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Abstract. The goal of randomness extraction is to distill (almost) per-
fect randomness from a weak source of randomness. When the source out-
puts a classical string X, many extractor constructions are known. Yet,
when considering a physical randomness source, X is itself ultimately
the result of a measurement on an underlying quantum system. When
characterizing the power of a source to supply randomness it is hence a
natural question to ask, how much classical randomness we can extract
from a quantum system. To tackle this question we here take on the
study of quantum-to-classical randomness extractors (QC-extractors).

We provide constructions of QC-extractors based on measurements in
a full set of mutually unbiased bases (MUBs), and certain single qubit
measurements. The latter are particularly appealing since they are not
only easy to implement, but appear throughout quantum cryptography.
We proceed to prove an upper bound on the maximum amount of ran-
domness that we could hope to extract from any quantum state. Some of
our QC-extractors almost match this bound. We show two applications
of our results.

First, we show that any QC-extractor gives rise to entropic uncertainty
relations with respect to quantum side information. Such relations were
previously only known for two measurements. In particular, we obtain
strong relations in terms of the von Neumann (Shannon) entropy as well
as the min-entropy for measurements in (almost) unitary 2-designs, a
full set of MUBs, and single qubit measurements in three MUBs each.

Second, we finally resolve the central open question in the noisy-storage
model [Wehner et al., PRL 100, 220502 (2008)] by linking security to the
quantum capacity of the adversary’s storage device. More precisely, we
show that any two-party cryptographic primitive can be implemented
securely as long as the adversary’s storage device has sufficiently low
quantum capacity. Our protocol does not need any quantum storage to
implement, and is technologically feasible using present-day technology.

Keywords: randomness extractors, randomness expansion, entropic un-
certainty relations, mutually unbiased bases, quantum side information,
two-party quantum cryptography, noisy-storage model.
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1 Introduction

Randomness is an essential resource for information theory, cryptography, and
computation. However, most sources of randomness exhibit only weak forms
of unpredictability. The goal of randomness extraction is to convert such weak
randomness into (almost) uniform random bits. Classically, a weakly random
source simply outputs a string X where the ‘amount’ of randomness is measured
in terms of the probability of guessing the value of X ahead of time. That is, it
is measured in terms of the min-entropy Hmin(X) = − logPguess(X). To convert
X to perfect randomness, one applies a function Ext that takes X, together
with a shorter string R of perfect randomness (the seed) to an output string
K = Ext(X,R). The use of a seed is thereby necessary to ensure that the
extractor works for all sources X about which we know only the min-entropy,
but no additional details of the source. Much work has been invested into showing
that particular classes of functions have the property that K is indeed very close
to uniform as long as the min-entropy of the source Hmin(X) is large enough
(see [37] for a survey).

Yet, for most applications this is not quite enough, and we want an even
stronger statement. In particular, imagine that we hold some quantum system
E containing side information about X that increases our guessing probability
to Pguess(X|E). For example, such side information could come from an earlier
application of an extractor to the same source. Intuitively, one would not talk
about randomness if e.g., the output is uniformly distributed, but identical to an
earlier output. In a cryptographic setting, side information can also be gathered
by an adversary during the course of the protocol. We thus ask that the output
is perfectly random even with respect to such side information, i.e., uniform
and independent of E. Classically, it is known that extractors are indeed robust
against classical side information [23], yielding a uniform output K, whenever
the min-entropy about X given access to side information E (Hmin(X|E) =
− logPguess(X|E)) is sufficiently high. Especially with respect to cryptographic
applications, we thereby again want extractors that work for any source X of
sufficiently high entropy Hmin(X|E) without any additional assumptions about
the source.

Recently, it has been recognized that since the underlying world is not clas-
sical, E may in fact hold quantum side information about X [21,35]. That this
adds substantial difficulty to the problem was emphasized in [17] where it was
shown that there are in fact situations where using the same extractor gives a
uniform output K if E is classical, but is entirely predictable when E is quantum.
Positive results were obtained in [35,23,34,42], eventually culminating in [39,12],
proving that a wide class of classical extractors (with relatively short seed) yield
a uniform output, as long as Hmin(X|E) is sufficiently large.

Yet, in a fully quantum world we might ask ourselves: where does X itself
come from? How can we hope to harness weak sources to obtain a surplus of
classical randomness? Indeed, for any physical source hoping to create fresh
randomness, X is the result of a measurement on a quantum system A. That is,
we can view the source as consisting of in fact two processes: First, a quantum



source emits a state ρA. Second, a measurement takes place yielding the classical
string X. Note that quantum mechanics does allow many different measurements
on ρA, and hence the question arises whether all such measurements are equally
powerful at yielding a (weakly) random classical string X, or whether some are
more useful to us than others. As such, it becomes clear that when trying to
study our ability to extract randomness from any physical source, it is natural
to ask how much randomness we can obtain from ρA itself, rather than a classical
distribution X that might be the outcome of a particular measurement.

