly the same
number of inputs (O(S/n) each), and that any any player may receive output.
Then the preprocessing must output £2(Slogp*) bits to each player, and for any
player P;, there exists a circuit C' satisfying the conditions above, where secure
computation of C requires P; to execute an expected number of bit operations

that is £2(S log p*).

It is easy to see that our protocol satisfies the conditions in the the theorem and
that it meets the first bound up to a constant factor and the second up to a
poly-logarithmic factor (as a function of the security parameter).

3 The Abstract Somewhat Homomorphic Encryption
Scheme

In this section we specify the abstract properties we need for our cryptosystem.
A concrete instantiation is found in Section 6.

We first define the plaintext space M. This will be given by a direct product
of finite fields (F,x)* of characteristic p. Componentwise addition and multipli-
cation of elements in M will be denoted by + and -. We assume there is an
injective encoding function encode which takes elements in (F,«)® to elements in
a ring R which is equal Z" (as a Z-module) for some integer N. We also assume
a decode function which takes arbitrary elements in Z"V and returns an element
n (Fpx)°. We require that for all m € M that decode(encode(m)) = m and that
the decode operation is compatible with the characteristic of the field, i.e. for
any x € Z" we have decode(x) = decode(x (mod p)). And finally that the en-
coding function produces “short” vectors. More precisely, that for all m € (IF,x)*
|lencode(m)||o < 7 where 7 = p/2.

The two operations in R will be denoted by + and -. The addition operation
in R is assumed to be componentwise addition, whereas we make no assumption
on multiplication. All we require is that the following properties hold, for all
elements my, my € M;

decode(encode(my;) + encode(my)) = my + my,

decode(encode(m;) - encode(my)) = my - mo.

From now on, when we discuss the plaintext space M we assume it comes im-
plicitly with the encode and decode functions for some integer V. If an element
in M has the same component in each of the s-slots, then we call it a “diagonal”
element. We let Diag(x) for € F,x denote the element (z,z,...,z) € (Fpx)°.

Our cryptosystem consists of a tuple (ParamGen, KeyGen, KeyGen™, Enc, Dec)
of algorithms defined below, and parametrized by a security parameter .



ParamGen(1%, M): This parameter generation algorithm outputs an integer N
(as above), definitions of the encode and decode functions, and a description of
a randomized algorithm Dz, which outputs vectors in Z¢. We assume that Dg
outputs r with ||r||o < p, except with negligible probability. The algorithm DZ
is used by the encryption algorithm to select the random coins needed during
encryption. The algorithm ParamGen also outputs an additive abelian group G.
The group G also possesses a (not necessarily closed) multiplicative operator,
which is commutative and distributes over the additive group of G. The group G
is the group in which the ciphertexts will be assumed to lie. We write H and X for
the operations on GG, and extend these in the natural way to vectors and matrices
of elements of G. Finally ParamGen outputs a set C of allowable arithmetic SIMD
circuits over (F,x)°, these are the set of functions which our scheme will be able to
evaluate ciphertexts over. We can think of C' as a subset of F«[X1, Xa,..., X,],
where we evaluate a function f € F,x[X;,Xo,...,X,,] a total of s times in
parallel on inputs from (F,x)". We assume that all other algorithms take as
implicit input the output P «+ (1%, N, encode, decode, Dz, G, C) of ParamGen.
KeyGen(): This algorithm outputs a public key pk and a secret key sk.

Encpk(x,r): On input of x € ZN, r € 74, this deterministic algorithm outputs
a ciphertext ¢ € G. When applying this algorithm one would obtain x from the
application of the encode function, and r by calling Dg. This is what we mean
when we write Encpx(m), where m € M. However, it is convenient for us to
define Enc on the intermediate state, x = encode(m). To ease notation we write
Encpi(x) if the value of the randomness r is not important for our discussion.
To make our zero-knowledge proofs below work, we will require that addition
of V “clean” ciphertexts (for “small” values of V), of plaintext x; in Z, using
randomness r;, results in a ciphertext which could be obtained by adding the
plaintexts and randomness, as integer vectors, and then applying Encp(x, 1), i.e.

Encpk(x1 + -+ +xy,r1 + -+ +ry) = Encpu(xy,r1) B - - - B Encpe(xv, rv).

Decg(c): On input the secret key and a ciphertext ¢ it returns either an element
m € M, or the symbol L.

