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Abstract. We present a new tensoring technique for LWE-based fully
homomorphic encryption. While in all previous works, the ciphertext
noise grows quadratically (B → B2 · poly(n)) with every multiplication
(before “refreshing”), our noise only grows linearly (B → B · poly(n)).
We use this technique to construct a scale-invariant fully homomorphic
encryption scheme, whose properties only depend on the ratio between
the modulus q and the initial noise level B, and not on their absolute
values.
Our scheme has a number of advantages over previous candidates: It
uses the same modulus throughout the evaluation process (no need for
“modulus switching”), and this modulus can take arbitrary form. In ad-
dition, security can be classically reduced from the worst-case hardness
of the GapSVP problem (with quasi-polynomial approximation factor),
whereas previous constructions could only exhibit a quantum reduction
from GapSVP.

1 Introduction

Fully homomorphic encryption has been the focus of extensive study since the
first candidate scheme was introduced by Gentry [9]. In a nutshell, fully homo-
morphic encryption allows to perform arbitrary computation on encrypted data.
It can thus be used, for example, to outsource a computation to a remote server
without compromising data privacy.

The first generation of fully homomorphic schemes [4,6,7,9,10,26] that started
with Gentry’s seminal work, all followed a similar and fairly complicated method-
ology, often relying on relatively strong computational assumptions. A second
generation of schemes started with the work of Brakerski and Vaikuntanathan [5],
who established full homomorphism in a simpler way, based on the learning with
errors (LWE) assumption. Using known reductions [20,22], the security of their
construction is based on the (often quantum) hardness of approximating some
short vector problems in worst-case lattices. Their scheme was then improved
by Brakerski, Gentry and Vaikuntanathan [3], as we describe below.

In LWE-based schemes such as [3, 5], ciphertexts are represented as vectors
in Zq, for some modulus q. The decryption process is essentially computing an
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inner product of the ciphertext and the secret key vector, which produces a noisy
version of the message (the noise is added at encryption for security purposes).
The noise increases with every homomorphic operation, and correct decryption
is guaranteed if the final noise magnitude is below q/4. Homomorphic addition
roughly doubles the noise, while homomorphic multiplication roughly squares it.

In the [5] scheme, after L levels of multiplication (e.g. evaluating a depth L

multiplication tree), the noise grows from an initial magnitude of B, to B2L .

Hence, to enable decryption, a very large modulus q ≈ B2L was required. This
affected both efficiency and security (the security of the scheme depends inversely
on the ratio q/B, so bigger q for the same B means less security).

The above was improved by [3], who suggested to scale down the ciphertext
vector after every multiplication (they call this “modulus switching”, see below).1

That is, to go from a vector c over Zq, into the vector c/w over Zq/w (for some
scaling factor w). Scaling “switches” the modulus q to a smaller q/w, but also
reduces the noise by the same factor (from B to B/w). To see why this change
of scale is effective, consider scaling by a factor B after every multiplication (as
indeed suggested by [3]): After the first multiplication, the noise goes up to B2,
but scaling brings it back down to B, at the cost of reducing the modulus to q/B.
With more multiplications, the noise magnitude always goes back to B, but the
modulus keeps reducing. After L levels of multiplication-and-scaling, the noise
magnitude is still B, but the modulus is down to q/BL. Therefore it is sufficient
to use q ≈ BL+1, which is significantly lower than before. However, this process
results in a complicated homomorphic evaluation process that “climbs down the
ladder of moduli”.

The success of the scaling methodology teaches us that perspective matters:
scaling does not change the ratio between the modulus and noise, but it still
manages the noise better by changing the perspective in which we view the
ciphertext. In this work, we suggest to work in an invariant perspective where
only the ratio q/B matters (and not the absolute values of q,B as in previous
works). We derive a scheme that is superior to the previous best known in
simplicity, noise management and security. Details follow.

1.1 Our Results

As explained above, we present a scale invariant scheme, by finding an invariant
perspective. The idea is very natural based on the outlined motivation: if we scale
down the ciphertext by a factor of q, we get a fractional ciphertext modulo 1,
with noise magnitude B/q. In this perspective, all choices of q,B with the same
B/q ratio will look the same. It turns out that in this perspective, homomorphic
multiplication does not square the noise, but rather multiplies it by a polynomial
factor p(n) that depends only on the security parameter.2 After L levels of

1 A different scaling technique was already suggested in [5] as a way to simplify de-
cryption and improve efficiency, but not to manage noise.

2 More accurately, a polynomial p(n, log q), but w.l.o.g q ≤ 2n.
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multiplication, the noise will grow from B/q to (B/q) · p(n)L, which means that
we only need to use q ≈ B · p(n)L.

Interestingly, the idea of working modulo 1 goes back to the early works of
Ajtai and Dwork [1], and Regev [21], and to the first formulation of LWE [22].
In a sense, we are “going back to the roots” and showing that these early ideas
are instrumental in the construction of homomorphic encryption.

For technical reasons, we don’t implement the scheme over fractions, but
rather mimic the invariant perspective over Zq (see Section 1.2 for more details).
Perhaps surprisingly, the resulting scheme is exactly Regev’s original LWE-based
scheme, with additional auxiliary information for the purpose of homomorphic
evaluation. The properties of our scheme are summarized in the following theo-
rem:

Theorem. There exists a homomorphic encryption scheme for depth L circuits,
based on the DLWEn,q,χ assumption (n-dimensional decision-LWE modulo q,
with noise χ), so long as

q/B ≥ (O(n log q))L+O(1) ,

where B is a bound on the values of χ.

