
Actively Secure Two-Party Evaluation of any Quantum
Operation

Frédéric Dupuis1? Jesper Buus Nielsen2?? Louis Salvail3? ? ?

1 Institute for Theoretical Physics, ETH Zurich, Switzerland
dupuis@phys.ethz.ch

2 Department of Computer Science, Aarhus University, Denmark
jbn@cs.au.dk

3 Université de Montréal (DIRO), QC, Canada
salvail@iro.umontreal.ca

Abstract. We provide the first two-party protocol allowing Alice and Bob to
evaluate privately even against active adversaries any completely positive, trace-
preserving map F ∈ L(Ain ⊗ Bin) → L(Aout ⊗ Bout), given as a quantum
circuit, upon their joint quantum input state ρin ∈ D(Ain ⊗ Bin). Our protocol
leaks no more to any active adversary than an ideal functionality for F provided
Alice and Bob have the cryptographic resources for active secure two-party clas-
sical computation. Our protocol is constructed from the protocol for the same task
secure against specious adversaries presented in [4].

1 Introduction

We provide the first active-secure two-party protocol for computing on quantum data.
We look at a model where Alice and Bob hold an input ρin on registers Ain and Bin,
where Alice holds registerAin and Bob holds Bin. They agree on a completely positive,
trace-preserving (CPTP) map F from registersAin⊗Bin to registersAout⊗Bout, and
they want to compute ρout = F (ρin) such that, at the end of the protocol, Alice is
in possession of Aout and Bob is in possession of Bout. They want to do this in an
actively secure manner. Our notion of active security is phrased via simulation, but
intuitively it simply guarantees that any cheating Alice, even an infinitely powerful
Alice, which might deviate from the protocol, can only affect the output of the protocol
by replacing her own input and that she will at any point during the execution of the
protocol only hold information which can be computed (efficiently) from either ρAin or
ρAout. The equivalent condition should hold for Bob.

A simple example of such an F is the quantum swap, where Ain = Aout = A,
Bin = Bout = B, and ρAout = ρBin and ρBout = ρAin. Securely implementing this unitary
? Supported by Canada’s NSERC Postdoctoral Fellowship Program and by the Swiss National

Science Foundation via the National Center of Competence QSIT.
?? Partially supported by an European Research Council, Starting Grant, number 279447 and the

Danish National Research Foundation and the National Science Foundation of China (under
the grant 61061130540) for the Sino-Danish Center for the Theory of Interactive Computation.

? ? ? Supported by Canada’s NSERC discovery grant, FREQUENCY(NSERC), the QuantumWorks
networks(NSERC), and INTRIQ(FQRNT).

basically means to do an atomic swap of quantum states, which was shown impossible
in [4] even against a restricted class of adversaries called specious. Extra assumptions
are therefore needed to get unconditional security. Our way out is to look at a model
where the two parties have access to an ideal functionality which allows them to se-
curely do any classical computation on any classical data held jointly by the two par-
ties. In this model we give an unconditionally secure protocol with active security. This
is the first such protocol.

Formally, we use the notationally simpler model of [4], but it is easy to see that
security in this model implies security in the stand-alone model of [11], as long as the
simulator is poly-time. The stand-alone model of [11] allows, inside a secure quantum
protocol, to replace a classical ideal functionality by a classical protocol which securely
implements that ideal functionality against poly-time quantum adversaries. The result
is a protocol secure against poly-time quantum adversaries. This, in particular, implies
sequential security, i.e., if a protocol is secure, it remains secure when run in sequence
with other secure protocols. Since the secure evaluation of any classical function with
security against poly-time quantum adversaries can be done under the assumption that
learning with errors is hard [13,11] and under the more general assumption that mixed
commitment schemes exist [12], our poly-time simulator provides an active-secure two-
party plain-model protocol for computing on quantum data with security against any
poly-time quantum adversaries. This is the first such protocol.

1.1 Overview of our construction

We reuse many ideas from the protocol provided in [4], which gives a two-party pro-
tocol for computing on quantum data securely against so-called specious adversaries.
The protocol therein is unconditionally secure given an ideal functionality for classical
computation. Specious adversaries are a quantum version of the classical notion of pas-
sive adversaries. Technically, a specious adversary is an adversary which is allowed to
deviate from the protocol, except that at any step of the protocol it should be able to
reconstruct the honest state of the protocol from its current state. This basically allows
it to purify itself and not much else.

In the protocol in [4], all wires are encrypted using a Pauli encryption: a qubit |v〉 is
represented as |V 〉 = XxZz|v〉, where the two uniform key bits x and z are secret-shared
between Alice and Bob. For example, to secret-share x, Alice will hold a uniformly
random bit xA and Bob will hold a uniformly random bit xB such that x = xA⊕xB . All
wires are independently encrypted like this, which ensures that intermediate states are
perfectly hidden from both parties. Computation is then done “through the encryption”.
The CPTP map F is described by a quantum circuit made out of the universal set
of gates UG consisting of gates X, Y, Z, CNOT, H = 1√

2
(1 1
1 −1), P = (1 0

0 i), and

R =
(
1 0
0 eiπ/4

)
, together with a set of ancilla wires initialized in state |0〉, and a set

of output wires that are discarded (or, in our case, that remain encrypted forever). The
protocol evaluates each gate of F while preserving privacy. Handling the Pauli gates
X, Y and Z is easy, as they commute or anti-commute with the encryption operators.
As an example, assume that the parties want to apply an X gate to a qubit |v〉, i.e.,
compute an encryption of |v′〉 = X|v〉. Since up to an overall phase factor XZ = ZX, it

2

follows that X|V 〉 = XXxZz|v〉 = XxZzX|v〉 = XxZz|v′〉. So, the evaluation is simply
performed on the encrypted qubit |V 〉 and the key bits x and z are maintained. For
the remaining Clifford gates CNOT, H and P other “commutation” rules with X and
Z are used. For H, it is used that HX = ZH and HZ = XH, so H is simply applied to
the encrypted qubit, and then the keys x and z are swapped: Alice sets x′A = zA and
z′A = xA and similarly for Bob. This leaves the non-Clifford gate R, where the relation
RXxZz = PxXxZzR almost does the job, except that it leaves an extra Px. Getting
rid of this requires quantum computation and a classical secure two-party computation
which computes how the parties should update their key bits. After such a gate-by-gate
computation of U on the encrypted qubits, the shares of the keys needed for learning
the states on ones own output wires are swapped with the other party in one atomic step,
using the ideal functionality for classical secure computation.

The protocol in [4] is actually secure against an active adversary up to the final swap
of key bits, as the encryptions of the wires are guaranteed to be perfect, independent of
the behavior of the other party, as the parties pick their own shares of the sharings of x
and z. This means that no party can get any information on any intermediary states, no
matter how it deviates. It can, however, easily force the computation to be incorrect, by
applying gates to the encrypted states, so the full protocol is not active secure. We note,
however, that [4] is secure against what we could call ultimately specious adversaries:
Adversaries promising to attack in such a way that both parties always be able to recon-
struct the correct state at the end of the protocol, but that can otherwise behave as they
want. This follows from the active security in the middle and a theorem in [4] which
says that any attack which always allows both parties to obtain the correct output can
be simulated given just the output of the corrupted party—basically, there is no way to
learn extra information without sometimes irrevocably destroying the state of the other
party.