The problem of extracting randomness from X alone is further complicated
by the fact that it is typically very hard to bound Hmin(X|E), when X is the
result of quantum measurements on A, even if we know stringent bounds on the
quantum correlations between A and E to begin with. When E is trivial, entropic
uncertainty relations [45] give such bounds when we are willing to average over
a few randomly chosen measurements. A crude bound on Hmin(X|E) can then
be obtained by assuming that the size of E is limited. But even classically, it
is easy to see that there exist scenarios where bounding the adversaries’ knowl-
edge simply by his memory size yields very weak bounds [24]. Another approach
to bounding Hmin(X|E), common in e.g., Quantum Key Distribution (QKD),
is possible in the case when randomness is extracted from a state ρABE where
measurements are made on both A and B to obtain an estimate of Hmin(X|E)
where X is obtained from A alone [41,8,31,9]. Part of the state is thereby con-
sumed during the estimation process, which itself requires randomness. It is
nevertheless possible to have an overall gain in randomness. For example, it is
known that if measurements4 between systems A and B lead to a so-called Bell
inequality violation, then E knows little about X [8,31,9]. Clearly, making such
an estimate is only possible in a special setting where the states have a particular
form ρABE , and we are given access to B and A.

1.1 Quantum to classical extractors

This leads us to study quantum-to-classical randomness extractors (QC-
extractors). Our goal is to answer the following question: how can we extract
classical randomness from a physical source ρAE by performing measurements
on the quantum state ρA? In analogy to classical extractors, we thereby want
to obtain randomness from the source given only a minimal guarantee about its
randomness - i.e., like min-entropy Hmin(X|E) for classical sources. It is impor-
tant to note that unlike the classical world, quantum mechanics does allow for
the creation of true randomness if we are given full control of the source and
can prepare any state ρA at will.5 However, we want our extractors to work for
any unknown source as long as it has sufficiently high entropy.

As opposed to classical-to-classical extractors (CC-extractors) given by func-
tions Ext(·, R) mapping the outcome of the randomness source to a string K,

4 That satisfy the no-signalling condition.
5 For example, we could prepare the state |+〉 = (|0〉+ |1〉)/

√
2 and measure it in the

computational basis, yielding a truly random outcome. Yet, this would correspond
to controlling and knowing details of the source.



a QC-extractor is described by projective measurements whose outcomes corre-
spond to a classical string K. That is, a QC-extractor is a set of measurements{
M1

A→K , . . . ,ML
A→K

}
, where the random seed R determines the measurement

MR
A→K that we will perform (see Section 3 for a detailed explanation and a

formal definition).6

When talking about quantum states ρAE , what is the relevant measure of
how weak or strong a source is? To gain some intuition on what the relevant
measure should be, consider the case where ρAE is the maximally entangled
state between A and E. Intuitively, this is the strongest quantum correlation
that can exist between two systems. It is not hard to see that if we measure A in
any basis to obtain some outcome X, and later communicate the choice of basis
to an adversary holding E, then the adversary can guess X perfectly. Intuitively,
we would thus expect that the relevant measure of how weak a quantum source is
with respect to E involves a measure of the amount of entanglement between A
and E. It turns out that the conditional min-entropy Hmin(A|E) is exactly such
a measure [22], and we find that it is indeed the quantity that determines how
many classical random bits we can hope to extract from A. That this is rather
analogous to the classical case is very appealing. However, unlike for classical A,
Hmin(A|E) can be negative if A is quantum (see below).

Note that in a quantum setting, we could also consider a quantum-to-
quantum extractor (QQ-extractor). That is, an extractor in which we do not
measure but merely ask that the resulting state is quantumly fully random
(i.e., maximally mixed) and uncorrelated from E. Clearly, any QQ-extractor
also forms a QC-extractor since any subsequent measurement on the maximally
mixed state has a uniform distribution over outcomes. As such a QQ-extractor
is stronger than a QC-extractor since for the latter we only require the output
state to be close to uniform after performing a measurement.7 Constructions
for such extractors are indeed well known in quantum information theory as a
consequence of a notion known as ‘decoupling’, which plays a central role in
quantum information theory (see [18,13,14] and references therein). In general,
a map that transforms a state ρAE into a state that is close to a product state
σA ⊗ ρE is a decoupling map. Decoupling processes thereby typically take the
form of choosing a random unitary from a set {U1, . . . , UL}, applying this unitary
to the system A = A1A2 and tracing out (i.e., ignoring) the system A2. For cer-
tain classes of unitaries such as (almost) unitary 2-designs [14,38] (see below) the
resulting state ρA1E is close to maximally mixed on A1 and uncorrelated from E,

6 For quantum information theorists, note that one can of course performing successive
measurements - however, recall that we are interested in how much randomness
we can obtain from an unknown source using a single measurement. The latter is
furthermore motivated by experimental situations where successive measurements
are typically very hard to implement.

