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Abstract. We show that public-key bit encryption schemes which sup-
port weak (i.e., compact) homomorphic evaluation of any sufficiently
“sensitive” collection of functions cannot be proved message indistin-
guishable beyond AM ∩ coAM via general (adaptive) reductions, and
beyond statistical zero-knowledge via reductions of constant query com-
plexity. Examples of sensitive collections include parities, majorities, and
the class consisting of all AND and OR functions.

We also give a method for converting a strong (i.e., distribution-preser-
ving) homomorphic evaluator for essentially any boolean function (ex-
cept the trivial ones, the NOT function, and the AND and OR func-
tions) into a rerandomization algorithm: This is a procedure that con-
verts a ciphertext into another ciphertext which is statistically close to
being independent and identically distributed with the original one. Our
transformation preserves negligible statistical error.

1 Introduction

In this work we revisit the question of basing cryptography on NP-hardness. If
P equals NP then computationally secure encryption is impossible. Is the con-
verse true? Despite considerable efforts, there is no candidate encryption scheme
whose security can be plausibly reduced to the worst-case hardness of some
NP-complete problem. Neither is there conclusive evidence that rules out con-
structions of secure encryption schemes from NP-complete problems, although
several obstacles have been pointed out over the years.

Restricting the encryption Brassard [Bra79] shows that no public-key encryp-
tion scheme can be proved secure beyond NP ∩ coNP, but under the implicit
assumption that every public key-ciphertext pair (queried by the reduction) can
be decrypted uniquely. Goldreich and Goldwasser [GG98] argue that this as-
sumption is unrealistic by giving examples of encryption schemes that do not
satisfy it. They show that the conclusion holds under the relaxed assumption
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that invalid queries to the decryption oracle can be efficiently certified as such.
(If the reduction is randomized, the limitation weakens to AM ∩ coAM.)

Goldreich and Goldwasser warn that these assumptions are unrealistic as they
do not apply to many known proofs of security. Bogdanov and Trevisan [BT06]
point out the following example of Even and Yacobi [EY80]. They construct a
public key encryption scheme and show how to solve an NP-hard problem using
a distinguishing oracle. Their notion of security is unrealistic, as they require a
perfect distinguishing oracle. However, their example illustrates that the restric-
tions imposed by Brassard and Goldreich and Goldwasser do not capture the
difficulty of basing cryptography on NP hardness.

Akavia, Goldreich, Goldwasser, and Moshkovitz [AGGM06] rule out reduc-
tions from NP-complete problems to inverting one-way functions (the basis of
private-key encryption) assuming that sizes of preimage sets are worst-case cer-
tifiable in NP. The same considerations apply to their argument. There are
natural examples of conjectured one-way functions (for example, Goldreich’s
function [Gol00]) not known to satisfy the aforementioned assumptions.

Restricting the reduction Another line of works makes restrictive assumptions
about the type of reduction used to prove NP-hardness. Feigenbaum and Fort-
now [FF93] show that a decision problem cannot be proven NP-hard on average
(unless the polynomial hierarchy collapses) by a reduction that is non-adaptive
and each of its queries is uniformly distributed. Bogdanov and Trevisan [BT06]
obtain the same conclusion without restricting the distribution of queries, but
still under non-adaptive reductions. More precisely, they show that if there is
a non-adaptive reduction from a decision problem L to a problem in distribu-
tional NP, then L must be in AM/poly ∩ coAM/poly. In particular their result
applies to the problem of inverting a one-way function. For this important case,
Akavia et al. improve the limitation to AM∩coAM, also assuming the reduction
is non-adaptive.

Haitner, Mahmoody, and Xiao [HMX10] show that collision resistant hash
functions and statistically hiding commitments cannot be proved secure beyond
AM ∩ coAM via reductions that make a constant number of rounds of calls to
the adversary.