The resulting scheme has a number of interesting properties:

1. Scale invariance. Homomorphic properties only depend on q/B (as ex-
plained above).

2. No modulus switching. We work with a single modulus q. We don’t need
to switch moduli as in [3,5]. This leads to a simpler description of the scheme
(and hopefully better implementations).

3. No restrictions on the modulus. Our modulus q can take any form (so
long as it satisfies the size requirement). This is achieved by putting the
message bit in the most significant bit of the ciphertext, rather than least
significant as in previous homomorphic schemes (this can be interpreted as
making the message scale invariant). We note that for odd q, the least and
most significant bit representations are interchangeable.
In particular, in our scheme q can be a power of 2, which can simplify
implementation of arithmetics.3 In previous schemes, such q could not be
used for binary message spaces.4

This, again, is going back to the roots: Early schemes such as [22], and in
a sense also [1,14], encoded ciphertexts in the most significant bits. Switch-
ing to least significant bit encoding was (perhaps ironically) motivated by
improving homomorphism.

4. No restrictions on the secret key distribution. While [3] requires that
the secret key is drawn from the noise distribution (LWE in Hermite normal
form), our scheme works under any secret key distribution for which the
LWE assumption holds.

3 On the downside, such q might reduce efficiency when using ring-LWE (see below)
due to FFT embedding issues.

4 [11] gain on efficiency by using moduli that are “almost” a power of 2.
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5. Classical Reduction from GapSVP. One of the appeals of LWE-based
cryptography is the known quantum (Regev [22]) and classical (Peikert [20])
reductions from the worst case hardness of lattice problems. Specifically to
GapSVPγ , which is the problem of deciding, given an n dimensional lattice
and a number d, between the following two cases: either the lattice has a
vector shorter than d, or it doesn’t have any vector shorter than γ(n) · d.
The value of γ depends on the ratio q/B (essentially γ = (q/B) · Õ(n)), and
the smaller γ is, the better the reduction (GapSVP2Ω(n) is an easy problem).
Peikert’s classical reduction requires that q ≈ 2n/2, which makes his reduc-
tion unusable for previous homomorphic schemes, since γ becomes exponen-
tial. For example, in [3], q/B = q/q1/(L+1) = q1−1/(L+1) which translates to
γ ≈ 2n/2 for the required q.5

In our scheme, this problem does not arise. We can instantiate our scheme
with any q while hardly affecting the ratio q/B. We can therefore set q ≈ 2n/2

and get a classical reduction from GapSVPnO(log n) , which is currently solvable

only in 2Ω̃(n) time. (This is mostly of theoretical interest, though, since
efficiency considerations will favor the smallest possible q.)

Using our scheme as a building block we achieve:

1. Fully homomorphic encryption using bootstrapping. Using Gentry’s
bootstrapping theorem, we present a leveled fully homomorphic scheme
based on the classical worst case GapSVPnO(log n) problem. As usual, an ad-
ditional circular security assumption is required to get a non-leveled scheme.

2. Leveled fully homomorphic encryption without bootstrapping. As
in [3], our scheme can be used to achieve leveled homomorphism without
bootstrapping.

3. Increased efficiency using ring-LWE (RLWE). RLWE ( [15]) is a ver-
sion of LWE that works over polynomial rings rather than the integers. Its
hardness is quantumly related to short vector problems in ideal lattices.
RLWE is a stronger assumption than LWE, but it can dramatically improve
the efficiency of schemes [3, 4, 12]. Our methods are readily portable to the
RLWE world.

In summary, our construction carries conceptual significance in its simplicity
and in a number of theoretical aspects. Its practical usefulness compared to other
schemes is harder to quantify, though, since it will vary greatly with the specific
implementation and optimizations chosen.

1.2 Our Techniques

Our starting point is Regev’s public key encryption scheme. There, the en-
cryption of a message m ∈ {0, 1} is an integer vector c such that ⟨c, s⟩ =⌊
q
2

⌋
· m + e + qI, for an integer I and for |e| ≤ E, for some bound E < q/4.

5 Peikert suggests to classically base small-q LWE on a new lattice problem that he
introduces.
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The secret key vector s is also over the integers. We can assume w.l.o.g that
the elements of c, s are in the segment (−q/2, q/2]. (We note that previous
homomorphic constructions used a different variant of Regev’s scheme, where
⟨c, s⟩ = m+ 2e+ qI.)

In this work, we take the invariant perspective on the scheme, and consider
the fractional ciphertext c̃ = c/q. It holds that ⟨c̃, s⟩ = 1

2 ·m+ ẽ+I, where I ∈ Z
and |ẽ| ≤ E/q = ϵ. The elements of c are now rational numbers in (−1/2, 1/2].
Note that the secret key does not change and is still over Z.

Additive homomorphism is immediate: if c1 encrypts m1 and c2 encrypts
m2, then cadd = c1 + c2 encrypts [m1 +m2]2. The noise grows from ϵ to ≈ 2ϵ.
Multiplicative homomorphism is achieved by tensoring the input ciphertexts:

cmult = 2 · c1 ⊗ c2 .

The tensored ciphertext can be decrypted using a tensored secret key because⟨
2 · c1 ⊗ c2︸ ︷︷ ︸

cmult

, s⊗ s
⟩
= 2 · ⟨c1, s⟩ · ⟨c2, s⟩ .

A “key switching” mechanism developed in [5] and generalized in [3] allows
to switch back from a tensored secret key into a “normal” one without much
additional noise. The details of this mechanism are immaterial for this discussion.
We focus on the noise growth in the tensored ciphertext.

We want to show that 2 · ⟨c1, s⟩ · ⟨c2, s⟩ ≈ 1
2m1m2 + e′ + I ′, for a small e′.