7 In quantum mechanics, it is possible to obtain a uniform distribution over outcomes
even if the state was not maximally mixed. E.g., consider measuring the pure state
|0〉〈0| in the Fourier basis.



whenever Hmin(A|E) is sufficiently large. Measurements consisting of applying
such a unitary, followed by a measurement on A1 thus also yield QC-extractors.8

The authors of [2] also proposed a definition of quantum extractors that is
indeed somewhat similar to a QQ-extractor, however without any side informa-
tion E. Our definitions (see Section 3) impose two important requirements not
present in [2, Definition 5.1]. Firstly, we require the output of the extractor to
be unpredictable for any, possibly quantum, adversary with access to side in-
formation E provided Hmin(A|E) is large enough. Secondly, we consider strong
extractors so that even given the seed R, the output of the extractor cannot be
predicted. This allows us to employ our extractor for cryptographic purposes.
It also means that the output K together with R are jointly close to uniform,
meaning that we have effectively created more almost perfect randomness than
we invested in the seed.

QC-extractors. We give two novel constructions of QC-extractors.9 The
first one involves a full set of mutually unbiased bases (MUBs) and pair-wise
independent permutations (Theorem 3). This construction is more appealing
than unitary 2-designs because it is combinatorially simpler to describe and
computationally more efficient, while having the same output size.
Our second construction (Theorem 4) is composed of unitaries acting on
single qudits followed by some measurements in the computational basis.
We also refer to these as bitwise QC-extractors. An appealing feature of the
measurements defined by these unitaries is that they can be implemented
with current technology. In addition to computational efficiency, the fact
that the unitaries act on a single qubit is often a desirable property for the
design of cryptographic protocols in which the creation of randomness is not
the only requirement for security. Our example application below (see also
Section 5) illustrates this.
Finally, we also prove in Proposition 1 that the maximum amount of ran-
domness one can hope to extract is roughly n+Hmin(A|E), where n denotes
the input size. This upper bound can indeed be almost achieved by means
of, e.g., our full set of MUBs QC-extractor. We also establish basic upper
and lower bounds on the seed size for QC-extractors (see Table 1).

The technique we use to prove that our constructions are QC-extractors is to
bound the distance between the output of the extractor and the desired output
in Hilbert-Schmidt norm (cf. [38]). For the full set of MUBs, this distance can
even be computed exactly. We use the fact that the set of all the MUB vectors
forms a complex projective 2-design and that the set of permutations is pair-
wise independent. For our second construction, the analysis uses similar ideas

8 For decoupling experts, note that the measurement map in a QC-extractor can
be understood as a decoupling map. We would like to emphasize though that our
QC-extractor results do not follow from previous work on decoupling, and our mea-
surements have many nice properties not shared by unitaries used previously for
decoupling.

9 That is, not following from results on QQ-extractors (i.e., from general decoupling
theorems in quantum information theory).



in a more involved calculation. Our upper bound on the amount of extractable
randomness follows from simple monotonicity properties of the min-entropy. The
upper bound on the seed size follows from a non-explicit construction involving
concentration-of-measure techniques.

1.2 Application to entropic uncertainty relations

One of the fundamental ideas in quantum mechanics is the uncertainty principle.
The security of essentially all quantum cryptographic protocols is founded on
its existence. Intuitively, it states that even with complete knowledge about
the quantum state ρA of a system A, it is impossible to predict the outcomes
of all possible measurements on A with certainty. In an information theoretic
context it is very natural to quantify this lack of knowledge in terms of entropic
uncertainty relations (see [45] for a survey). Apart from their deep significance in
the foundations of quantum mechanics, entropic uncertainty relations are crucial
tools in quantum information theory and quantum cryptography. The most well-
known relation is for two measurements M1

A→K ,M2
A→K and reads [27]

1

2

2∑
j=1

H(K)ρj ≥ log
1

c
, (1)

where H(K)ρj denotes the Shannon entropy of the post-measurement proba-

bility distributions ρjK =Mj
A→K(ρA), and c measures the overlap between the

measurements. Note that for any quantum state ρA and measurements for which
c 6= 1, at least one of the entropies has to be greater than zero. In other words,
it is impossible to predict the outcomes of both measurements with certainty.
Uncertainty relations are thereby called strong, if log(1/c) is large.

Just as extractors can depend on side information E, it is important to real-
ize that also uncertainty should in fact not be treated as an absolute, but with
respect to the prior knowledge of an observer who has access to a quantum sys-
tem E [46]. As an illustration, recall the example from above where ρAE is the
maximally entangled state. In this case, for any measurement on A, there is a
corresponding measurement on E that reproduces the measurement outcomes.
I.e., there is no uncertainty in the outcome at all! In order to take into account
possibly quantum information about A, one needs to prove new entropic uncer-
tainty relations that would have an additional term quantifying the quantum side
information. Unfortunately, up to this day, we only know such relations for two
measurements [4,33,41]. Intuitively, uncertainty relations for two measurements
are much easier to prove than relations for more measurements as in this case
uncertainty coincides with another foundational notion in quantum information,
complementarity. This notion is relevant when we perform two measurements in
succession and was an essential ingredient in the proofs. However, it does not
carry over to three or more measurements. Here, we prove the following results.

Uncertainty relations with quantum side information for more
than two measurements. We show that any set of measurements form-
ing a QC-extractor yields an entropic uncertainty relation with respect to



quantum side information. We thereby obtain relations both for the usual
von Neumann (Shannon) entropy, as well as the min-entropy. The latter
is relevant for cryptographic applications. This yields the first uncertainty
relations with quantum side information for more than two measurements.
From our QC-extractors, we obtain strong uncertainty relations for (almost)
unitary 2-designs, measurements in a full set of mutually unbiased bases
(MUBs) on the whole space, as well as on many single qudits. The latter
are the measurements used e.g., in the six-state protocol of QKD, and are
particularly relevant for applications in quantum cryptography.