Lattice-based cryptography provides examples of encryption schemes whose
insecurity would imply worst-case solutions to conjectured hard problems, like
finding short vectors in lattices [Ajt96]. The reduction of Regev [Reg09], which
gives the most efficient cryptosystems of this kind with a proof of security
(against quantum algorithms), is adaptive. For certain settings of parameters,
these cryptosystems support homomorphic evaluation of a bounded class of
functionalities (and general functionalities under additional security assump-
tions) [Gen09,vDGHV10,BV11].

Our results

We say a public-key encryption scheme supports weak (i.e. compact) homomor-
phic evaluation of a function f : {0, 1}∗ → {0, 1} if for every n and x1 . . . xn ∈



{0, 1}n takes as inputs the public key and encryptions of the bits x1, . . . , xn and
produces an output of length polynomially bounded in the security parameter
that decrypts to f(x1 . . . xn). See Section 2 for a formal definition.

Our main theorem (Theorem 1) shows that any public key encryption scheme
that supports efficient weak homomorphic evaluation of any sufficiently “sensi-
tive” collection of functions cannot be proved message indistinguishable beyond
AM ∩ coAM, even under adaptive reductions. Examples of such functions are
parities, majorities, and the collection of all AND and OR functions.

Examples of encryption schemes that our result applies to include El Gamal
encryption [Gam85], Paillier encryption [Pai99], as well as the more recent some-
what and fully homomorphic encryption schemes of Gentry [Gen09], Van Dijk et
al. [vDGHV10], and Brakerski and Vaikuntanathan [BV11] (which build upon
the lattice-based cryptosystems of Regev [Reg09] and Peikert [Pei09]).

In Theorem 2 we show that if the reduction has constant query complex-
ity, then message indistinguishability cannot be proved beyond statistical zero
knowledge (SZK), which is a subclass of AM ∩ coAM.

The reductions we consider are randomized and meet the following defini-
tion: Given an input, the reduction makes arbitrary (adaptive) queries to a dis-
tinguishing oracle for bit encryptions. We require that for any (not necessarily
efficient) distinguishing oracle, which may depend on the input to the reduction,
the reduction outputs the correct answer. We do not know of any cryptographic
reductions that treat the adversary as a black box which fall outside our defini-
tion.

Lemma 5, which is used in the proofs of Theorems 1 and 2, gives a way to
obtain rerandomization of ciphertexts from any homomorphic evaluator for the
function of interest. While rerandomization has been used in constructions of
homomorphic evaluators [Gen09,vDGHV10], it is not a priori clear that it is
necessary for homomorphic evaluation. Homomorphic evaluation may be imple-
mented deterministically while rerandomization requires randomness.

The statistical error of the rerandomization in Lemma 5 is noticeable. While
this is sufficient for our main application, a negligible error would be desirable for
most applications of rerandomization in cryptography. In Theorem 3 we show a
transformation of a strong homomorphic evaluator for almost any function into
a rerandomization that preserves negligible statistical error. Essentially the only
exceptions to which our result does not apply are that AND, OR, and NOT
functions.

Our proof

From homomorphic evaluation to rerandomization (Section 4) To begin with
let’s assume that we have a strong (i.e., distribution-preserving) homomorphic
evaluator H for the majority function majn on n inputs. This is an algorithm
that takes as inputs independent encryptions of x1, . . . , xn and outputs a cipher-
text which is statistically close to an encryption of majn(x1, . . . , xn). We show
that H can be used to obtain an approximate rerandomization Rer: This is a
procedure that takes an encryption as its input and produces an independent



and identically distributed encryption as its output. Our rerandomization will
be approximate in the sense that the input and output of Rer will be only
statistically close to independent.

One way to obtain rerandomization is as follows: Given a ciphertext C, gen-
erate (n−1)/2 independent encryptions of 0, (n−1)/2 independent encryptions
of 1, randomly shuffle them together with C and feed the n resulting ciphertexts
to the homomorphic evaluator for majority. By the strong homomorphic prop-
erty, the output of the homomorphic evaluator will be identically distributed
with C. But why should they be independent? From the point of view of the
homomorphic evaluator, if C is an encryption of b, then it is indistinguishable
from the other (n− 1)/2 encryptions of b. Since the output of the homomorphic
evaluator is bounded in length, the evaluator must “forget” most of the infor-
mation about most of the ciphertexts it is given as inputs, including C as it is
indistinguishable from the others. Therefore the output is forced to look almost
statistically independent of C.