To do this, we let I1, I2 ∈ Z be integers such that ⟨c1, s⟩ = 1
2m1 + e1 + I1,

and likewise for c2. It can be verified that |I1| , |I2| are bounded by ≈ ∥s∥1. We
therefore get:

2 · ⟨c1, s⟩ · ⟨c2, s⟩ = 2 · ( 1
2m1 + e1 + I1) · ( 1

2m2 + e2 + I2)

= 1
2m1m2 + 2(e1I2 + e2I1) + e1m2 + e2m1 + 2e1e2

+(m1I2 +m2I1 + 2I1I2)︸ ︷︷ ︸
∈Z

.

Interestingly, the cross-term e1e2 that was responsible for the squaring of the
noise in previous schemes, is now practically insignificant since ϵ2 ≪ ϵ. The
significant noise term in the above expression is 2(e1I2+e2I1), which is bounded
by O(∥s∥1) · ϵ. All that is left to show now is that ∥s∥1 is independent of B, q
and only depends on n (recall that we allow dependence on log q ≤ n).

On the face of it, ∥s∥1 ≈ n · q, since the elements of s are integers in the
segment (−q/2, q/2]. In order to reduce the norm, we use binary decomposition
(which was used in [3,5] for different purposes). Let s(j) denote the binary vector
that contains the jth bit from each element of s. Namely s =

∑
j 2

js(j). Then

⟨c, s⟩ =
∑
j

2j
⟨
c, s(j)

⟩
=

⟨
(c, 2c, . . .), (s(0), s(1), . . .)

⟩
.

This means that we can convert a ciphertext c that corresponds to a secret
key s in Z, into a modified ciphertext (c, 2c, . . .) that corresponds to a binary
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secret key (s(0), s(1), . . .). The norm of the binary key is at most its dimension,
which is polynomial in n as required.6

We point out that an alternative solution to the norm problem follows by
using the dual-Regev scheme of [13] as the basic building block. There, the secret
key is natively binary and of low norm. (In addition, as noticed in previous
works, working with dual-Regev naturally implies a weak form of homomorphic
identity based encryption.) However, the ciphertexts and some other parameters
will need to grow.

Finally, working with fractional ciphertexts brings about issues of precision in
representation and other problems. We thus implement our scheme over Z with
appropriate scaling: Each rational number x in the above description will be rep-
resented by the integer y = ⌊qx⌉ (which determines x up to an additive factor
of 1/2q). The addition operation x1 +x2 is mimicked by y1 + y2 ≈ ⌊q(x1 + x2)⌉.
To mimic multiplication, we take ⌊(y1 · y2)/q⌉ ≈ ⌊x1 · x2 · q⌉. Our tensored ci-

phertext for multiplication will thus be defined as
⌊
2
q · c1 ⊗ c2

⌉
, where c1, c2 are

integer vectors and the tensoring operation is over the integers. In this represen-
tation, encryption and decryption become identical to Regev’s original scheme.

1.3 Notation

For an integer q, we define the set Zq , (−q/2, q/2] ∩ Z. We stress that in this
work, Zq is not synonymous with the ring Z/qZ. In particular, all arithmetics is
performed over Z (or Q when division is used) and not over any sub-ring. For
any x ∈ Q, we let y = [x]q denote the unique value y ∈ (−q/2, q/2] such that

y = x (mod q) (i.e. y is congruent to x modulo q).7

A distribution χ over the integers is B-bounded, denoted |χ| ≤ B, if χ is
only supported on [−B,B].

We denote vectors in bold lowercase (x) and matrices in bold uppercase (A).
Slightly abusing notation, we denote the concatenation of vectors x,y by (x,y).
The tensor product of two vectors v,w of dimension n, denoted v ⊗ w, is the
n2 dimensional vector containing all elements of the form v[i]w[j]. Note that
⟨v ⊗w,x⊗ y⟩ = ⟨v,x⟩ · ⟨w,y⟩.

1.4 Paper Organization

Section 2 introduces the LWE assumption and defines homomorphic encryption
and related terms. Section 3 introduces our building blocks: Regev’s encryp-
tion scheme, binary decomposition of vectors and the key switching mechanism.
Finally, in Section 4 we present and analyze our scheme, and discuss several
possible optimizations.

6 Reducing the norm of s was also an issue in [3]. There it was resolved by using LWE
in Hermite normal form, where s is sampled from the noise distribution and thus
∥s∥1 ≈ n · B. This suffices when B must be very small, as in [3], but not in our
setting.

7 For example, if x = 2, y = −3 ∈ Z7, then x · y = −6 ̸∈ Z7, however [x · y]7 = 1 ∈ Z7.
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2 Preliminaries

2.1 Learning With Errors (LWE)

The LWE problem was introduced by Regev [22] as a generalization of “learning
parity with noise”. For positive integers n and q ≥ 2, a vector s ∈ Zn

q , and a
probability distribution χ on Z, let As,χ be the distribution obtained by choosing

a vector a
$← Zn

q uniformly at random and a noise term e
$← χ, and outputting

(a, [⟨a, s⟩+ e]q) ∈ Zn
q × Zq. Decisional LWE (DLWE) is defined as follows.

Definition 2.1 (DLWE). For an integer q = q(n) and an error distribution
χ = χ(n) over Z, the (average-case) decision learning with errors problem, de-
noted DLWEn,m,q,χ, is to distinguish (with non-negligible advantage) m samples

chosen according to As,χ (for uniformly random s
$← Zn

q ), from m samples cho-
sen according to the uniform distribution over Zn

q ×Zq. We denote by DLWEn,q,χ

the variant where the adversary gets oracle access to As,χ, and is not a-priori
bounded in the number of samples.