Note that uncertainty relations in terms of the min-entropy effectively help us
to bound Hmin(X|ER), where R is the seed for the QC-extractor (see Section 4
for details). For example, for the full set of MUBs we prove that

Hmin(X|ER) & log |A|+Hmin(A|E) , (2)

where the output of the measurements is called X. Since Hmin(A|E) is nega-
tive when A and E are entangled, one obtains less uncertainty in this case (as
expected when considering the example of a maximally entangled state given
above). Of course, given such a bound, we could in turn apply a CC-extractor to
the weakly random string X to obtain a uniform K. This underscores the beau-
tiful relation between the concept of randomness extraction from a quantum
state, and the notion of uncertainty relations with side information in quantum
physics. From a QC-extractor, we obtain uncertainty relations. In turn, from
any measurements inducing strong uncertainty relations plus a CC-extractor,
we obtain a QC-extractor.10

1.3 Application to cryptography

Our second application is to proving security in the noisy-storage model. Unfor-
tunately, it turns out that even quantum communication does not enable us to
solve two-party cryptographic problems between two parties that do not trust
each other [25]. Such problems include e.g., the well-known primitives bit com-
mitment and oblivious transfer [26,7,30,5], of which merely very weak variants
are possible. How can this be when quantum communication offers such great
advantages when it comes to distributing encryption keys? Intuitively, the se-
curity proof of QKD is considerably simplified by the fact that Alice and Bob
do trust each other, and can collaborate to check for any eavesdropping activ-
ity. For example, as mentioned above, when Alice and Bob share a state ρABE ,
where the eavesdropper holds E, they can use up part of the state to obtain an
estimate of Hmin(X|E), where X is a measurement outcome of the remaining
part of Alice’s system.

Yet, since two-party cryptographic protocols are a central part of modern
cryptography, one is willing to make assumptions on how powerful the adver-
sary can be in order to obtain security. Classically, these assumptions typically

10 Note that measurements plus a classical post-processing effectively forms a new,
larger, set of measurements.



consist of two parts. First, one assumes that a particular problem requires a lot
of computational resources to solve in some precise complexity-theoretic sense.
Second, one assumes that the adversary does indeed have insufficient computa-
tional resources. However, we might instead ask whether there are other, more
physical assumptions that enable us to solve such tasks?

Classically, it is possible to obtain security, when we are willing to assume
that the adversary’s classical memory is limited in size [29,6]. Yet, apart from
the fact that classical storage is by now cheap and plentiful, the beautiful idea of
assuming a limited classical storage has one rather crucial caveat: any classical
protocol in which the honest players need to store n classical bits to execute the
protocol can be broken by an adversary who is able to store more than O(n2)
bits [15]. Motivated by this unsatisfactory gap, it was thus suggested to assume
that the attacker’s quantum storage was bounded [11,10], or, more generally,
noisy [44,36,24]. The central assumption of the so-called noisy-storage model is
that during waiting times ∆t introduced in the protocol, the adversary can only
keep quantum information in his quantum storage device F . Otherwise, the at-
tacker may be all powerful. In particular, he can store an unlimited amount of
classical information, and perform computations ‘instantaneously’. The latter
implies that the attacker could encode his quantum information into an arbi-
trarily complicated error correcting code to protect it from any noise in F (see
Section 5 for details). Of particular interest are thereby quantum memories con-
sisting of N ‘memory cells’, each of which undergoes some noise described by
a channel N . That is, the memory device is of the form F = N⊗N . Note that
the bounded storage model is a special case, where each memory cell is just one
qubit, and N is the identity channel. To relate the number of transmitted qubits
n to the size of the storage device one typically chooses the storage rate ν such
that N = ν · n. We follow this convention here to ease comparison with earlier
work.

Since its inception [44], it was clear that security in the noisy-storage model
should be related to the question of how much information the adversary can send
through his noisy storage device. That is, the capacity of F to transmit quantum
information. Initial progress was made in [24] where security was linked to the
storage device’s ability to transmit classical information and shown against fully
general attacks.11 Further progress was made only very recently, linking the
security to the so-called entanglement cost of the storage device [3], which lies
between its classical and quantum capacities.

Security and the quantum capacity. Here, we finally resolve the ques-
tion of linking security in the noisy-storage model to the quantum capacity
of the storage device. More precisely, we show that any two-party crypto-
graphic primitive can be implemented securely under the assumption that

11 Before [24], security was only shown under the additional assumption that the adver-
sary attacks each qubit individually [44]. Whereas this may sound similar to problems
in QKD, note that the setting is entirely different when proving security between
two mutually distrustful parties, and security in QKD does not imply security in
this model.



the adversary is restricted to using a quantum storage device of the form
F = N⊗ν·n by means of a protocol transmitting n qubits whenever

ν · Q(N ) < 1 , and 2− log(3) . ν · γQ(N , 1/ν) , (3)

where Q(N ) is the quantum capacity of the channelN and γQ(N , 1/ν) is the
so-called strong converse parameter of N for sending information through F
at rate R = 1/ν. Note that the second condition actually does favor small
ν, since γQ(N , 1/ν) is large whenever the rate R = 1/ν is large. A similar
statement can be obtained for general channels F (see Section 5 for details).