In this paper, we use this observation in a protocol proceeding along the same lines
as [4] but where we force the adversary to be ultimately specious. This is done by
not only encrypting the wires, but by unconditionally authenticating them. In addition,
we commit the parties to their key bits, to allow the recipient to verify the key bits
swapped at the end. Since an unconditional quantum authentication code is also an
unconditionally secure encryption, we get a protocol with at least the security of [4],
but with the added property that an adversary who deviates from the protocol will be
caught. More technically, if all checks of the authentication code succeed, then the
authenticated values collapse to the correct values. This forces the adversary to either
be detected or be ultimately specious. Since we do all the checks of the authentication
codes before any key bits are revealed, the case where the adversary is detected can be
simulated by simply asking the ideal world to abort too. The case where the adversary
is ultimately specious is simulated similarly to [4].

The main technical challenge is then to devise an authentication code with these
two properties:

1. It allows to perform computation “through the authentication”.
2. It allows to check the authentication code without revealing what is authenticated.

The first property is important for hiding intermediate values during the computation.
The second property is important when we force the adversary to either be detected

3

or ultimately specious: when he is detected, he should learn nothing on the incorrect
outputs.

We devise an authentication code with these properties based on the Clifford-based
quantum authentication code proposed in [1]. It authenticates a quantum message using
a random unitary implementable using gates X, Y, Z, CNOT, H and P. The authen-
tication works as follows. In order to satisfy the second property, take a qubit |v〉 on
some wire. Alice prepends n new wires, in the all-zero state |0n〉. Then she applies a
uniformly random (n + 1)-bit Clifford operator A to the n + 1 wires. She then sends
the state to Bob, who appends nmore wires in the all-zero state and applies a uniformly
random (2n + 1)-bit Clifford operator B to the 2n + 1 wires. We can write this as
|V 〉 = B(|0n〉⊗A(|v〉|0n〉)). The key is (A,B). This authentication can be checked in
two different ways. Either, apply B† to the authenticated state and check that the first n
wires are all zero. Or, apply B† and then apply A† to the last n+1 wires and check that
the last n wires are all zero. One way is used for Alice to check that Bob did not change
the authenticated value. The other is used by Bob to check Alice. In order to perform
these without leakage, we use a 2-party classical ideal functionality as described below.

In our scheme, Alice will hold A as her share of the key and Bob will hold B as his
key share. They are committed to their share by being committed to a poly-size classical
description of the operator applied. We sketch why the scheme has the two necessary
properties.

1. Since the authentication is performed using only Clifford gates, an approach as
in [4] will allow to fairly easily apply Clifford gates “through the authentication”.
Since the Clifford unitaries form a group, the operation consisting of decrypting a
qubit, applying a Clifford gate to it and reauthenticating it using a different key is
also Clifford unitary. Hence, we can apply a Clifford gate to a swaddled qubit sim-
ply by changing the authentication keys in the appropriate manner. More precisely,
to execute the Clifford gate G ∈ C1, Alice updates her key to A(G†⊗1n), and Al-
ice and Bob use a TPC to update Alice’s commitment to her key. Executing CNOT
gates is similar, but involves two swaddlings. The R-gate requires new techniques
reminiscent of the fault tolerant implementation of it [14,6,7]. The details appear
within, but we basically reduce it to securely producing a state |0〉, a magic state,
a measurement in the computational basis, and applying secure Clifford gates to-
gether with a carefully chosen secure classical computation which tells the parties
how to update their keys.

2. If Bob is to check an authenticated qubit, we simply give him |V 〉 and he applies
B† and measures the first n wires, rejecting if they are not all zero. After that he
re-applies B to recover the authentication |V 〉. If Alice is to perform the check, we
perform a secure classical computation where the inputs are the committed descrip-
tions of A and B which effectively swaps the inner and outer authentications (see
below for details). Alice then holds the outermost authentication and can easily test
its integrity.

The final state of the computation is obtained after each party reveals the authenti-
cation keys needed by the other party to open its output wires.

4

2 Preliminaries

The set of linear operators from and to Hilbert space A is denoted by L(A). The set
of trace 1 positive semi-definite operators is denoted by D(A); it is the set of quantum
states for register A. For ρ, ρ′ ∈ D(A), we denote by ∆(ρ, ρ′) := 1

2‖ρ− ρ
′‖1 the trace

norm distance between ρ and ρ′. Finally, we denote by Cn the set of Clifford operators
on n qubits. More information can be found in [5].

2.1 Secure Two-Party Classical Computation Against Quantum Adversaries

Our protocol will use various classical two-party computations throughout its execu-
tion, each modeled as an ideal functionality. Recent work [12,11] show that compos-
able classical two-party computation protocols can be devised with security against
quantum adversaries provided some classical computational assumptions hold against
this class of adversaries. One example of such an assumption is learning with errors
is hard [13,11]. The framework in [11] allows us to replace the ideal functionalities
with such secure protocols. Here we therefore focus on proving security given the ideal
functionalities.

In the following, the ideal functionality for string commitment will be denoted by
idSC. It is defined as follows:

idSC((id, s),⊥) = (⊥, (id,committed)) if id is new,
idSC(⊥, (id, s)) = ((id,committed),⊥) if id is new,

idSC(s, s
′) = (⊥,⊥) otherwise .

In order for Alice to commit on s ∈ {0, 1}∗, Alice and Bob call idSC((id, s),⊥), where
id is an unused identifier chosen by Alice. In order for Bob to commit on s, Alice and
Bob call idSC(⊥, (id, s)), where id is chosen by Bob. The opening of a commitment is
performed by calling the ideal functionality idOPEN defined as:

idOPEN(id, id) = (⊥, s) if idSC((id, s),⊥) was performed ,
idOPEN(id, id) = (s,⊥) if idSC(⊥, (id, s)) was performed ,

idSC(·, ·) = (⊥,⊥) otherwise .

Note that state has to be passed from idSC(,) to idOPEN(,) for the above descriptions
to make sense. Our framework exactly allows that an ideal functionality from an earlier
round passes its state to an ideal functionality in a later round. In the framework of
[11] they would be considered one ideal functionality, with a state. We prefer the above
notation for brevity of later protocol descriptions.

Ideal functionalities computing functions applied to committed values can now be
easily defined. Suppose that Alice and Bob want to let Alice learn a function f :
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ upon two committed values, s and s′, where s is com-
mitted upon by Alice under id and s′ is committed upon by Bob under id′. It suffices to
define the ideal functionality id∗f as

id∗f ((id, id
′), (id, id′)) = (f(s, s′),⊥) if idOPEN(id, id) = (⊥, s) ∧ idOPEN(id

′, id′) = (s′,⊥) ,

5

id∗f (·, ·) = (⊥,⊥) otherwise .