There are known quantum (Regev [22]) and classical (Peikert [20]) reduc-
tions between DLWEn,m,q,χ and approximating short vector problems in lattices.
Specifically, these reductions take χ to be (discretized versions of) the Gaussian
distribution, which is statistically indistinguishable from B-bounded, for an ap-
propriate B. Since the exact distribution χ does not matter for our results, we
state a corollary of the results of [20, 22] (in conjunction with the search to de-
cision reduction of Micciancio and Mol [16] and Micciancio and Peikert [17])
in terms of the bound B. These results also extend to additional forms of q
(see [16,17]).

Corollary 2.2 ( [16, 17, 20, 22]). Let q = q(n) ∈ N be either a prime power
q = pr, or a product of co-prime numbers q =

∏
qi such that for all i, qi =

poly(n), and let B ≥ ω(log n) ·
√
n. Then there exists an efficiently sampleable

B-bounded distribution χ such that if there is an efficient algorithm that solves
the (average-case) DLWEn,q,χ problem. Then:

– There is an efficient quantum algorithm that solves GapSVPÕ(n·q/B) (and

SIVPÕ(n·q/B)) on any n-dimensional lattice.

– If in addition q ≥ Õ(2n/2), then there is an efficient classical algorithm for
GapSVPÕ(n·q/B) on any n-dimensional lattice.

In both cases, if one also considers distinguishers with sub-polynomial advantage,
then we require B ≥ Õ(n) and the resulting approximation factor is slightly larger

Õ(n
√
n · q/B).

Recall that GapSVPγ is the (promise) problem of distinguishing, given a basis
for a lattice and a parameter d, between the case where the lattice has a vector
shorter than d, and the case where the lattice doesn’t have any vector shorter
than γ · d. SIVP is the search problem of finding a set of “short” vectors. We
refer the reader to [20,22] for more information.
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The best known algorithms for GapSVPγ ( [18,25]) require at least 2Ω̃(n/ log γ)

time. The scheme we present in this work reduces from γ = nO(logn), for which

the best known algorithms run in time 2Ω̃(n).

As a final remark, we mention that Peikert also shows a classical reduction
in the case of small values of q, but this reduction is from a newly defined “ζ-
to-γ decisional shortest vector problem”, which is not as extensively studied as
GapSVP.

2.2 Homomorphic Encryption and Bootstrapping

We now define homomorphic encryption and introduce Gentry’s bootstrapping
theorem. Our definitions are mostly taken from [3,5].

A homomorphic (public-key) encryption scheme HE = (HE.Keygen,HE.Enc,
HE.Dec,HE.Eval) is a quadruple of ppt algorithms as follows (n is the security
parameter):

– Key generation (pk, evk, sk)←HE.Keygen(1n): Outputs a public encryp-
tion key pk, a public evaluation key evk and a secret decryption key sk.8

– Encryption c←HE.Encpk(m): Using the public key pk, encrypts a single bit
message m ∈ {0, 1} into a ciphertext c.

– Decryption m←HE.Decsk(c): Using the secret key sk, decrypts a ciphertext
c to recover the message m ∈ {0, 1}.

– Homomorphic evaluation cf←HE.Evalevk(f, c1, . . . , cℓ): Using the eval-
uation key evk, applies a function f : {0, 1}ℓ → {0, 1} to c1, . . . , cℓ, and
outputs a ciphertext cf .

As in previous works, we represent f as an arithmetic circuit over GF(2) with
addition and multiplication gates. Thus it is customary to “break” HE.Eval
into homomorphic addition cadd←HE.Addevk(c1, c2) and homomorphic mul-
tiplication cmult←HE.Multevk(c1, c2).

A homomorphic encryption scheme is said to be secure if it is semantically
secure (note that the adversary is given both pk and evk).

Homomorphism w.r.t depth-bounded circuits and full homomorphism are
defined next:

Definition 2.3 (L-homomorphism). A scheme HE is L-homomorphic, for
L = L(n), if for any depth L arithmetic circuit f (over GF(2)) and any set of
inputs m1, . . . ,mℓ, it holds that

Pr [HE.Decsk(HE.Evalevk(f, c1, . . . , cℓ)) ̸= f(m1, . . . ,mℓ)] = negl(n) ,

where (pk, evk, sk)←HE.Keygen(1n) and ci←HE.Encpk(mi).

8 We adopt the terminology of [5] that treats the evaluation key as a separate entity
from the public key.
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Definition 2.4 (compactness and full homomorphism). A homomorphic
scheme is compact if its decryption circuit is independent of the evaluated func-
tion. A compact scheme is fully homomorphic if it is L-homomorphic for any
polynomial L. The scheme is leveled fully homomorphic if it takes 1L as addi-
tional input in key generation.

Gentry’s bootstrapping theorem shows how to go from L-homomorphism to
full homomorphism:

Theorem 2.5 (bootstrapping [8, 9]). If there is an L-homomorphic scheme
whose decryption circuit depth is less than L, then there exists a leveled fully
homomorphic encryption scheme.

Furthermore, if the aforementioned L-homomorphic scheme is also weak cir-
cular secure (remains secure even against an adversary who gets encryptions
of the bits of the secret key), then there exists a fully homomorphic encryption
scheme.

3 Building Blocks

In this section, we present building blocks from previous works that are used in
our construction. Specifically, like all LWE-based fully homomorphic schemes,
we rely on Regev’s [22] basic public-key encryption scheme (Section 3.1). We
also use the key-switching methodology of [3, 5] (Section 3.2).