We prove our result by showing the security of a simple quantum protocol
for the cryptographic primitive weak string erasure [24], which is known to be
universal for two-party secure computation [24]. To this end, we employ the
bitwise QC-extractor for measurements of single qubits, each in one of three
MUBs, known from the six-state protocol in QKD.

2 Preliminaries

In this section, we briefly recall the definitions and notations we need. More
details can be found in the full version.

In quantum mechanics, a system such as Alice’s or Bob’s labs are described
mathematically by Hilbert spaces, denoted by A,B,C, . . .. Here, we follow the
usual convention in quantum cryptography and assume that all Hilbert spaces
are finite-dimensional. We write |A| for the dimension of A. The set of linear
operators on A is denoted by L(A). A quantum state ρA is an operator ρA ∈
S(A), where S(A) = {σA ∈ L(A) | σA ≥ 0, tr(σA) = 1}. For a bipartite system
A = A1A2, we define the measurement map TA→A1 : L(A)→ L(A1),

T (.)A→A1
=
∑
a1a2

〈a1a2|(.)|a1a2〉|a1〉〈a1| , (4)

where {|a1〉}, {|a2〉} are (standard) orthonormal bases of A1, A2 respectively.
When applying a unitary transformation Uj followed by the measurement map

TA→A1
, we obtain new measurements which we denote by Mj

A→K1
. Here the

relabeling A1 → K1 accounts for the fact that the output system is classical.

The conditional min-entropy of a state ρAB ∈ S(AB) is defined as

Hmin(A|B)ρ = max
σB∈S(B)

Hmin(A|B)ρ|σ (5)

with Hmin(A|B)ρ|σ = max
{
λ ∈ R : 2−λ · IA ⊗ σB ≥ ρAB

}
.

The smoothed version is defined byHε
min(A|B)ρ = maxρ̃AB∈Bε(ρAB)Hmin(A|B)ρ̃ ,

where Bε(ρ) is the set of states at a distance at most ε from ρ. We use the purified
distance as the distance measure [40].



3 Quantum to Classical Randomness Extractors

To understand the definition of quantum extractors, it is convenient to see a
classical extractor as a family of (deterministic) permutations acting on the
possible values of the source. This family of permutations should satisfy the
following property: for any probability distribution on input bit strings with high
min-entropy, applying a typical permutation from the family to the input induces
an almost uniform probability distribution on a prefix of the output. We define
a quantum to classical extractor in a similar way by allowing the operations
performed to be general unitary transformations followed by a measurement in
the computational basis.

Definition 1. Let A = A1A2 with n = log |A|. Let TA→A1
be the measurement

map defined in Equation (4).
For k ∈ [−n, n] and ε ∈ [0, 1], a (k, ε)-QC-extractor is a set {U1, . . . , UL}

of unitary transformations on A such that for all states ρAE ∈ S(AE) with
Hmin(A|E)ρ ≥ k, we have

1

L

L∑
i=1

∥∥∥∥TA→A1

(
(Ui ⊗ IE)ρAE(U†i ⊗ IE)

)
− IA1

|A1|
⊗ ρE

∥∥∥∥
1

≤ ε . (6)

Observe that Definition 1 only allows a specific form of measurements obtained
by applying a unitary transformation followed by a measurement in the compu-
tational basis of A1. The reason we use this definition is that we want the output
of the extractor to be determined by the source and the choice of the seed. In
the quantum setting, a natural way of translating this requirement is by impos-
ing that an adversary holding a system that is maximally entangled with the
source can perfectly predict the output. This condition is satisfied by the form
of measurements dictated by Definition 1. Allowing generalized measurements
(POVMs) already (implicitly) allows the use of randomness for free. Note also,
that in the case where the system E is trivial, a (0, ε)-QC-extractor is the same
as an ε-metric uncertainty relation [16].

3.1 Examples and limitations of QC-extractors

The following is immediate using a general decoupling result from [13,14].

Theorem 1 (Unitary 2-designs are QC-extractors). Let A = A1A2 with
n = log |A|. For all k ∈ [−n, n] and all ε > 0, a unitary 2-design {U1, . . . , UL}
on A is a (k, ε)-CQ-extractor with output size

log |A1| = min(n, n+ k − 2 log(1/ε)). (7)

The following theorem shows that choosing unitaries at random defines a
QC-extractor with high probability. The seed size in this case is of the same
order as the output size of the extractor. We expect that a much smaller seed
size would be sufficient.



Theorem 2 (Random unitaries are QC-extractors). Let A = A1A2 with
n = log |A| and TA→A1

be the measurement map defined in Equation (4). Let
ε > 0, c be a sufficiently large constant, and

log |A1| ≤ n+ k − 4 log(1/ε)− c and logL ≥ log |A1|+ log n+ 4 log(1/ε) + c.
(8)

Then, choosing L unitaries {U1, . . . , UL} independently according to the Haar
measure defines a (k, ε)-QC-extractor with high probability.