We are now able to define various properties of the above abstract scheme that we
will require. But first a bit of notation: For a function f € C we let n(f) denote
the number of variables in f, and we let fdenote the function on G induced by
f. That is, given f, we replace every + operation with a H, every - operation
is replaced with a & and every constant c is replaced by Encpk(encode(c),0).
Also, given a set of n(f) vectors X1,...,X,(s), we define f(x1,...,X,(yp)) in the
natural way by applying f in parallel on each coordinate.

Correctness: Intuitively correctness means that if one decrypts the result of a
function f € C applied to n(f) encrypted vectors of variables, then this should
return the same value as applying the function to the n(f) plaintexts. How-
ever, to apply the scheme in our protocol, we need to be a bit more liberal,
namely the decryption result should be correct, even if the ciphertexts we start
from were not necessarily generated by the normal encryption algorithm. They



only need to “contain” encodings and randomness that are not too large, such
that the encodings decode to legal values. Formally, the scheme is said to be
(Bpiains Brana, C)-correct if

Pr [P + ParamGen(1%, M), (pk,sk) < KeyGen(), for any f € C,
any X;, I'j, with ||X’L||OO < Bplai'ru ”rz”oo < Brand7 deCOde(Xi) € (Fpk)sa

~

i=1,...,n(f), and ¢; <= Encpr(x4,1i), ¢ < fler,. .o cnqp))
Dec(c) # f(decode(x1), ..., decode(xy(5))) | < e(k).

We will say that a ciphertext is (Bpigin, Brand, C)-admissible if it can be obtained
as the ciphertext c in the above experiment, i.e., by applying a function from C' to
ciphertexts generated from (legal) encodings and randomness that are bounded
by Bplain and Brangd.

KeyGen™*(): This is a randomized algorithm that outputs a meaningless public key

Elz. We require that an encryption of any message Enc F;<(x) is statistically indis-
tinguishable from an encryption of 0. Furthermore, if we set (pk, sk) < KeyGen()
and ;)\R + KeyGen™(), then pk and E)\lz are computationally indistinguishable. This
implies the scheme is IND-CPA secure in the usual sense.

Distributed Decryption: We assume, as a set up assumption, that a common
public key has been set up where the secret key has been secret-shared among
the players in such a way that they can collaborate to decrypt a ciphertext. We
assume throughout that only (Bpigin, Brand, C)-admissible ciphertexts are to be
decrypted, this constraint is guaranteed by our main protocol.

We note that some set-up assumption is always required to show UC security
which is our goal here. Concretely, we assume that a functionality Frpygen 1S
available, as specified in Figure 2. It basically generates a key pair and secret-
shares the secret key among the players using a secret-sharing scheme that is
assumed to be given as part of the specification of the cryptosystem. Since we
want to allow corruption of all but one player, the maximal unqualified sets must
be all sets of n — 1 players.

Functionality Fxevcen

1. When receiving “start” from all honest players, run P < ParamGen(1~, M),
and then, using the parameters generated, run (pk,sk) < KeyGen() (recall P,
and hence 1%, is an implicit input to all functions we specify). Send pk to the
adversary.

2. We assume a secret sharing scheme is given with which sk can be secret-shared.
Receive from the adversary a set of shares s; for each corrupted player P;.

3. Construct a complete set of shares (s1,...,$n) consistent with the adversary’s
choices and sk. Note that this is always possible since the corrupted players
form an unqualified set. Send pk to all players and s; to each honest P;.

Fig. 2. The Ideal Functionality for Distributed Key Generation



We note that it is possible to make a weaker set-up assumption, such as
a common reference string (CRS), and using a general UC secure multiparty
computation protocol for the CRS model to implement Fipygry. While this may
not be very efficient, one only needs to run this protocol once in the life-time of
the system.

We also want our cryptosystem to implement the functionality FgpyGexDec
in Figure 3, which essentially specifies that players can cooperate to decrypt a
(Bpiains Brand, C)-admissible ciphertext, but the protocol is only secure against
a passive attack: the adversary gets the correct decryption result, but can decide
which result the honest players should learn.

Functionality FxevGenDec

1. When receiving “start” from all honest players, run ParamGen(1%, M), and
then, using the parameters generated, run (pk, sk) <— KeyGen(). Send pk to the
adversary and to all players, and store sk.