3.1 Regev’s Encryption Scheme

Let q = q(n) be an integer function and let χ = χ(n) be a distribution ensemble
over Z. The scheme Regev is defined as follows:

• Regev.SecretKeygen(1n): Sample s
$← Zn

q . Output sk = s.

• Regev.PublicKeygen(s): Let N , (n+ 1) · (log q +O(1)). Sample A
$← ZN×n

q

and e
$← χN . Compute b:= [A · s+ e]q, and define

P:= [b∥ −A] ∈ ZN×(n+1)
q .

Output pk = P.
• Regev.Encpk(m): To encrypt a message m ∈ {0, 1} using pk = P, sample
r ∈ {0, 1}N and output ciphertext

c:=
[
PT · r+

⌊q
2

⌋
·m

]
q
∈ Zn+1

q ,

where m , (m, 0, . . . , 0) ∈ {0, 1}n+1.
• Regev.Decsk(c): To decrypt c ∈ Zn+1

q using secret key sk = s, compute

m:=

[⌊
2 ·

[⟨c, (1, s)⟩]q
q

⌉]
2

.
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Correctness. We analyze the noise magnitude at encryption and decryption.
We start with a lemma regarding the noise magnitude of properly encrypted
ciphertexts (the proof is omitted).

Lemma 3.1 (encryption noise). Let q, n,N, |χ| ≤ B be parameters for Regev.
Let s ∈ Zn be any vector and m ∈ {0, 1} be a bit. Set P←Regev.PublicKeygen(s)
and c←Regev.EncP(m). Then for some e with |e| ≤ N ·B it holds that

⟨c, (1, s)⟩ =
⌊q
2

⌋
·m+ e (mod q) .

We proceed to state the correctness of decryption for low-noise ciphertexts.
The proof easily follows by assignment into the definition of Regev.Dec and is
omitted.

Lemma 3.2 (decryption noise). Let s ∈ Zn be some vector, and let c ∈ Zn+1
q

be such that
⟨c, (1, s)⟩ =

⌊q
2

⌋
·m+ e (mod q) ,

with m ∈ {0, 1} and |e| < ⌊q/2⌋ /2. Then

Regev.Decs(c) = m .

Security. The following lemma states the security of Regev. The proof is standard
(see e.g. [22]) and is omitted.

Lemma 3.3. Let n, q, χ be some parameters such that DLWEn,q,χ holds. Then
for any m ∈ {0, 1}, if s←Regev.SecretKeygen(1n), P←Regev.PublicKeygen(s),
c←Regev.EncP(m), it holds that the joint distribution (P, c) is computationally

indistinguishable from uniform over ZN×(n+1)
q × Zn+1

q .

3.2 Vector Decomposition and Key Switching

We show how to decompose vectors in a way that preserves inner product and
how to generate and use key switching parameters. Our notation is generally
adopted from [3].

Vector Decomposition. We often break vectors into their bit representations as
defined below:

• BitDecompq(x): For x ∈ Zn, let wi ∈ {0, 1}n be such that x =
∑⌈log q⌉−1

i=0 2i ·
wi (mod q). Output the vector

(w0, . . . ,w⌈log q⌉−1) ∈ {0, 1}n·⌈log q⌉ .

• PowersOfTwoq(y): For y ∈ Zn, output[
(y, 2 · y, . . . , 2⌈log q⌉−1 · y)

]
q
∈ Zn·⌈log q⌉

q .

We will usually omit the subscript q when it is clear from the context.

Claim 3.4. For all q ∈ Z and x,y ∈ Zn, it holds that

⟨x,y⟩ = ⟨BitDecompq(x),PowersOfTwoq(y)⟩ (mod q) .
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Key Switching. In the functions below, q is an integer and χ is a distribution
over Z:
• SwitchKeyGenq,χ(s, t): For a “source” key s ∈ Zns and “target” key t ∈ Znt ,
we define a set of parameters that allow to switch ciphertexts under s into
ciphertexts under (1, t).
Let n̂s , ns · ⌈log q⌉ be the dimension of PowersOfTwoq(s). Sample a uniform

matrix As:t
$← Zn̂s×nt

q and a noise vector e
$← χn̂s . The function’s output is

a matrix
Ps:t = [bs:t∥ −As:t] ∈ Zn̂s×(nt+1)

q ,

where
bs:t:=

[
As:t · t+ es:t + PowersOfTwoq(s)

]
q
∈ Zn̂s

q .

This is similar, although not identical, to encrypting PowersOfTwoq(s) (the
difference is that PowersOfTwoq(s) contains non-binary values).
• SwitchKeyq(Ps:t, cs): To switch a ciphertext from a secret key s to (1, t),
output

ct:=
[
PT

s:t · BitDecompq(cs)
]
q
.

Again, we usually omit the subscripts when they are clear from the context.
Correctness and security are stated below, the proofs are by definition.

Lemma 3.5 (correctness). Let s ∈ Zns , t ∈ Znt and cs ∈ Zns
q be any vectors.

Let Ps:t←SwitchKeyGen(s, t) and set ct←SwitchKey(Ps:t, cs). Then

⟨cs, s⟩ = ⟨ct, (1, t)⟩ − ⟨BitDecompq(cs), es:t⟩ (mod q) .

Lemma 3.6 (security). Let s ∈ Zns be arbitrary, t←Regev.SecretKeygen(1n)
and P←SwitchKeyGenq,χ(s, t). Then P is computationally indistinguishable from

uniform over Zn̂s×(nt+1)
q , assuming DLWEn,q,χ.