The same if it is Bob who is to learn the output, but with id∗f ((id, id
′), (id, id′)) =

(⊥, f(s, s′)). The same construction can be used to implement any efficiently com-
putable function f evaluated upon any number of committed values. The ideal func-
tionality can also easily be extended to produce commitments to the outputs of f . It is
this extended ideal functionality we use most often. Again, id∗f (·, ·) will have to share
state with idSC(·, ·) and idOPEN(·, ·), which is allowed in our framework.

Note that all the above ideal functionalities are defined such that at most one party
has a non-trivial output (i.e., an output which is not known before the inputs are pro-
vided). We avoid using functions where both parties have a non-trivial output as an easy
way to deal with the problem that fairness in classical secure two-party computation is
provably impossible for most functionalities. It is not hard to see that it follows from
known completeness results of quantum-secure classical two-party computation[12,11]
that the classical ideal functionalities specified above can be implemented with security
against poly-time quantum adversaries. We skip the details of this, as our focus here is
on using the classical ideal functionalities for constructing secure two-party protocols
for computing on quantum data.

2.2 Clifford-Based Quantum Authentication

In order to detect misbehaviors of an active adversary, we will be evaluating a circuit
upon authenticated quantum bits. We will be using a quantum authentication scheme
(QAS) [2] based on Clifford operators introduced in [1] as our main building block.

Definition 2.1 (Quantum authentication scheme). A quantum authentication scheme
is a set of encryption and decryption superoperators {(E S→C

k ,DC→SF
k) : k ∈ K},

where K is the set of possible keys, S is the input system, C is the ciphertext system,
and F is a “flag” system that contains either |acc〉 or |rej〉. A QAS is such that for all
k ∈ K, (Dk ◦ Ek)(ρS) = ρS ⊗ |acc〉〈acc|F .

A QAS is secure if it satisfies the following:

Definition 2.2 (Security of a QAS). Let E S→C
k and DC→SF

k be the encoder and de-
coder corresponding to key k. Then, we say that the QAS (E ,D) is ε-secure if, for all
attacks UCR, there exists two CP maps U acc

R→R and U rej
R→R with U acc+U rej = 1 such

that for all inputs ψSR, we have that for some fixed state ΩS:∥∥∥ 1

#K
∑
k∈K

Dk

(
UCREk (ψSR)U

†
CR

)
−
(
U acc(ψSR)⊗ |acc〉〈acc|F + U rej(ψR)⊗ΩS ⊗ |rej〉〈rej|F

) ∥∥∥
1
6 ε .

(1)

This definition can be shown to be equivalent to the existence of a simulator that in-
teracts only with an ideal functionality in which Eve’s only choice is whether or not to
destroy the state and cause a rejection.

6

Definition 2.3 (Clifford-based QAS[1]). Let S be an s–qubit system, A be an n-qubit
system, and let C = S ⊗ A. Let K index all Clifford unitaries Ck on s + n qubits.
Then, the Clifford-based QAS is defined by the following encryption and decryption
maps where PSAacc = 1S ⊗ |0n〉〈0n|A and PSArej = 1SA − PSAacc :

Ek(ρS) = Ck (ρS ⊗ |0n〉〈0n|A)C
†
k ,

Dk(σSA) = trA

(
PaccC

†
kσSACkPacc ⊗ |acc〉〈acc|F

+ tr (PrejC
†
kσSACk)πSA ⊗ |rej〉〈rej|F

)
,

where πSA is an arbitrary fixed state that the decoder outputs when it rejects the au-
thentication.

The following establishes the security of the QAS based on random Clifford opera-
tors. The proof of security is more or less the same as in [1] :

Theorem 2.4 (Security of Clifford-based QAS). The QAS defined above is ε(n)-
secure for ε(n) = 6× 2−n.

It should be mentioned that picking a random Clifford operation acting upon ` qubits
requires to pick a uniformly random poly(`)-bit classical key k and the mapping be-
tween k and the corresponding Clifford operation can be performed efficiently [6,1].
In other words, the key size of the Clifford-based QAS is polynomial in the number of
qubits ` = s+ n used to authenticate an s–qubit quantum state.

2.3 Two-Party Quantum Protocols

We define two-party strategies in a similar way as in [4,10], with some adaptations made
for the fact that we are computing a CPTP map and not just a unitary and that we allow
ideal functionalities of different rounds to share states (equivalent to considering one,
stateful functionality). Two-party protocols for the evaluation of some CPTP map are
particular cases of two-party strategies. Two-party strategies have access to some oracle
in each round. An oracle is just a CPTP map acting on registers at both Alice and Bob.
Oracles implement some functionalities like a communication channel or some more
complex two-party functionalities.

An m–turn two-party strategy with oracle calls is defined by tuples of quantum
operations A := (A1, . . . ,Am+1), B := (B1, . . . ,Bm+1), and O := (O1, . . . ,Om).
For i ∈ [1..m + 1], operations Ai ∈ L(Ai−1 ⊗ AO,out

i−1) 7→ L(Ai ⊗ AO,in
i) and Bi ∈

L(Bi−1⊗BO,out
i−1) 7→ L(Bi⊗BO,in

i) are the actions performed at turn i by Alice and Bob
respectively. The operation Oi : L(AO,in

i ⊗Oi−1⊗BO,in
i) 7→ L(AO,out

i ⊗Oi⊗BO,out
i)

models the oracle provided to Alice and Bob at turn i, andOi a register used for passing
state from the oracle of one round to the oracle at the next round. The oracle at turn
i ∈ [1..m] takes place right after Ai and Bi have been applied. In particular, these
operations set the input registers AO,in

i−1 and BO,in
i−1 for the call to Oi. The outputs are

available to Alice and Bob in the next turn, in the output registers AO,out
i and BO,out

i .

7

We make one exception to this general form, the last turn (that is turnm+1) of a strategy
does not invoke any oracle, and is there simply to allow Alice and Bob to post-process
the output of the last oracle.

LetΠ = (A ,B,O,m) be anm-turn two-party strategy with oracle calls. The final
state of the interaction between A and B upon joint input state ρin ∈ D(A0⊗B0⊗R),
whereR is a reference system with dimR = dimA0 dimB0, is denoted by

[A ~ B]O(ρin) :=(Am+1 ⊗Bm+1 ⊗ 1L(R⊗Om+1))

(1L(Am⊗Bm⊗R) ⊗ Om)(Am ⊗Bm ⊗ 1L(R⊗Om))

. . . (1L(A1⊗B1⊗R) ⊗ O1)(A1 ⊗B1 ⊗ 1L(R))(ρin) .