The proof uses one-shot decoupling techniques [14,38,13] combined with an
operator Chernoff bound [1]. We now give some limitations on the output size
and seed size of QC-extractors. The following proposition shows that even if we
are looking for a QC-extractor that works for a particular state ρAE , the ouput
size is at most roughly n+Hmin(A|E)ρ, where n denotes the size of the input.

Proposition 1 (Upper bound on the output size). Let A = A1A2,
ρAE ∈ S(AE), {U1, . . . , UL} a set of unitaries on A, and TA→A1

defined as in

Equation (4), such that, 1
L

∑L
i=1

∥∥∥TA→A1

(
UiρAEU

†
i

)
− IA1

|A1| ⊗ ρE
∥∥∥
1
≤ ε. Then,

log |A1| ≤ log |A|+H
√
ε

min(A|E)ρ.

The proof uses monotonicity properties of the min-entropy. Concerning the
seed size, a simple argument shows that the number of unitaries of a QC-
extractor has to be at least about 1/ε. It is interesting to observe that in the
case where the system E is trivial (or classical), this bound is almost tight.
In fact, it was shown in [16] that in this case, there exists QC-extractors with
L = O(log(1/ε)ε−2) unitaries. This is a difference with classical extractors for
which the number of possible values of the seed is at least Ω((n− k)ε−2) [32].

3.2 Full set of mutually unbiased bases (MUBs)

We saw that unitary 2-designs define QC-extractors. As unitary 2-designs also
define QQ-extractors, it is natural to expect that we can build smaller and
simpler sets of unitaries if we are only interested in extracting random classical
bits. In fact, in this section, we construct simpler sets of unitaries that define a
QC-extractor. Two ingredients are used: a full set of mutually unbiased bases
and a family of pair-wise independent permutations.

A set of unitaries {U1, . . . , UL} acting on A is said to define mutually unbi-
ased bases if for all elements |a〉, |a′〉 of the computational basis of A, we have

|〈a′|UjU†i |a〉|2 ≤ |A|−1 for all i 6= j. In other words, a state described by a vec-

tor U†i |a〉 of the basis i gives a uniformly distributed outcome when measured
in basis j for i 6= j. For example the two bases, sometimes called computa-
tional and Hadamard bases (used in most quantum cryptographic protocols),
are mutually unbiased. There can be at most |A| + 1 mutually unbiased bases
for A. Constructions of full sets of |A| + 1 MUBs are known in prime power
dimensions [47].



A family P of permutations of a set X is pair-wise independent if for
all x1 6= x2 and y1 6= y2, and if π is uniformly distributed over P,
Pr {π(x1) = y1, π(x2) = y2} = 1

|X|(|X|−1) . If X has a field structure, i.e., if |X|
is a prime power, it is simple to see that the family P = {x 7→ a · x + b : a ∈
X∗, b ∈ X} is pair-wise independent. In the following, permutations of basis
elements of a Hilbert space A should be seen as a unitary transformation on
A. In this section and the following P denotes this set of pair-wise independent
permutations.

Theorem 3. Let {U1, . . . , U|A|+1} define a full set of mutually unbiased bases
and P be a family of pair-wise independent permutations. Then the set {PUi :
P ∈ P, i ∈ [|A| + 1]} defines a (k, ε)-QC-extractor provided log |A1| ≤ n +
k − 2 log(1/ε). The number of unitaries of this extractor is L = (|A| + 1)|P| =
(|A|+ 1)|A|(|A| − 1).

The idea of the proof is to bound the trace norm by the Hilbert-Schmidt (or L2-)
norm of some well-chosen operator. This term is then computed exactly using
the fact that the set of all the MUB vectors form a complex projective 2-design
and the fact that the set of permutations is pair-wise independent.

3.3 Bitwise QC-extractor

The unitaries we construct in this section are even simpler. They are composed
of unitaries V acting on single qudits followed by permutations P of the com-
putational basis elements. Note that this means that the measurements defined
by these unitaries can be implemented with current technology. As the measure-
ment T commutes with the permutations P , we can first apply V , then measure
in the computational basis and finally apply the permutation to the (classical)
outcome of the measurement. In addition to the computational efficiency, the
fact that the unitaries act on single qudits, is often a desirable property for the
design of cryptographic protocols. In particular, the application to the noisy
storage model that we present in Section 5 does make use of this fact.

Let d ≥ 2 be a prime power so that there exists a complete set of mutually
unbiased bases in dimension d. We represent such a set of bases by a set of
unitary transformations {V0, V1, . . . , Vd} mapping these bases to the standard
basis. For example, for the qubit space (d = 2), we can choose

V0 =

(
1 0
0 1

)
V1 =

1√
2

(
1 1
1 −1

)
V2 =

1√
2

(
1 i
i −1

)
. (9)

We define the set Vd,n of unitary transformations on n qudits by Vd,n :=
{V = Vu1

⊗ · · · ⊗ Vun
|ui ∈ {0, . . . , d}}. As in the previous section, P denotes a

family of pair-wise independent functions.