4 A Scale Invariant Homomorphic Encryption Scheme

We present our scale invariant L-homomorphic scheme as outlined in Section 1.2.
Homomorphic properties are discussed in Section 4.1, implications and optimiza-
tions are discussed in Section 4.2.

Let q = q(n) be an integer function, let L = L(n) be a polynomial and let
χ = χ(n) be a distribution ensemble over Z. The scheme SI-HE is defined as
follows:

• SI-HE.Keygen(1L, 1n): Sample vectors s0, . . . , sL←Regev.SecretKeygen(1n).
Compute a Regev public key for the first one: P0←Regev.PublicKeygen(s0).
For all i ∈ [L], define

s̃i−1:=BitDecomp((1, si−1))⊗ BitDecomp((1, si−1)) ∈ {0, 1}((n+1)⌈log q⌉)2 .

and compute
P(i−1):i←SwitchKeyGen (s̃i−1, si) .

Output pk = P0, evk = {P(i−1):i}i∈[L] and sk = sL.
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• SI-HE.Encpk(m): Identical to Regev’s, output c←Regev.Encpk(m).

• SI-HE.Evalevk(·): As usual, we describe homomorphic addition and multipli-
cation over GF(2), which allows to evaluate depth L arithmetic circuits in
a gate-by-gate manner. The convention for a gate at level i of the circuit is
that the operand ciphertexts are decryptable using si−1, and the output of
the homomorphic operation is decryptable using si.

Since evk contains key switching parameters from s̃i−1 to si, homomorphic
addition and multiplication both first produce an intermediate output c̃ that
corresponds to s̃i−1, and then use key switching to obtain the final output.9

− SI-HE.Addevk(c1, c2): Assume w.l.o.g that both input ciphertexts are en-
crypted under the same secret key si−1. First compute

c̃add:=PowersOfTwo(c1 + c2)⊗ PowersOfTwo((1, 0, . . . , 0)) ,

then output

cadd←SwitchKey(P(i−1):i, c̃add) ∈ Zn+1
q .

Let us explain what we did: We first added the ciphertext vectors (as
expected) to obtain c1 + c2. This already implements the homomorphic
addition, but provides an output that corresponds to si−1 and not si as
required. We thus generate c̃add by tensoring with a “trivial” ciphertext.
The result corresponds to s̃i−1, and allows to finally use key switching to
obtain an output corresponding to si. We use powers-of-two representation
in order to control the norm of the secret key (as we explain in Section 1.2).

− SI-HE.Multevk(c1, c2): Assume w.l.o.g that both input ciphertexts are en-
crypted under the same secret key si−1. First compute

c̃mult:=

⌊
2

q
·
(
PowersOfTwo(c1)⊗ PowersOfTwo(c2)

)⌉
,

then output

cmult←SwitchKey(P(i−1):i, c̃mult) ∈ Zn+1
q .

As we explain in Section 1.2, The tensored ciphertext c̃mult mimics ten-
soring in the “invariant perspective”, which produces an encryption of
the product of the plaintexts under the tensored secret key s̃i−1. We then
switch keys to obtain an output corresponding to si.

• Decryption SI-HE.Decsk(c): Assume w.l.o.g that c is a ciphertext that corre-
sponds to sL (=sk). Then decryption is again identical to Regev’s, output

m←Regev.Decsk(c) .

9 The final key switching replaces the more complicated “refresh” operation of [3].
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Security. The security of the scheme follows in a straightforward way, very sim-
ilarly to the proof of [5, Theorem 4.1]. The proof is omitted.

Lemma 4.1. Let n, q, χ be some parameters such that DLWEn,q,χ holds, and
let L = L(n) be polynomially bounded. Let (pk, evk, sk)←SI-HE.Keygen(1L, 1n),
c←SI-HE.Encpk(m) (for any m ∈ {0, 1}), then it holds that the joint distribution
(pk, evk, c) is computationally indistinguishable from uniform.

4.1 Homomorphic Properties of SI-HE

The following theorem summarizes the homomorphic properties of our scheme.

Theorem 4.2. The scheme SI-HE with parameters n, q, |χ| ≤ B,L for which

q/B ≥ (O(n log q))
L+O(1)

,

is L-homomorphic.

The theorem is proven using the following lemma, which bounds the growth
of the noise in gate evaluation.

Lemma 4.3. Let q, n, |χ| ≤ B,L be parameters for SI-HE. Set (pk, evk, sk) by
calling SI-HE.Keygen(1L, 1n) and let c1, c2 be such that

⟨c1, (1, si−1)⟩ =
⌊q
2

⌋
·m1 + e1 (mod q)

⟨c2, (1, si−1)⟩ =
⌊q
2

⌋
·m1 + e2 (mod q) , (1)

with |e1| , |e2| ≤ E < ⌊q/2⌋ /2. Consider ciphertexts cadd←SI-HE.Addevk(c1, c2),
cmult←SI-HE.Multevk(c1, c2). Then

⟨cadd, (1, si)⟩ =
⌊q
2

⌋
·
(
[m1 +m2]2

)
+ eadd (mod q)

⟨cmult, (1, si)⟩ =
⌊q
2

⌋
·m1m2 + emult (mod q) ,

where

|eadd| , |emult| ≤ O(n log q) ·max
{
E, (n log2 q) ·B

}
.

We remark that, as usual, homomorphic addition increases noise much more
moderately than multiplication, but the coarse bound we show in the lemma is
sufficient for our purposes.