A communication oracle from Alice to Bob is modeled by havingAO
i ≈ BO

i and letting
Oi move the state in AO

i to BO
i . A classical ideal functionality, as those described in

Sect. 2.1, can easily be made available as oracle calls. We assume that in each round
i at most one classical ideal functionality is applied. The parties place their inputs in
the appropriate registers AO

i−1 and BO
i−1. The operation of the oracle Oi is as follows:

it measures the input registers AO
i−1 and BO

i−1 to force classical inputs. Then, it applies
the appropriate classical ideal functionality on those classical inputs plus its classical
internal state found in Oi−1. This produces outputs for the parties and a new internal
state. The outputs are placed in AO

i and BO
i . The new state is placed in Oi.

A two-party hybrid protocol for F : L(Ain ⊗ Bin) → L(Aout ⊗ Bout) between
parties A and B upon joint input state ρin ∈ D(Ain ⊗ Bin ⊗R) is defined as:

Definition 2.5. An m-turn two-party hybrid protocol ΠO
F = (A ,B,O,m) for F :

L(Ain ⊗ Bin) → L(Aout ⊗ Bout) is a m–turn two-party strategy with oracle calls,
where A0 := Ain, B0 := Bin, Am+1 := Aout, Bm+1 := Bout, and where for all
ρin ∈ D(A0 ⊗ B0 ⊗ R), ∆

(
[A ~ B]O(ρin), (F ⊗ 1R)(ρin)

)
= 0. In the following,

we often write simply two-party protocol to refer to a two-party hybrid protocol.

For i ∈ [0..m], the joint state after turn i+1 in ΠO
F is denoted by [A ~B]Oi+1(ρin) :=

(1L(Bi+1⊗Ai+1⊗R)⊗Oi+1)(Ai+1⊗Bi+1⊗1L(R⊗Oi+1))[A ~B]Oi (ρin), where [A ~
B]O0 (ρin) := ρin, and [A ~ B]Om+1(ρin) := [A ~ B]O(ρin).

3 Modeling Active Security

We start by extending the framework in [4] to handle active security. Our model is
very standard, defining security via simulation, but for completeness we describe and
motivate the changes made in [5].

Let ΠO
F = (A ,B,O,m) be a m-turn two-party hybrid protocol. Let Ã and B̃ be

adversaries in ΠO
F . We denote by [Ã ~B]O and [A ~ B̃]O the resulting m–turn two-

party strategies. We will as usual define the security of such actively attacked protocols
by comparing to a simulation. The simulation is basically an ideally secure evaluation
of F .

The ideally secure protocol for evaluating F would be in a world where F actually
existed as an oracle—the parties would simply call this oracle. We can, however, not
expect any protocol to be as secure as this, as for most protocols we cannot ensure that

8

either both parties get the output or no party gets the output, known as fairness, which
is ensured in the above ideal setting. We will therefore consider a setting where one of
the parties learns its output first, and where the party learning it first, if corrupted, can
prevent the other party from learning its output. We will only give the definition for the
case where Alice learns first. Deriving the definition for the symmetric case where Bob
learns first is trivial.

To avoid confusion between the parties in the real protocol and in the ideal protocol,
we formulate the ideal protocol with parties Charleen, C, and Dan, D, taking the seats
of Alice respectively Bob. So, we look at an ideal functionality F : L(Cin ⊗ Din) →
L(Cout ⊗ Dout), but where we keep a mental note reminding that Cin := Ain, Cout :=
Aout, Din := Bin and Dout := Bout.

The ideal protocol for F is then a 2-turn two-party hybrid protocol ΓF = (C ,D ,F , 2),
which lets the parties query F in turn 1, but only letting C see her output in turn 1. In
turn 2, Charleen then inputs a bit f , with f = 1 indicating that Dan should receive his
output and f = 0 indicating that Dan should not receive his output. Dan will receive
f , and if f = 1 he will additionally be given his output. This is handled by the second
oracle. Then the parties output whatever they received from the oracles. In the honest
protocol, Charleen always inputs f = 1. We call this the ideal protocol for evaluating
F without fairness for Dan.

The ideal protocol ΓF = (C ,D ,F , 2) for F without fairness for Dan:
1. By convention we have C0 = Cin and D0 = Din and that O0 is empty. In the ideal

protocol we let CO,in
1 = C0 and DF,in

1 = D0, we let C1 and D1 be empty, and C1 =
1L(C0) and D1 = 1L(D0). I.e., in turn 1 the parties simply send their inputs to the
first oracle F1. For the first oracle F1 : L(CF,in

1 ⊗ O0 ⊗ DF,in
1) 7→ L(CF,out

1 ⊗
O1 ⊗ DF,out

1), we set CF,out
1 ≈ Cout, O1 ≈ Dout and we let DF,out

1 be empty. We
let F1 = F . I.e., F1 simply applies F to the inputs supplied by the parties, sends
Charleen’s output to Charleen in CF,out

1 and saves Dan’s output in the internal state F1

of the oracle, giving Dan no output so far.
2. We let C2 ≈ CF,out

1 (≈ Cout) and we let CF,in
2 be a one qubit register, holding a qubit

we name |f〉. We let C2 = 1
L(CF,out

1 ,C2)
⊗ |1〉, i.e., it moves the output from the oracle

from CF,out
1 to C2 and it sets |f〉 = |1〉. We let DF,in

2 and D2 be empty, so there is no
need to specify D2.
For the second oracle O2 : L(CF,in

2 ⊗ O1 ⊗ DF,in
2) 7→ L(CF,out

2 ⊗ O2 ⊗ DF,out
2),

we let CF,out
2 and O2 be empty, and we let DF,out

2 be of the same dimension as Dout,
plus room for one qubit |a〉. It starts by measuring |f〉 in the computational basis. If
|f〉 = |1〉, it then setsDF,out

2 to hold |a〉 = |1〉 along with the state inO1. If |f〉 = |0〉,
it sets DF,out

2 to hold |a〉 = |0〉 along with some fixed dummy state |⊥〉 of the right
dimension to fill CF,out

2 . I.e., if Charleen inputs f = 1, then Dan will get his output. If
f = 0, Dan gets no output, except a bit a = 0 telling him that Charleen cheated him of
his output (we say that Charleen aborted the computation).

3. We let C3 ≈ C2 and C3 = 1L(C2,C3). We let D3 ≈ DF,out
2 and D3 = 1

L(DF,out
2 ,D3)

.
I.e., in the last round the parties just output whatever they received from F , with Dan
possibly outputting a dummy state, in case of abort.

Consider the powers of a corrupted Charleen, C̃ . She might in the first round provide
an alternative input for F , possibly saving her original input, or a part thereof, in some

9

ancilla. This is input substitution. Her choice of alternative input can only depend on
her own original input, not that of Dan. This is input independence. Then she learns
only the output of the oracle. This is privacy. After learning her own output she might
then specify that Dan is not to learn his output. This is the necessary lack of fairness. A
corrupted Dan has similar powers, except that he cannot abort after seeing his output.
We then say that a protocol is secure if it only allows attacks which could be mounted
in the ideal protocol, i.e., it only allows the inevitable attack.