2. Hereafter on receiving “decrypt ¢” for (Bpiain, Brand, C')-admissible ¢ from all
honest players, send ¢ and m < Dec«(c) to the adversary. On receiving m’
from the adversary, send “Result m’” to all players, Both m and m’ may be a
special symbol L indicating that decryption failed.

3. On receiving “decrypt ¢ to P;” for admissible c, if P; is corrupt, send ¢, m <
Decs(c) to the adversary. If P; is honest, send ¢ to the adversary. On receiving
¢ from the adversary, if 6 € M, send L to P;, if § € M, send Decs(c)+§ to P;.

Fig. 3. The Ideal Functionality for Distributed Key Generation and Decryption

We are now finally ready to define the basic set of properties that the under-
lying cryptosystem should satisfy, in order to be used in our protocol. Here we
use an “information theoretic” security parameter sec that controls the errors in
our ZK proofs below.

Definition 1. (Admissible Cryptosystem.) Let C contain formulas of form
(14 4xn) (Y14 Fyn)+21+ - +2n, as well as all “smaller” formulas , i.e.,
with a smaller number of additions and possibly no multiplication. A cryptosys-
tem is admissible if it is defined by algorithms (ParamGen, KeyGen, KeyGen™, Enc,
Dec) with properties as defined above, is (Bpiqin, Brand, C)-correct, where

Bplain =N-r- SEC2 . 2(1/2—0—1/)sec7 Brand = d- - SEC2 . 2(1/2+u)sec;

and where v > 0 can be an arbitrary constant. Finally there exist a secret
sharing scheme as required in FxeyGen and a protocol IkeyGenDec With the prop-
erty that when composed with Fxeygen it securely implements the functionality
]:KEYGENDEC-

The set C' is defined to contain all computations on ciphertext that we need
in our main protocol. Throughout the paper we will assume that Bpigin, Brand
are defined as here in terms of 7, p and sec. This is because these are the bounds
we can force corrupt players to respect via our zero-knowledge protocol, as we
shall see.



4 Zero-Knowledge Proof of Plaintext Knowledge

This section presents a zero-knowledge protocol that takes as input sec cipher-
texts ci,...,csec generated by one of the players in our protocol, who will act
as the prover. If the prover is honest then ¢; = Encpk(x;,r;), where x; has been
obtained from the encode function, i.e. ||X;||cc < 7, and r; has been generated
from D;‘f (so we may assume that ||r;||s < p). Our protocol is a zero-knowledge
proof of plaintext knowledge (ZKPoPK) for the following relation:

Rpopk = { (.’ﬂ, w)| T = (pkv C)v w = ((Xla rl)a veey (Xseca rsec)) :
c=(c1,...,Csc), ¢ + Encpu(x;,1;),
||XZ||<>0 < Bplai’ru deCOde(Xi) € (]Fpk)57 ||rzH<x> < Brand }

The zero-knowledge and completeness properties hold only if the ciphertexts ¢;
satisfy [|X;]jeo < 7 and ||ri]|oo < p.

In our preprocessing protocol, players will be required to give such a ZKPoPK
for all ciphertexts they provide. By admissibility of the cryptosystem, this will
imply that every ciphertext occurring in the protocol will be (Bpiqgin, Brand, C)-
admissible and can therefore be decrypted correctly. The ZKPoPK can also be
called with a flag diag which will modify the proof so that it additionally proves
that decode(x;) is a diagonal element.

The protocol is not meant to implement an ideal functionality, but we can
still use it and prove UC security for the main protocol, since we will always
generate the challenge e by calling the Frayp ideal functionality (see the full
version for more details).

The protocol and its proof of security are given in the full version and its
computational complexity per ciphertext is essentially the cost of a constant
number of encryptions. In the full version, we also give a variant of the ZK proof
that allows even smaller values for Bpigin, Brand, namely Bpigin = N - T - sec? .
gsec/ 248 Brond = d - p- sec? . gsec/ 248 and hence improves performance further.
This variant is most efficient when executed using the Fiat-Shamir heuristic
(although it can also work without random oracles), and we believe this variant
is the best for a practical implementation.