Theorem 4.2 follows from Lemma 4.3 in a straightforward manner. The proof
of Lemma 4.3 appears in Section 4.3.
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4.2 Implications and Optimizations

Fully Homomorphic Encryption using Bootstrapping. Fully homomorphic en-
cryption follows using the bootstrapping theorem (Theorem 2.5). In order to
use bootstrapping, we need to bound the depth of the decryption circuit. The
following lemma has been proven in a number of previous works (e.g. [5, Lemma
4.5]):

Lemma 4.4. For all c, the function fc(s) = SI-HE.Decs(c) can be implemented
by a circuit of depth O(log n+ log log q).

An immediate corollary follows from Theorem 2.5, Theorem 4.2, Lemma 4.4:

Corollary 4.5. Let n, q, |χ| ≤ B be such that q/B ≥ (n log q)
O(logn+log log q)

.
Then there exists a (leveled) fully homomorphic encryption scheme based on the
DLWEn,q,χ assumption.

Furthermore, if SI-HE is weak circular secure, then the same assumption
implies full (non leveled) homomorphism.

Finally, we can classically reduce security from GapSVP using Corollary 2.2,
by choosing q = Õ(2n/2) and B = q/(n log q)O(logn+log log q) = q/nO(logn):

Corollary 4.6. There exists a (leveled) fully-homomorphic encryption scheme
based on the classical worst case hardness of the GapSVPnO(log n) problem.

(Leveled) Fully Homomorphic Encryption without Bootstrapping. As in [3], our
scheme implies a leveled fully homomorphic encryption without bootstrapping.
Plugging our scheme into the [3] framework, we obtain a (leveled) fully homo-
morphic encryption without bootstrapping, based on the classical worst case
hardness of GapSVP2nϵ , for any ϵ > 0.

Optimizations. So far, we chose to present our scheme in the cleanest possible
way. However, there are a few techniques that can somewhat improve perfor-
mance. While the asymptotic advantage of some of these methods is not great,
a real life implementation can benefit from them.

1. Our tensored secret key s̃i−1 is obtained by tensoring a vector with itself.
Such a vector can be represented by only

(
ns

2

)
(as opposed to our n2

s), saving
a factor of (almost) 2 in the representation length.

2. When B ≪ q, some improvement can be achieved by using LWE in Her-
mite normal form. It is known (see e.g. [2]) that the hardness of LWE re-

mains essentially the same if we sample s
$← χn (instead of uniformly in

Zn
q ). Sampling our keys this way, we only need O(n logB) bits to represent

BitDecomp(s), and its norm goes down accordingly.
We can therefore reduce the size of the evaluation key (which depends
quadratically on the bit length of the secret key), and more importantly,
we can prove a tighter version of Lemma 4.3. When using Hermite normal
form, the noise grows from E to O(n logB) · max{E, (n logB log q) · B}.
Therefore, L-homomorphism is achieved whenever

q/B ≥ (O(n logB))L+O(1) · log q .
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3. The least significant bits of the ciphertext can sometimes be truncated with-
out much harm, which can lead to significant saving in ciphertext and key
length, especially when B/q is large: Let c be an integer ciphertext vector
and define c′ =

⌊
2−i · c

⌉
. Then c′, which can be represented with n · i fewer

bits than c, implies a good approximation for c since∣∣⟨c, s⟩ − ⟨2i · c′, s⟩∣∣ ≤ 2i−1 ∥s∥1 .

This means that 2i · c′ can be used instead of c, at the cost of an additive
increase in the noise magnitude.
Consider a case where q,B ≫ q/B (which occurs when we artificially increase
q in order for the classical reduction to work). Recall that ∥s∥1 ≈ n log q and
consider truncating with i ≈ log(B/(n log q)). Then the additional noise
incurred by using c′ instead of c is only an insignificant ≈ B. The number of
bits required to represent each element in c′ however now becomes log q−i ≈
log(q/B) + log(n log q). In conclusion, we hardly lose anything in ciphertext
length compared to the case of working with smaller q,B to begin with (with
similar q/B ratio). The ciphertext length can, therefore, be made invariant
to the absolute values of q,B, and depend only on their ratio. This of course
applies also to the vectors in evk.

4.3 Proof of Lemma 4.3

We start with the analysis for addition, which is simpler and will also serve as
good warm-up towards the analysis for multiplication.

Analysis for Addition. By Lemma 3.5, it holds that

⟨cadd, (1, si)⟩ = ⟨c̃add, s̃i⟩+ ⟨BitDecomp(c̃), ei−1:i⟩︸ ︷︷ ︸
,δ1

(mod q) .

where ei−1:i ∼ χ(n+1)2·(⌈log q⌉)3 . That is, δ1 is the noise inflicted by the key
switching process.

We bound |δ1| using the bound on χ:

|δ1| = |⟨BitDecomp(c̃add), ei−1:i⟩| ≤ (n+ 1)2 · (⌈log q⌉)3 ·B = O(n2 log3 q) ·B .

Next, we expand the term ⟨c̃add, s̃i⟩, by breaking an inner product of tensors
into a product of inner products (one of which is trivially equal to 1):

⟨c̃add, s̃i⟩ =
⟨
PowersOfTwo(c1 + c2)⊗ PowersOfTwo((1, 0, . . . , 0)),

BitDecomp((1, si−1))⊗ BitDecomp((1, si−1))
⟩

=
⟨
PowersOfTwo(c1 + c2),BitDecomp((1, si−1))

⟩
· 1

=
⟨
(c1 + c2), (1, si−1)

⟩
(mod q)

=
⟨
c1, (1, si−1)

⟩
+

⟨
c2, (1, si−1)

⟩
(mod q) .
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We can now plug in what we know about c1, c2 from Eq. (1) in the lemma
statement:

⟨c̃add, s̃i⟩ =
⌊q
2

⌋
·m1 + e1 +

⌊q
2

⌋
·m2 + e2 (mod q)

=
⌊q
2

⌋
· [m1 +m2]2−m̃+ e1 + e2︸ ︷︷ ︸

,δ2

, (mod q)

where m̃ ∈ {0, 1} is defined as:

m̃ ,
{

0, if q is even,
1
2 · (m1 +m2 − [m1 +m2]2), if q is odd,

and |δ2| ≤ 1 + 2E.
Putting it all together,

⟨cadd, (1, si)⟩ =
⌊q
2

⌋
· [m1 +m2]2 + δ1 + δ2︸ ︷︷ ︸

=eadd

(mod q) .