Definition 3.1. Let ΠO
F = (A ,B,O,m) be a two-party hybrid protocol for F :

L(Ain ⊗Bin)→ L(Aout ⊗Bout). Let ΓF be the ideal protocol for F without fairness
for Dan. Let δ ∈ [0..1]. We say thatΠO

F is δ-active secure without fairness for Bob, if for
all adversaries Ã and B̃ inΠO

F , there exist adversaries C̃ and D̃ in ΓF with sizes poly-
nomial in the sizes of Ã and B̃ such that for all input states ρin ∈ D(Ain ⊗Bin ⊗R),

∆
(
[Ã ~ B]O(ρin), [C̃ ~ D]F (ρin)

)
≤ δ & ∆

(
[A ~ B̃]O(ρin), [C ~ D̃]F (ρin)

)
≤ δ.

If a protocol is δ-active secure for δ = 0, then it is called perfectly active secure. If
it is δ-active secure for δ negligible in some security parameter n, then it is called
statistically active secure (in n).

4 Securely Swaddling Wires to Ensure Ultimate Speciousness

The Clifford based QAS, described in Sect. 2.2, can be used to share the authentication
of a quantum message in a way that allows any of the players, when helped by a TPC, to
verify that a state has not been tampered with, and this without being able to get infor-
mation on the encoded state. This primitive will be used extensively in our protocol to
ensure that all players are ultimately specious. It relies on a string commitment scheme
and secure TPCs provided as oracles.

The basic idea consists in swaddling each input wire w into a set of 2n dummy wires
where n belongs to Alice and n belongs to Bob. No party will be able to extract infor-
mation about the state of the original wire from the swaddling. Moreover, any attempt
to modify the state of the original wire will be detected except with negligible proba-
bility in n. The subprotocol Swaddle(w), described below, uses two application of the
Clifford-based QAS (one on top of the other) in order to achieve this. Alice authenti-
cates the state of her wire w and commits to her authentication key Kw,a using identifier
idA(w). She then sends the resulting system to Bob who authenticates it using key Kw,b

that he also commits upon using identifier idB(w). Bob sends back the resulting system
to Alice allowing her to test the validity of the swaddling. The swaddling therefore uses
a total of 2n+ 1 wires, where Alice holds the innermost and Bob the outermost key of
the resulting swaddling s(w) of wire w.

Consider now the test performed by Alice at Step 7. LetA andB be the Clifford op-
erators corresponding to keys Kw,a and Kw,b respectively. Notice that Alice can easily
test the authenticity of a swaddling when she holds the outermost authentication. She
simply applies A† upon the 2n+ 1 wires, measures her n dummy wires in the compu-
tational basis to verify that they are in state |0n〉. She then re-applies A to the 2n + 1

10

wires of the swaddling. If Alice holds the innermost authentication of the swaddling,
the testing procedure relies on the ideal functionality idTEST defined as:

idTEST((ia, ib), (i
′
a, i
′
b)) =

{
((t,K ′w,a),K

′
w,b) if ia = i′a = idA(w) ∧ ib = i′b = idB(w),

(⊥,⊥) otherwise,

where K ′w,a, and K ′w,b correspond to random Clifford operations A′ ∈ C2n+1 and B′ ∈
Cn+1 respectively, and t corresponds to Clifford T ∈ C2n+1 subject to:

1. idOPEN(idA(w), idA(w)) = (⊥,K ′w,a) and idOPEN(idB(w), idB(w)) = (K ′w,b,⊥), and
2. If Alice holds the innermost key of w then T = (1n ⊗B′)(A† ⊗ 1n)B†.

Swaddle(W), withW ⊆ A:
1. Alice initializes n ·#W dummy wires in state |0〉.
2. For each w ∈ W , Alice randomly chooses Clifford Kw,a on n+ 1 qubits, commits to

it in idSC((idA(w),Kw,a),⊥), and applies it to w and her dummies.
3. Alice sends these #W · (n+ 1) wires to Bob.
4. Bob initializes #W · n dummy wires in the state |0〉.
5. For each w ∈ W , Bob randomly chooses a Clifford Kw,b on 2n + 1 qubits, commits

to it in idSC(⊥, (idB(w),Kw,b)), and applies it to the n+ 1 wires received from Alice as
well as his own dummies.

6. Bob sends all #W · (2n + 1) wires back to Alice. Let s(w) denote the resulting
swaddling of w ∈ W .

7. For each w ∈ W , Alice calls TestSwaddling(s(w)).

Condition 1 ensures that the authentication keys with identifiers idA(w) and idB(w)
have been updated to hold values K ′w,a and K ′w,b respectively. Conditions 2 makes sure
that the state |σ〉 of a valid swaddling s(w) satisfies T |σ〉 = |0n〉 ⊗ B′(|ϕ〉 ⊗ |0n〉),
where |ϕ〉 is the logical state of s(w). Notice that Alice gets no information about Bob’s
Clifford B′ if she had no information about B to start with.

TestSwaddling(s(w)), with Alice doing the testing:
1. If Alice holds the outermost authentication key Kw,a then:

– Alice applies A† on s(w), where A is the Clifford corresponding to string Kw,a,
– Alice tests that her dummies are together in state |0n〉. If not then she aborts.
– Alice re-applies A on the 2n+ 1 qubits of the swaddling.

2. Else they call ((t,K′
w,a),K

′
w,b) = idTEST((idA(w), idB(w)), (idA(w), idB(w))),

– If one party gets ⊥ in idTEST then abort.
– Alice applies T on s(w) where T is the Clifford operator corresponding to string t.
– Alice tests that her dummies are together in state |0n〉. If not then she aborts.
– Alice applies A′ to the the 2n+ 1 qubits of the swaddling (note that A′ and B′ are

committed upon with identifiers idA(w) and idB(w) respectively).

At the end of TestSwaddling(s(w)), Alice holds the outermost authentication key
K ′w,a of the resulting swaddling. Bob can do the testing by the exact same procedure
provided the roles of Alice and Bob are reversed in TestSwaddling(s(w)). The se-
curity of these procedures will be discussed in Sect. 5.5. Intuitively, we expect that
TestSwaddling(s(w)) allows parties to test that a swaddling s(w) has not been tam-
pered with. It will also be used to test that each party transforms a swaddling s(w) the

11

way they should during the execution of the protocol. Notice that no information about
the logical state of wire w leaks to any party in Swaddle(w) and TestSwaddling(s(w))
since statistically secure authentication must also encrypt w [2].

At the end of the our protocol, each party will be asked to verify that the other
party’s registers upon which the circuit is evaluated are all in the states they should be.
This subprotocol is called TestAllSwaddlings. It simply consists in the execution
of TestSwaddling(s(w)) for all wires w held by each party and its description can be
found in [5].

The following subprotocol implements the obvious way the openings of all com-
mitted Clifford operators, thereby allowing Alice and Bob to get the final state of the
computation. Notice that since Alice learns Bob’s secret keys before she unveils her
own, our protocol will lack fairness for Bob.

OpenAllSwaddlings:
1. For each wire w ∈ Aout, Bob reveals to Alice his committed secret key encrypting w,

with identifier idB(w), by calling idOPEN(idB(w), idB(w)).
2. For each wire w ∈ Bout, Alice reveals to Bob her committed secret key encrypting w,

with identifier idA(w), by calling idOPEN(idA(w), idA(w)).