5 The Preprocessing Phase

In this section we construct the protocol IIpgrgp which securely implements the
functionality Fprep in the presence of functionalities FikpyGepre (Figure 3)
and Fgranp - The preprocessing uses the above abstract cryptosystem with M =
(F,x)*, but the online phase is designed for messages in . Therefore, we extend
the notation (-) and [-] to messages in M: since addition and multiplication on
M are componentwise, for m = (my,...,my), we define (m) = ({(my), ..., (ms))
and similarly for [m]. Conversely, once a representation (or a pair, triple) on
vectors is produced in the preprocessing, it will be disassembled into its coor-
dinates, so that it can be used in the online phase. In Figures 4,5 and 6, we



introduce subprotocols that are accessed by the main preprocessing protocol in
several steps. Note that the subprotocols are not meant to implement ideal func-
tionalities: their purpose is merely to summarize parts of the main protocol that
are repeated in various occasions. Theorem 3 below is proved in the full version.

Theorem 3. The protocol Uprpp (Figure 7) implements Fprep with computa-
tional security against any static, active adversary corrupting up to n—1 parties,
i the FKeyGen, FRanp-hybrid model when the underlying cryptosystem is admis-
sible®.

Protocol Reshare
Usage: Input is em, where em = Encpi(m) is a public ciphertext and a parameter
enc, where enc = NewCiphertext or enc = NoNewCiphertext. Output is a share
m; of m to each player P;; and if enc = NewCiphertext, a ciphertext el,. The
idea is that em could be a product of two ciphertexts, which Reshare converts
to a “fresh” ciphertext el,. Since Reshare uses distributed decryption (that may
return an incorrect result), it is not guaranteed that em and e}, contain the
same value, but it is guaranteed that >, m; is the value contained in €m.
Reshare(em, enc) :
1. Each P; samples a uniform f; € (F,«)°. Define f := "  fi.
2. Each P; computes and broadcasts eg, <— Encp(f;).
3. Each P; runs Ilzkpork as a prover on eg,. The protocol aborts if any proof
fails.
The players compute ef <— eg, B ---Hes,, and em4r < em Her.
The players invoke FkeyGenDec t0 decrypt em+s and thereby obtain m + f.
Py sets m1 + m + f — f1, and each player P; (i # 1) sets m; + —f;.
If enc = NewCiphertext, all players set e, < Encpr(m + f)Hee, B--- B
ef,, where a default value for the randomness is used when computing
Encpr(m + ).

oot

Fig. 4. The sub-protocol for additively secret sharing a plaintext m € (F,x)® on input
a ciphertext em = Encpi(m).

6 Concrete Instantiation of the Abstract Scheme based
on LWE

We now describe the concrete scheme, which is based on the somewhat homo-
morphic encryption scheme of Brakerski and Vaikuntanathan (BV) [5]. The main
differences are that we are only interested in evaluation of circuits of multiplica-
tive depth one, we are interested in performing operations in parallel on multiple
data items, and we require a distributed decryption procedure. In this section we
detail the scheme and the distributed decryption procedure; in the full version
we discuss security of the scheme, and present some sample parameter sizes and
performance figures.

5 The definition of admissible cryptosystem demands a decryption protocol that im-
plements FxevaenDre based on Fkeyvcen, hence the theorem only assumes FigpyGen-



Protocol PBracket
Usage: On input shares vy, ..., v, privately held by the players and public cipher-
text ey, this protocol generates [v]. It is assumed that Y, v; is the plaintext
contained in ey .
PBracket(vi,...,Vn,ev) :
1. Fori=1,...,n
(a) All players set e, < eg, e, (note that eg, is generated during the
initialization process, and known by every player)
(b) Players generate (77, ...7") < Reshare(e.,, NoNewCiphertext), so each
player P; gets a share fyf of v- ;.
2. Output the representation [v] = (V1,...,Vn, (Bis Yy« s Vh)ie1,...n)-

Fig. 5. The sub-protocol for generating [v].

Protocol PAngle
Usage: On input shares vy, ..., Vv, privately held by the players and public cipher-
text ey, this protocol generates (v). It is assumed that Y, v; is the plaintext
contained in ey .
PAngle(vi,...,vp,eyv) :
1. All players set ev.a < ev K es (note that e, is generated during the ini-
tialization process, and known by every player)
2. Players generate (y1,...,7n) < Reshare(ev.o, NoNewCiphertext), so each
player P; gets a share 7; of - v.
3. Output representation (v) = (0,V1,..., Vi, Y1y, Vn)-

Fig. 6. The sub-protocol for generating (v).