Where the bound on eadd is

|eadd| = |δ1 + δ2| ≤ O(n2 log3 q)·B+O(1)·E ≤ O(n log q)·max
{
E, (n log2 q) ·B

}
which finishes the argument for addition.

Analysis for Multiplication. The analysis for multiplication starts very similarly
to addition:

⟨cmult, (1, si)⟩ = ⟨c̃mult, s̃i⟩+ ⟨BitDecomp(c̃mult), ei−1:i⟩︸ ︷︷ ︸
,δ1

(mod q) ,

and as before
|δ1| = O(n2 log3 q) ·B .

Let us now focus on ⟨c̃mult, s̃i⟩. We want to use the properties of tensoring to
break the inner product into two smaller inner products, as we did before. This
time, however, c̃mult is a rounded tensor:

⟨c̃, s̃i⟩ =
⟨⌊

2

q
· (PowersOfTwo(c1)⊗ PowersOfTwo(c2))

⌉
, s̃i−1

⟩
(mod q) .

We start by showing that the rounding does not add much noise. Intuitively
this is because s̃i−1 is a binary vector and thus has low norm. We define

δ2 ,
⟨⌊

2

q
· (PowersOfTwo(c1)⊗ PowersOfTwo(c2))

⌉
, s̃i−1

⟩
−
⟨2
q
· (PowersOfTwo(c1)⊗ PowersOfTwo(c2)), s̃i−1

⟩
,
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and for convenience we also define

c′ ,
⌊
2

q
· (PowersOfTwo(c1)⊗ PowersOfTwo(c2))

⌉
− 2

q
· (PowersOfTwo(c1)⊗ PowersOfTwo(c2)) .

By definition, δ2 = ⟨c′, s̃i−1⟩. We know that ∥c′∥∞ ≤ 1/2 and ∥s̃i−1∥1 ≤
((n+ 1) ⌈log q⌉)2 = O(n2 log2 q), and therefore

|δ2| ≤ ∥c′∥∞ · ∥s̃i−1∥1 = O(n2 log2 q) .

We can now break the inner product using the properties of tensoring:

⟨c̃mult, s̃i−1⟩ − δ2 =
2

q
·
⟨
PowersOfTwo(c1),BitDecomp((1, si−1))

⟩
·
⟨
PowersOfTwo(c2),BitDecomp((1, si−1))

⟩
. (2)

We keep c1, c2 in powers-of-two form on purpose (it is useful to have ciphertexts
that relate to low-norm secrets).

Going back to Eq. (1) from the lemma statement and using Claim 3.4, there
exist I1, I2 ∈ Z such that

⟨PowersOfTwo(c1),BitDecomp(1, si−1)⟩ =
⌊q
2

⌋
·m1 + e1 + q · I1

⟨PowersOfTwo(c2),BitDecomp(1, si−1)⟩ =
⌊q
2

⌋
·m2 + e2 + q · I2 . (3)

Let us bound the absolute value of I1 (obviously the same holds for I2):

|I1| =
∣∣⟨PowersOfTwo(c1),BitDecomp(1, si−1)⟩ −

⌊
q
2

⌋
·m1 − e1

∣∣
q

≤ |⟨PowersOfTwo(c1),BitDecomp(1, si−1)⟩|
q

+ 1

≤
∥PowersOfTwo(c1)∥∞

q
· ∥BitDecomp(1, si−1)∥1 + 1

≤ 1

2
· ∥BitDecomp(1, si−1)∥1 + 1

≤ 1

2
· (n+ 1) ⌈log q⌉+ 1

= O(n log q) . (4)

Plugging Eq. (3) into Eq. (2), we get

⟨c̃mult, s̃i−1⟩ − δ2 =
2

q
·
(⌊q

2

⌋
·m1 + e1 + q · I1

)
·
(⌊q

2

⌋
·m2 + e2 + q · I2

)
=

⌊q
2

⌋
·m1 ·m2 + δ3 + q · (m1I2 +m2I1 + 2I1I2) ,
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where δ3 is defined as

δ3 ,


2e2 · I1 + 2e1 · I2 + (e1m2 + e2m1) +

2e1·e2
q , if q is even,

(2e2 −m2) · I1 + (2e1 −m1) · I2
+ q−1

q · (e1m2 + e2m1)− m1·m2

2q + 2e1·e2
q , if q is odd.

In particular (recall that E < ⌊q/2⌋ /2 ≤ q/4):

|δ3| ≤ 2(2E + 1)O(n log q) + 2E +
1 + 2E2

q
= O(n log q) · E .

Putting everything together, we get that

⟨cmult, (1, si)⟩ =
⌊q
2

⌋
·m1m2 + δ1 + δ2 + δ3︸ ︷︷ ︸

=emult

(mod q) ,

where
|emult| = |δ1 + δ2 + δ3| ≤ O(n log q) · E +O(n2 log3 q) ·B ,

and the lemma follows. ⊓⊔
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