Theorem 4. The set {PV : P ∈ P, V ∈ Vd,n} is a (k, ε)-extractor provided
log |A1| ≤ (log(d+1)−1)n+min {0, k}−4 log(1/ε)−7. The number of unitaries
of this extractor is L = (d+ 1)ndn(dn − 1).



The analysis uses the same technique as in the proof of Theorem 3. The main
difference is that we were not able to express the L2-norm exactly in terms of
the conditional min-entropy Hmin(A|E)ρ. We use some additional inequalities,
which account for the slightly more complicated expression we obtain.

4 Application to Entropic Uncertainty Relations with
Quantum Side Information

The first application of our result is to entropic uncertainty relations with quan-
tum side information. It is not hard to prove than any set of unitaries {Uj}j
that form a QC-extractor define measurements that satisfy entropic uncertainty
relations with quantum side information. The measurement Mj

A→K is defined
by first performing the unitary Uj followed by a measurement in the standard
basis. We denote the post-measurement state by

ρKEJ =
1

L

L∑
j=1

Mj
A→K(ρAE)⊗ |j〉〈j|J , (10)

where the classical register J tells us which measurement Mj
A→K was applied.

Here, we only state the most important uncertainty relations that are obtained
from our constructions of QC-extractors. We refer the reader to the full version
for a more detailed treatment.

Corollary 1. Let d ≥ 2 be a prime power and Mj
A→K be the measurements

defined by the unitaries {Vj}j = Vd,n as defined in Theorem 4. For all ε, δ′ >
0, δ ≥ 0 such that ε2 > 2(δ + δ′) and any state ρAE, we have

Hε
min(K|EJ)ρ ≥ n · (log(d+ 1)− 1) + min

{
0, Hδ

min(A|E)ρ − log

(
2

δ′2
+

1

1− 2δ

)}
− log

(
1

(ε2/2− 2(δ + δ′))
2

)
− 2,

where ρKEJ is defined in (10).

Concerning uncertainty relations for the von Neumann (Shannon) entropy,
we would mainly like to point to the following proposition.

Proposition 2. Let ρAE ∈ S(AE) with A an n-qudit system, i.e., |A| = dn.
Then, the measurements given by the single qudit unitaries as defined in Sec-
tion 3.3, give rise to the entropic uncertainty relation

1

L

L∑
j=1

H(K|E)ρj ≥ n · (log(d+ 1)− 1) + min {0, H(A|E)ρ} . (11)

Note that the conditional von Neumann entropy on the rhs can become negative
and quantifies the entanglement present in the initial state.

Previously, uncertainty relations with quantum side information were only
known for two measurements [4,33,41].



5 Applications to Security in the Noisy-Storage Model

As a second application, we solve the long standing question of relating the
security of cryptographic protocols in the noisy-storage model [44,36,43,24] to
the quantum capacity. We will state our main theorem and an example - a more
gentle explanation and the protocol can be found in the full version. In [24] it
was shown that bit commitment and oblivious transfer, and hence any two-party
secure computation [20], can be implemented securely given access to a simpler
primitive called weak string erasure (WSE). It is hence enough to prove the
security of WSE, and we will follow this approach here.

Informally, weak string erasure achieves the following task - a formal defi-
nition [24,28] can be found in the full version. WSE takes no inputs from ei-
ther Alice and Bob. Alice receives as output a randomly chosen string Xn =
X1, . . . , Xn ∈ {0, 1}n. Bob receives a randomly chosen subset I ∈ [n] and the
substring XI of Xn. Randomly chosen thereby means that each index i ∈ [n]
has some fixed probability p of being in I. Originally, p = 1/2 [24], but any prob-
ability 0 < p < 1 allows for the implementation of oblivious transfer [28]. The
security requirements of weak string erasure are that Alice does not learn I, and
Bob’s min-entropy given all of his information B is bounded as Hmin(X|B) ≥ λn
for some parameter λ > 0. To summarize all relevant parameters, we thereby
speak of a (n, λ, ε, p)-WSE scheme.

For simplicity, we here include the general statement in terms of the channel
fidelity Fc, and refer to the full version for an expression in terms of the strong
converse parameter γQ. The channel fidelity is an important concept in quantum
information as it is used as a measure of success of how well a channel can
transmit quantum information. Very roughly, we can determine the maximum
size of a quantum state that can be transmitted over F with an error of at most
ε, by computing the maximum size of an input system A such that maxD,E Fc(D◦
(F⊗IM )◦E) ≥ 1−ε where E and D are encoding and decoding maps respectively,
and M is a system allowing for free feed forward classical communication. This
yields the ε-error quantum capacity.

Theorem 5. Let Bob’s storage device be given by F . For any choice of constant
parameters ε, δ′ > 0, Protocol 1 implements an (n, λ, ε, 1/3)-WSE with

λ = log(3)− 1− 1

n

(
max
D,E

log 2nFc(D ◦ (F ⊗ IM ) ◦ E) + κ+ ξ + 1

)
, (12)

where κ = log
(
2/δ′2 + 1

)
and ξ = log

(
1/
(
ε2/2− δ′

)2)
.