ParamGen(1", M): Recall the message space is given by M = (F,x)° for two
integers k and s, and a prime p, i.e. the message space is s copies of the finite field
F,x. To map this to our scheme below, one first finds a cyclotomic polynomial
F(X) := &,(X) of degree N := ¢(m), where N is lower bounded by some
function of the security parameter k. The polynomial F(X) needs to be such
that modulo p the polynomial F'(X) factors into I’ irreducible factors of degree k'
where I’ > s and k divides k’. We then define an algebra A, as A, :=F,[X]/F(X)
and we have an embedding of M into A,, ¢ : M — A,. By “lifting” modulo p we
see that there is a natural inclusion ¢ : A, — Z", which maps the polynomial of
degree less than N with coefficients in I, into the integer vector of length NV with
coefficients in the range (—p/2, ..., p/2]. The encode function is then defined by
(¢(m)) for m € (F,r)*, with decode defined by ¢~ (x (mod p)) for x € ZN. It
is clear, by choice of the natural inclusion ¢, that ||encode(m)||oc < p/2 = T.

We pick a large integer ¢, whose size we will determine later, and defined
A, = (Z/qZ)[X]/F(X), i.e. the ring of integer polynomials modulo reduction
by F(X) and ¢. In practice we consider the image of encode to lie in A,, and
thus we abuse notation, by writing addition and multiplication in A, by + and -.
Note, that this means that applying decode to elements obtained from encode
followed by a series of arithmetic operations may not result in the value in M
which one would expect. This corresponds to where our scheme can only evaluate
circuits from a given set C.




Protocol Ilprep

Usage: The Triple-step is always executed sec times in parallel. This ensures that
when calling IIzkpork, we can always give it the sec ciphertexts it requires as
input. In addition both IIzkpork and Ilprep can be executed in a SIMD fashion,
i.e. they are data-oblivious bar when they detect an error. Thus we can execute
IIzxprorx and Ilprep on the packed plaintext space (Fpk)s. Thereby, we generate
s - sec elements in one go and then buffer the generated triples, outputting the
next unused one on demand.

Initialize: This step generates the global key o and “personal keys” ;.

1. The players call “start” on FkevGexDec to obtain the public key pk

2. Each P; generates a MAC-key 3; € ]Fpk

3. Each P; generates a; € ]Fpk. Let o := Z?:l a;

4. Each P; computes and broadcasts
€a; + Encpi(Diag(ay)), eg, < Encpk(Diag(8:))

5. Each P; invokes Ilzkpopx (with diag set to true) as prover on input
(éa;s---,€a;) and on input (es,,...,eg,), where eq,, e, are repeated sec
times, which is the number of ciphertexts Ilzkpoprk requires as input. (This
is not very efficient, but only needs to be done once for each player.)

6. All players compute eq < eq, B --- Hes,, and generate [Diag(a)] «
PBracket(Diag(a1), .. ., Diag(an), ea)

Pair: This step generates a pair [r], (r), and can be used to generate a single value
[r], by not performing the call to Pangle

1. Each P; generates r; € (F,r)% Let r:=3 " | r;
Each P; computes and broadcasts ey, <— Encpk(r;). Let e = e, B---Hey,
Each P; invokes Ilzkpopk as prover on the ciphertext he generated
Players generate
[r] + PBracket(ri,...,rn,er), (r) < PAngle(ri,...,rn,er)
Triple: This step generates a multiplicative triple (a), (b}, (c)

1. Each P; generates a;, b; € (F,x)°. Let a:=3_" 1 a;, b:=3" b;

2. Each P; computes and broadcasts ea; < Encpe(ai), eb; < Encpc(bi)
3. Each P; invokes Ilzkpopk as prover on the ciphertexts he generated.
4
5

WD

. The players set eq < ea, H---Hea, and e, < ep, B---Hep,
. Players generate
(a) < PAngle(ai,...,an,ea), (b) < PAngle(by,..., by, ep).
6. All players compute ec <+ ea X ep
7. Players set (c1,...,Cn,ee) < Reshare(ec, NewCiphertext).
8. Players generate (c) +— PAngle(c, ..., cp,€,).

Fig. 7. The protocol for constructing the global key [o], pairs [r], (r) and multiplicative
triples (a), (b), {c).