5 Description of the protocol

We first start by defining the various spaces on which (the honest) Alice and Bob will be
working. The circuit that they want to execute acts on some wires in Alice’s possession
and some in Bob’s possession, and these will be swaddled as described above. We
will denote by Au, Bu the spaces corresponding to Alice and Bob’s unswaddled wires,
reserving A and B for the actual swaddled wires.

We first initialize all the qubits by swaddling them, we then perform each gate from
the circuit one after the other on the authenticated data. Hence, we need to give subpro-
tocols for the initialization as well as for each of the gates in our universal set.

For all Clifford gates (i.e., all gates in UG except for R), the subprotocols are fairly
simple: we use classical two-party computation to reveal a Clifford operation that ex-
ecutes the gate while updating the encryption key; the revealed Clifford then looks
uniformly distributed and independent of everything else.

Implementing the R-gate is more involved. We use ideas from fault-tolerant com-
putation, where this gate is implemented by doing gate teleportation via a so-called
magic state: one prepares a special state (namely |M〉 = 1√

2
(|0〉+ eiπ/4|1〉)) and then

use a teleportation-like circuit, which itself requires only Clifford gates and measure-
ments, to execute the gate. The problem is then reduced to that of producing this magic
state, which can be done by a distillation process. The distillation process that we use
is exactly the one considered in [3] (where |M〉 is an “H-type magic state” in their
language); a description of it can also be found in [5].

5.1 Main Protocol

We now give the full description of our protocol, denoted Π̂O′

F = (A ,B,O ′,m),
allowing to evaluate the CPTP map F : L(Ain ⊗ Bin) 7→ L(Aout ⊗ Bout) upon joint

12

input state ρin ∈ D(R ⊗ Ain ⊗ Bin). The oracle list needed to run the protocol in the
hybrid model is provided implicitly in Sect. 5. The operations performed at each step by
A and B are described informally as the instructions of Alice and Bob respectively. We
will view F as being implemented by a quantum circuit acting on Ain ⊗ Bin together
with ancillas Aa and Ba initialized in state |0〉 (we shall explain below how to test that
ancillas are really in state |0〉). At the end of the circuit, some of these wires become
part of the outputs Aout and Bout, and the rest are part of the environment that will
remain encrypted (Ae and Be). Let G1, G2, . . . , G`(n) be an enumeration of all gates of
the circuit for F where `(n) is polynomial in n, and Gi is executed before Gi+1. This
protocol calls a number of subprotocols partially described next and in details in [5].

Protocol Π̂O′
F for the evaluation of F upon joint input ρin ∈ D(R⊗Ain ⊗ Bin):

1. Alice and Bob run Initialization,
2. For i = 1 . . . `(n):

– If Gi is a one-bit Clifford gate applied to wire w then Alice and Bob call
OneQubitClifford(Gi, s(w)),

– If Gi is a CNOT-gate applied to control wire wc and wt then Alice and Bob call
CNOT(s(wc), s(wt)),

– If Gi is an R-gate applied to wire w then Alice and Bob call RGate(s(w)),
3. Alice and Bob call TestAllSwaddlings,
4. Alice and Bob call OpenAllSwaddlings ,
5. Alice and Bob decrypt the swaddlings for all wires in Aout and Bout using the keys

received by the other party together with their own.

5.2 Subprotocols

The Initialization subprotocol prepares all swaddlings required during the evalua-
tion of the circuit. In addition to swaddling all wires holding the qubits upon which the
circuit acts, some ancillary states also have to be swaddled: one wire in the magic state
and one wire in state |0〉 per R-gate in the circuit.

Initialization:
1. For each R-gate being applied to a wire in A, Alice adds one additional wire ma,i

initialized in state |M〉 = 1√
2
(|0〉+ eiπ/4|1〉) to A.

2. For each R-gate being applied to a wire in B, Bob adds an additional wire mb,i initial-
ized in state |M〉 to B.

3. For each R-gate being applied to a wire in B, Alice adds an additional wire ca,i ini-
tialized in state |0〉 to A.

4. For each R-gate being applied to a wire inA, Bob adds an additional wire cb,i initial-
ized in state |0〉 to B.

5. Alice calls Swaddle(A).
6. Bob calls Swaddle(B).
7. For every wire a ∈ Aa or added in step 3 above, Alice calls VerifyAncilla(s(a)).
8. For every wire a ∈ Ba or added in step 4 above, Bob calls VerifyAncilla(s(a)).
9. For each magic wire m ∈ A, Alice calls DistillMagic(s(m)).
10. For each magic wire m ∈ B, Bob calls DistillMagic(s(m)).

Subprotocols VerifyAncilla(s(a)) and DistillMagic(s(m)) are described in [5].
The following subprotocols evaluates any one-qubit Clifford, the CNOT-gate, respec-
tively the R. The idea behind the one-qubit protocol is to use TPC to compute the gate

13

through the authentication. Of course, the TPC needed depends upon the gate. The idea
in the CNOT-subprotocol is to take the two swaddled qubits involved and turn them
into one big swaddling. Then, performing a CNOT on them is no different from per-
forming any other Clifford gate on the whole block. We then separate the big swaddling
back into its components.

OneQubitClifford(C, s(w)) with w ∈ A:
1. Alice and Bob perform a TPC whose outcome tells Alice a randomly chosen Clifford

gate which performs the gate, and changes the QAS key.
2. Alice performs the gate on s(w).

CNOT(s(wc), s(wt)) with wire wc ∈ A as control and wt as target:
1. Bob sends s(wt) to Alice if Bob holds it, in which case Alice calls
TestDummies(s(wt)).

2. Alice performs a randomly selected Clifford C on 4n+ 2 qubits jointly on s(wc) and
s(wt).

3. Alice sends s(wc) and s(wt) to Bob; Bob calls TestDummies jointly on them.
4. Alice and Bob perform a TPC whose outcome tells Bob to perform a Clifford unitary
C′ = (K′

c⊗K′
t)(CNOT)K† where K is the key of the swaddling at this point, and K′

c

and K′
t are randomly-chosen Cliffords that become the new key.

5. Bob sends s(wc) (and s(wt) if she held this one too) to Alice. Alice calls TestDummies
on them.

RGate(s(w)) with w ∈ A:
1. Alice performs a swaddled CNOT with mw as a control, and w as target.
2. Alice sends s(w) to Bob. Bob calls TestSwaddling(s(w)) on it.
3. Alice calls Measure(s(w)).
4. Alice and Bob perform a TPC whose result is a Clifford which, if both measurement

results were zero, updates the key, and if both measurement results were one, performs
a swaddled eiπ/4XP † and then updates the key. If the measurement results differ, then
they abort.