To get some intuition about the parameters above, we consider the example
of bounded, noise-free, storage. The quantum capacity of the one qubit identity
channel N = I2 is simply Q→(I2) = 1. When Bob can store ν ·n qubits, i.e., his
storage device is of the form F = I⊗νn2 then security for any two-party protocol
is possible if ν . log(3)− 1 ≈ 0.585.



It should be noted that the parameters obtained here for the case of bounded
storage are slightly worse than what was obtained in [28] where security was
shown to be possible for ν < 2/3 instead of ν . 0.585. This is due to the fact
that the lower bound 0.585 in our uncertainty relation stems from an expression
involving the collision entropy rather than the Shannon entropy. We emphasize,
however, that for the practically relevant regime of n . 106 our exact bound is
still better for the same error parameters. Our result resolves the long standing
question of relating security to the quantum capacity, and opens the door for
improved results on strong converse parameters for any kind of storage device
to be applied immediately to obtain security parameters.

6 Discussion and Outlook

Motivated by the problem of using physical resources to extract true classical
randomness, we introduced the concept of quantum-to-classical randomness ex-
tractors. We emphasize that these QC-extractors also work against quantum
side information. We showed that for a QC-extractor to distill randomness from
a quantum state ρAE , the relevant quantity to bound is the conditional min-
entropy Hmin(A|E)ρ. This is in formal analogy with classical-to-classical extrac-
tors, in which case the relevant quantity is Hmin(X|E)ρ.

We proceeded by showing various properties of QC-extractors and giving sev-
eral examples for QC-extractors. Table 1 gives a comparison between our results
on QC-extractors and known results about CC-extractors (holding against quan-
tum side information as well). It is eye-catching that there is a vast difference
between the upper and lower bounds for the seed size of QC-extractors. We were
only able to show the existence of QC-extractors with seed length roughly the
output size m, but we believe that it should be possible to find QC-extractors
with much smaller seeds, say O(polylog(n)) bits long, where n is the input size.
However, different techniques are needed to address this question.

It is interesting to note that our results do indeed lend further justifica-
tion to use Bell tests to certify randomness created by measuring a quantum

CC-extractors QC-extractors

Seed
Low. bound log(n− k) + 2 log(1/ε) [32] log(1/ε)

Upp. bounds
m + logn + 4 log(1/ε) [Th 2] (NE)

c · log(n/ε) [12] 3n [Th 3]

Output
Upp. bound k − 2 log(1/ε) [32] n + H

√
ε

min(A|E) [Pr 1]
Low. bound k − 2 log(1/ε) [19,35,42] n + k − 2 log(1/ε) [Th 3]

Table 1. Known bounds on the seed size and output size in terms of (qu)bits for
different kinds of (k, ε)-randomness extractors. n refers to the number of input (qu)bits,
m the number of output (qu)bits and k the min-entropy of the input Hmin(A|E). Note
that for QC-extractors, k can be as small as −n. Additive absolute constants are
omitted. The symbol (NE) denotes non-explicit constructions.



system [8,31,9]. Note that for a tripartite pure state ρABE where we want to
create classical randomness by means of QC-extractors on A, we have to find a
lower bound on Hmin(A|E)ρ. But by the duality relation for min/max-entropies
we have Hmin(A|B)ρ = −Hmax(A|B)ρ [40], where the latter denotes the max-
entropy as introduced [22]. Since Hmax(A|B)ρ is again a measure for the entan-
glement between A and B, one basically only has to do entanglement witnessing
(e.g., Bell tests consuming part of the state) to ensure that the QC-extractor
method can work (i.e., that Hmin(A|E)ρ is large enough). Note that any method
to certify such an estimate would do and we could also use different measure-
ments during the estimation process and the final extraction step. It would be
interesting to know, if by using a particular QC-extractor, one can gain more
randomness than in [8,31,9].

As the first application, we showed that every QC-extractor gives rise to
entropic uncertainty relations with quantum side information for the von Neu-
mann (Shannon) entropy and the min-entropy. Here the seed size translates into
the number of measurements in the uncertainty relation. Since it is in general
difficult to obtain uncertainty relations for a small set of measurements (except
for the special case of two), finding QC-extractors with a small seed size is also
worth pursuing from the point of view of uncertainty relations.

As the second application, we used the bitwise QC-extractor from Section 3.3
to show that the security in the noisy storage model can be related to the strong
converse rate of the quantum storage; a problem that attracted quite some atten-
tion over the last few years. Here one can also see the usefulness of bitwise QC-
extractors for quantum cryptography. Indeed, any bitwise QC-extractor would
yield a protocol for weak string erasure. Bitwise measurements have a very simple
structure, and hence are implementable with current technology. In that respect,
it would be interesting to see if a similar QC-extractor can also be proven for
only two (complementary) measurements per qubit. This would give a protocol
for weak string erasure using BB84 bases as in [24].

We expect that QC-extractors will have many more applications in quantum
cryptography, e.g., quantum key distribution. One possible interesting appli-
cation could be to prove the security of oblivious transfer when purifying the
protocol of [24]. Yet, it would require additional concepts of ‘entanglement sam-
pling’ which still elude us.
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