In Lemma 5 we generalize this argument to a much wider class of functions
which we call sensitive (see Section 2) and to weak (i.e., compact) homomorphic
evaluators, in which case we obtain a weaker notion of rerandomization.

A strong rerandomization procedure can be used to distinguish encryptions
in statistical zero-knowledge by reduction to the ”statistical distance” problem:
A rerandomized encryption of 0 is statistically close to an encryption of 0, but
statistically far from an encryption of 1. Mahmoody and Xiao’s simulation of
BPPSZK in AM [MX10] can then be used to emulate the reduction by a proof
system. When only weak one-sided rerandomization is available, it is not clear
that encryptions are distinguishable in statistical zero-knowledge, and we con-
struct a somewhat different proof system. For the sake of clarity, however, in the
rest of this discussion we will assume the availability of strong rerandomization.

From rerandomization to a distinguishing protocol (Section 5) To turn a reduc-
tion from distinguishing encryptions to L into a proof system for L, we proceed
as in previous works: The verifier plays the role of the reduction and the prover
plays the role of the distinguishing oracle. The challenge is to force the prover
to give answers that are consistent with a specific, fixed distinguishing oracle.

To illustrate the difficulties in the context of public key encryption, let us
point out the deficiencies of some naive proof systems. Suppose the verifier sub-
mits a public key-ciphertext query (PK,C) to the prover, who is supposed to act
as a distinguishing oracle. A natural attempt is to ask the prover to provide the
message m and randomness R such that C is an encryption of m under public
key PK with randomness R. This fails to account for the possibility that C may
not be a valid ciphertext at all: Perhaps there is no pair (m,R) that encrypts to
C under PK. It is not clear how a prover can certify such a statement. Another
attempt would be to ask the prover for the secret key SK associated to PK.
Again, it is not clear how to achieve completeness in case the public key is invalid
and there is no corresponding secret key, or soundness in case the public key can
be paired with several different secret keys (the choice of which may affect how
different invalid ciphertexts decrypt).



Our protocol works as follows: Given a query (PK,C), the verifier asks the
prover for the value b that encrypts to C, together with a proof that the reran-
domization of C is statistically close to encryptions of b but statistically far
from encryptions of b. If the pair (PK,C) is properly distributed, this forces
the prover to give a unique correct answer. But since statistical closeness and
statistical farness are both efficiently verifiable [BBM11,SV03], the prover can
now also certify that a pair (PK,C) is not a valid public key-ciphertext pair.
We call this protocol DP (the distinguishing protocol).

One important detail is that the protocols for statistical closeness and sta-
tistical farness are only guaranteed to solve promise versions of these problems:
For a given gap [`, r), they can distinguish distributions that are within statisti-
cal distance ` from those that are at distance at least r, but give no guarantee
about the outcome for instances that fall inside the gap. Therefore DP is only
complete and sound provided that none of the underlying instances fall inside
the respective gaps.

The proof system (Section 7) Given a reduction R from a decision problem L
to distinguishing encryptions, this suggests the following constant-round proof
system for L: On a given input, the verifier chooses randomness for the reduction
and sends this randomness to the prover. The prover sends back a transcript of
the reduction interacting with a distinguishing oracle, which includes a list of
queries (PKi, Ci) made by the reduction together with an answer ai saying if Ci
encrypts 0 or 1 under PKi, or the pair (PKi, Ci) is invalid (⊥). The verifier and
prover then apply the DP protocol to certify that all the answers ai are correct.

This proof system is complete and sound, given that all inputs (PKi, Ci, ai)
to the DP protocol satisfy its promise. But in general the verifier does not know
in advance if the promise is satisfied or not. We resolve this issue by choosing
the width of the gaps [`, r) to be sufficiently small and by having the verifier
randomize the location of the gaps. This should make it unlikely for any of the
queries to fall inside the promise gap of DP .