5. Alice relabels ma,i to w.

The R-protocol performs the R-gate using gate teleportation[9,8] via the magic state is
very similar to the fault-tolerant version of the R-gate introduced in [7,14]. To perform
an R-gate on a wire w via gate teleportation, we would first perform a CNOT from the
magic state to w, and then measure w in the computational basis. If the answer is 0, we
do nothing, and if it is 1, we perform eiπ/4XP † on the former magic state, that we then
rename w. Measure(s(w)) is described in [5].

5.3 Security of the subprotocols

We will now show that the protocol described in the previous section has the following
property: any adversary which deviates significantly from the protocol will be caught
cheating with high probability. The general strategy will be as follows. For the initializa-
tion, any adversary will be forced to input something into the protocol, and will end up
with some state that is properly swaddled. Then, for every other protocol step, we will
assume that at the beginning, the inputs are properly swaddled, and will aim to show

14

that after the protocol step is done, we are once again left with a correct swaddling of the
data, to which the correct operation has been applied. Furthermore, at every step, any
deviation from the protocol will be essentially equivalent to an attack on the authenti-
cation scheme, which means that an adversary’s chances of succeeding in changing the
state without getting caught will be negligible in the number of dummy wires per qubit.

5.4 Some additional definitions

Before we start, we will find it convenient to introduce some additional notation. From
now on, ρ0 will consist of ρin augmented with all additional qubits introduced in the
Initialization phase: the additional ancillas, and the dummy wires Alice and Bob
use for swaddling. Furthermore, we will denote by Ka and Kb systems which represent
Alice’s and Bob’s current key, respectively. These should be thought of as being part of
the inner state of the TPC ideal functionality, and therefore cannot be changed at will.
A represents all other systems at Alice, B represents all systems in Bob’s possession,
andR is a system that includes everything else and ensures that the total state is pure.

Furthermore, in the sequel, we will call a step an execution of any of the subproto-
cols listed above; each of these steps consists of multiple turns in the sense of Section
2.3: the state at turn i consists of the state before the ith use of an oracle in the protocol
(either a communication oracle or a classical computation oracle).

We will denote by Ca,s the operation that encodes Alice’s qubits according to
the keys stored in the TPC ideal functionalities at turn s in the protocol, and like-
wise for Bob’s encoding operation Cb,s. See [5] for more precise definitions. Fur-

thermore, we will denote by [Ã ~ B ∧ E-ABORT]O
′

s

(
ρAinBinR
in

)
the global state of

the protocol at turn s conditioned on the fact that the protocol doesn’t abort before
TestAllSwaddlings is completed. Note that this state is not normalized; its trace
corresponds to the probability of not aborting before the end.

Definition 5.1 (Forcing). We will say that the protocol is GAB-forcing for Ã at turn s
with initial operation ẼA0 if there exists a final operation ẼA such that:

∆
(
[Ã ~ B ∧ E-ABORT]O

′

s

(
ρAinBinR
in

)
, Ẽ ◦ Cb,s ◦ G ◦ Ẽ0

(
ρAinBinR
in

))
6 negl(n) ,

where Ẽ0 is a completely positive, trace non-increasing map that acts only on qubits in
Alice’s possession at the beginning of the protocol: her own input qubits, the dummies
she inputs in the swaddling, and the various ancillas that she adds.

In other words, if the protocol is G -forcing for Alice at some turn s, then, if the protocol
doesn’t abort early, regardless of what she tries to do, it will be essentially equivalent
to changing her input (using the initial operation Ẽ0), executing the operation G (which
will turn out to be the circuit that is supposed to be executed up to turn s), swaddling
the result, and then doing an arbitrary operation on her share alone, represented by Ẽ .

Definition 5.2. We say that a subprotocol is G -forcing if the protocol is G ◦G0-forcing
at the end of the subprotocol given that it was G0-forcing at the beginning.

15

Definition 5.3 (Hiding). We will say that the protocol is hiding for Ã at turn s, if, for
all input states ρAinBinRin

in , we have that

∆
(
trB

(
[Ã ~ B]O

′

s (ρAinBinRin

in)
)
, trB

(
[Ã ~ B]O

′

s (ρAinRin

in ⊗ |0〉〈0|Bin)
))

6 negl(n) .

Hence, the protocol is hiding if the state seen by a dishonest Alice is independent of
Bob’s input. Note that this in particular implies that Ã ’s action at turn s is necessarily
independent of Bob’s input.

5.5 Proving hidingness and forcingness

To construct the simulator needed to prove security, we will need to show two things.
First, we will have to show that before the keys are revealed, the cheater’s internal state
can be produced by running the protocol internally with a dummy input from the honest
party; this will follow from the fact that the Clifford QAS is a secure encryption scheme.
Second, we will have to show that after the keys are revealed, the correct circuit has
been applied. These two properties correspond to the “hiding” and “forcing” properties
defined in the previous section, and proving these for our protocol will be the focus
of this section. The fact that the protocol is hiding simply follows from the security of
the Clifford QAS as an encryption scheme; we state this as a lemma below. To prove
forcingness, the usual trick will be to assume that we pass every call to TestDummies in
the protocol (since we only need to look at the no-early-abort case) and use the security
definition of the Clifford QAS (Definition 2.2) to show that the dishonest party’s attack
can be represented by a completely positive, trace non-increasing map U acc that acts
only on his/her other systems (i.e. the ones that were not involved in the TestDummies).
If the adversary decides to try to break the QAS at this step, this U acc will simply
decrease the trace to reflect the probability of abortion. We prove the forcingness of the
various subprotocols in [5], and simply summarize the end result as Lemma 5.5 below.

Lemma 5.4. For every turn before OpenAllSwaddlings, the protocol is hiding for
every adversary Ã and B̃.

Proof. During this phase of the protocol, all Ã ever gets from Bob (and B̃ from Alice)
is encrypted in a QAS, whose key is managed by the classical two-party computations.
Hence, this follows directly from the security of the Clifford QAS (see Section 2.2, or
the full version [5] for more details).

Lemma 5.5. All subprotocols are G -forcing for any Ã and B̃, where G is the opera-
tion performed by the subprotocol.

6 Proving Active Security

Here is the rough description of C̃ ’s operations for the start of the simulation. These
steps allow to simulate any execution aborting in the real world before the adversary
Ã receives back all her swaddlings from B in TestAllSwaddlings. Let s∗ be the
turn in Π̂O′

F at which this transmission is received by Ã . The simulator C̃ runs Ã as a

16

subroutine using an internal copy of B’s instructions run upon a (or any) dummy input
state |0〉Bin . We denote by B∗ the simulated B on a dummy input run internally in C̃ .

We define E-ABORTs as the event consisting in an execution between two parties
aborting at turn s < s∗. Let [C̃~D∧E-ABORTs]

F (ρin) and [Ã ~B∧E-ABORTs]
O′
(ρin)

be denoting the the joint state of an execution that aborts at turn s upon joint input state
ρin between C̃ and D (in the ideal world) and between Ã and B (in the real world)
respectively. States [C̃ ~D ∧ E-ABORTs]

F (ρin) and [Ã ~B ∧ E-ABORTs]
O′
(ρin) are

not normalized, tr([C̃ ~D ∧ E-ABORTs]
F (ρin)) and tr([Ã ~B∧ E-ABORTs]

O′
(ρin))

are the probabilities that [C̃ ~ D]F (ρin) and [Ã ~ B]O
′
(ρin) aborts at step s respec-

tively. The proof of next lemma can be found in [5] and follows easily from the hiding
property of the protocol expressed in Lemma 5.4.