The ciphertext space G is defined to be Ag, with addition H defined compo-
nentwise. The multiplicative operator X is defined as follows

(ao,al,O) & (bo,bl,O) = (ao . bo,a1 . bo +a0 . bl,—al . bl),

i.e. multiplication is only defined on elements whose third coefficient is zero.
We define Dg as follows: The discrete Gaussian Dy~ 4, with Gaussian param-
eter s, is defined to be the random variable on Zév (centered around the origin)



obtained from sampling x € RY, with probability proportional to exp(— -
|x||2/5?), and then rounding the result to the nearest lattice point and reduc-
ing it modulo ¢g. Note, sampling from the distribution with probability density
function proportional to exp(—n - ||x||2/5?), means using a normal variate with
mean zero, and standard deviation r := s/4/2 - 7. In our concrete scheme we set
d := 3 - N and define Dz to be the distribution defined by (Dz~ ). Note, that
in the notation Dg the implicit dependence on ¢ has been suppressed to ease
readability. The determining of ¢ and r as functions of all the other parameters,
we leave until we discuss security of the scheme.

KeyGen(): We will use the public key version of the Brakerski—Vaikuntanathan
scheme [5]. Given the above set up, key generation proceeds as follows: First one
samples elements a < A; and s,e <~ Dy~ ;. Then treating s and e as elements
of A, one computes b < (a-s) + (p-e). The public and private key are then set
to be pk « (a,b) and sk « s.

Encpk(x,1): Given a message x < encode(m) where m € M, and r € D%, we

p7
proceed as follows: The element r is parsed as (u,v,w) € (ZV)3. Then the
encryptor computes ¢g + (b-v)+ (p-w)+x and ¢; + (a-v)+ (p-u). Finally
returning the ciphertext (cg, c1,0).

Decek(c): Given a secret key sk = s and a ciphertext ¢ = (cg, ¢1, ¢2) this algorithm
computes the element in A, satisfying t = co—(s-c1)—(s-s-c2). On reduction by
q the value of ||t]|» will be bounded by a relatively small constant B; assuming
of course that the “noise” within a ciphertext has not grown too large. We shall
refer to the value t mod g as the “noise”, despite it also containing the message
to be decrypted. At this point the decryptor simply reduces t modulo p to obtain
the desired plaintext in A,, which can then be decoded via the decode algorithm.

KeyGen*(): This simply samples a, b« A, and returns BE = (a, B)

Following the discussion in [5] we see that with this fized ciphertext space,
our scheme is somewhat homomorphic. It can support a relatively large number
of addition operations, and a single multiplication.

Distributed Version We now extend the scheme above to enable distributed
decryption. We first set up the distributed keys as follows. After invoking the
functionality for key generation, each player obtains a share sk; = (s; 1,8;2),
these are chosen uniformly such that the master secret is written as

S:SI,1+"‘+STL,1; 5'5251’2+"'+Sn72.

As remarked earlier this one-time setup procedure can be accomplished by stan-
dard UC-secure multiparty computation protocols such as that described in [3].
The following theorem is proved in the full version. It depends on the constant
B defined above. In the full version we compute the value of B when the input
ciphertext is (Bpiqin, Brand, C)-admissible, and show how to choose parameters
for the cryptosystem such that the required bound on B is satisfied.



Theorem 4. In the Fxpygen-hybrid model, the protocol Uppge (Figure 8) im-
plements FxeyGenDec With statistical security against any static active adversary
corrupting up to n — 1 parties if B+ 2% - B < q/2.

Protocol IIppgc

Initialize: Each party P; on being given the ciphertext ¢ = (co,c1,c2), and an
upper bound B on the infinity norm of t above, computes

. co—(si1-c1) —(si2-co)ifi=1
Ve {—(Si,l c1) —(si2-c2) ifiFEl

and sets t; « v; + p - r; where r; is a random element with infinity norm
bounded by 2°*°- B/(n - p).
Public Decryption: All the players are supposed to learn the message.
— Each party P; broadcasts t;
— All players compute t’ < t; + --- + t,, and obtain a message m’' <+
decode(t’ mod p).
Private Decryption: Only player P; is supposed to learn the message.
— Each party P; sends t; to P;
— Pj computes t’' < t1 + - - - +t,, and obtain a message m’ « decode(t’ mod
p).

Fig. 8. The distributed decryption protocol.
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