Lemma 6.1 (Early abort). Let Ã be an adversary in hybrid protocol Π̂O′

F = (A ,B,O ′,m)

for F : L(Ain ⊗ Bin) → L(Aout ⊗ Bout). Let s∗ be the turn in Π̂O′

F at which B

returns all of Ã ’s swaddlings in TestAllSwaddlings and let 0 ≤ s < s∗. Then,
there exists an adversary C̃ in ΓF (polysize in the size of Ã) such that for any ρin ∈
D(Ain ⊗ Bin ⊗R),

∆
(
[C̃ ~ D ∧ E-ABORTs]

F (ρin), [Ã ~ B ∧ E-ABORTs]
O′
(ρin)

)
≤ negl(n) .

By symmetry, the same is also true with respect to adversaries B̃ in Π̂O′

F and D̃ in ΓF .

It remains to simulate the execution from turn s∗ until the end. In the simulated world,
if C̃ reaches turn s∗ when Ã and B∗ are interacting then the output state F (ρAinR

in ⊗
|0〉〈0|) can be recovered. The reason being that at turn s∗, all swaddlings have been
tested by B∗ in TestAllSwaddlings. C̃ can get the output state since it knows all
keys allowing to decrypt all logical wires, and all these wires have not been tampered
with. The simulation then works along the same lines than in [4]. At turn s∗, C̃ is
simulating B∗’s quantum transmission of all swaddlings belonging to Ã back to Ã .
These swaddlings have been successfully tested by B∗ in TestAllSwaddlings. C̃
intercepts all these swaddlings and decrypts them together with all swaddlings held by
B∗. C̃ then recovers the output state. C̃ undoes the quantum operation F in order to
recover Ã ’s effective input state before querying F1 with the effective input state. C̃
swaddles back the answer to the query using the same keys. The swaddlings are finally
sent to Ã before resuming the interaction between Ã and B∗. Two things can happen
in OpenAllSwaddlings: 1) Ã ’s behavior makes the execution abort, and 2) Ã and
B reach the end of the execution in normal conditions. In the first case, Ã may even
get the output state of the computation while preventing B from recovering his own.
When the output state is available to Ã , C̃ will need to call F1 (with Ã ’s effective
input) and F2 where the later call is without fairness (i.e., f = 0) when Ã prevents B
from decrypting his output logical wires.

Let E-ABORT be the event of not having E-ABORTs at any turn s < s∗. Next lemma
establishes the active security when no early aborting occurs. The proof can be found
in [5]. It follows from the forcingness of the protocol established in Lemma 5.5.

Lemma 6.2 (No early abort). For any quantum adversary Ã in hybrid protocol Π̂O′

F =

(A ,B,O ′,m) for F : L(Ain ⊗ Bin)→ L(Aout ⊗ Bout), there exists an adversary C̃

17

in ΓF (polysize in the size of Ã and B) such that for any ρin ∈ D(Ain ⊗ Bin ⊗R),

∆
(
[C̃ ~ D ∧ E-ABORT]F (ρin), [Ã ~ B ∧ E-ABORT]O

′
(ρin)

)
≤ negl(n) .

By symmetry, the same is also true with respect to adversaries B̃ in Π̂O′

F and D̃ in ΓF .

Since Lemmas 6.1 and 6.2 together show that a simulator succeeds in reproducing any
real execution, we conclude the active security of the protocol:

Theorem 6.3 (Active security). For any polynomial-time quantum operation F : L(Ain⊗
Bin)→ L(Aout⊗Bout), the two-party hybrid protocol Π̂O′

F is statistically active secure
without fairness for Bob.

References
1. D. Aharonov, M. Ben-Or, and E. Eban. Interactive proofs for quantum computations. In

Proceedings of Innovations in Computer Science, 2008. arxiv.org/abs/0810.5375.
2. H. Barnum, C. Crépeau, D. Gottesman, A. Smith, and A. Tapp. Authentication of quantum

messages. In 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 449–458, 2002.

3. S. Bravyi and A. Kitaev. Universal quantum computation with ideal clifford gates and noisy
ancillas. Physical Review A, 71(022316), 2005. quant-ph/0403025.

4. F. Dupuis, J. B. Nielsen, and L. Salvail. Secure two-party quantum evaluation of unitaries
against specious adversaries. In T. Rabin, editor, CRYPTO, volume 6223 of Lecture Notes in
Computer Science, pages 685–706. Springer, 2010.

5. F. Dupuis, J. B. Nielsen, and L. Salvail. Actively secure two-party evaluation of any quantum
operation. Cryptology ePrint Archive, record 2012/304, eprint.iacr.org/, 2012.

6. D. Gottesman. Stabilizer codes and quantum error correction. PhD thesis, California Insti-
tute of Technology, 1997.

7. D. Gottesman. An introduction to quantum error correction and fault-tolerant quantum com-
putation. In J. Samuel J. Lomonaco, editor, Quantum Information Science and Its Con-
tributions to Mathematics, volume 68, pages 13–60. Proceedings of Symposia in Applied
Mathematics, April 2010. arxiv.org/abs/0904.2557.

8. D. Gottesman and I. L. Chuang. Demonstrating the viability of universal quantum com-
putation using teleportation and single-qubit operations. Nature, 402:390–393, November
1999.

9. D. Gottesman and I. L. Chuang. Quantum teleportation is a universal computational primi-
tive. arxiv.org/abs/quant-ph/9908010, August 1999.

10. G. Gutoski and J. Watrous. Toward a general theory of quantum games. In 39th Annual ACM
Symposium on Theory of Computing (STOC), pages 565–574, 2007.

11. S. Hallgren, A. Smith, and F. Song. Classical cryptographic protocols in a quantum world.
In P. Rogaway, editor, CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages
411–428. Springer, 2011.

12. C. Lunemann and J. B. Nielsen. Fully simulatable quantum-secure coin-flipping and appli-
cations. In A. Nitaj and D. Pointcheval, editors, AFRICACRYPT, volume 6737 of Lecture
Notes in Computer Science, pages 21–40. Springer, 2011.

13. O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In 37th
Annual ACM Symposium on Theory of Computing (STOC), pages 84–93, 2005.

14. P. W. Shor. Fault-tolerant quantum computation. In 37th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 56–65, 1996.

18

arxiv.org/abs/0810.5375
eprint.iacr.org/
arxiv.org/abs/0904.2557
arxiv.org/abs/quant-ph/9908010

	Actively Secure Two-Party Evaluation of any Quantum Operation
	 Frédéric Dupuis Jesper Buus Nielsen Louis Salvail
	Bibliography