This approach was also used by Bogdanov and Trevisan [BT06] in the context
of non-adaptive reductions. An additional twist is required when the reduction
is adaptive because the location of the gaps may affect the answers of the honest
prover. For example, imagine an adaptive reduction that does a “binary search”
for the gap [`, r): If the first answer a is to the right of r, its next query will be
a/2, and so on until it hits the gap. To handle such reductions, we want to make
the location of the gaps in each round independent of the answers of the honest
prover in the previous rounds. On the other hand, the locations of these gaps
must be consistent with a specific, fixed distinguishing oracle that the prover is
required to emulate.

To achieve both objectives we specify a randomized family of distinguishing
oracles, where for each query to the oracle the gap location is random, and the
gap locations among the various queries are q-wise independent, where q is an
upper bound on the number of queries performed by the reduction. In the first
round of the reduction the verifier chooses a random oracle from this family and
sends its (polynomial length) description to the prover. The honest prover is



then expected to give answers that are consistent with this instantiation of the
distinguishing oracle. By independence, the probability that any of the queries
made by the honest prover falls inside the gap will be small. In Section 6.1 we
develop the relevant complexity-theoretic framework and we prove Theorem 1
in Section 7.1.

To prevent any of the queries from falling into the gaps [`, r), the size of
the gaps needs to be inverse proportional to the number of queries made by the
reduction. Unless the reduction makes a bounded number of queries, this requires
protocols for statistical closeness and statistical farness where the verifier runs
in time inverse polynomial to the size of the gap and the gap can be at an
arbitrary location. Such protocols were developed by Bhatnagar, Bogdanov, and
Mossel [BBM11]3 and we use them in the proof of Theorem 1.4

For reductions that make a constant number of queries, it is sufficient to
have statistical closeness/farness protocols over a constant number of disjoint
gaps [`, r). Sahai and Vadhan [SV03] give implementations of such protocols in
SZK. Using their protocols and the closure properties of SZK which we recall in
Section 6.2, we prove Theorem 2 in Section 7.2.

Better rerandomization from strong homomorphic evaluation The rerandomiza-
tion procedure we described above comes with a non-negligible statistical error.
It is not difficult to construct examples showing that this error is inherent, even
if the homomorphic evaluation is perfect, i.e. it induces no statistical error. In
Section 8 we show that the statistical error can be reduced exponentially by
iteratively applying the rerandomization on its output, provided f is not “ex-
ceptional”. This proves Theorem 3.

2 Definitions

Homomorphic evaluation and rerandomization Let (Gen,Enc,Dec) be a bit
encryption scheme. Fix a security parameter s and let (PK,SK) ∼ Gen(1s)
the distribution on key pairs. (We will assume that s is implicit in the public
and secret keys.)

Definition 1. Let f : {0, 1}n → {0, 1} be a boolean function. We say H is
a strong homomorphic evaluator for f with error ε if for all m in the do-
main of f , the random variables (PK,HPK(EncPK(m1), . . . ,EncPK(mn))) and
(PK,EncPK(f(m))) (where all encryptions are independent) are within statis-
tical distance ε.

3 Technically their statement is not as strong as the one we need here, but their proof
can be easily adapted. We provide the details in the full version.

4 Similar issues arise in the work of Mahmoody and Xiao [MX10]. They work with
the SZK-complete problem entropy difference. While their proof can be adapted to
our setting, we find it more natural to work directly with instances of statistical
difference.



This definition extends to functions from {0, 1}∗ → {0, 1} in a straightfor-
ward way. We omit the details.

Definition 2. Let f : {0, 1}∗ → {0, 1} be a boolean function. We say H is a
weak homomorphic evaluator for f with error ε if (1) the output length of H is
bounded by a function that depends only on the security parameter and (2) for
all n and m ∈ {0, 1}n in the domain of f ,

Pr[DecSK(PK,HPK(EncPK(m1), . . . ,EncPK(mn))) = f(m)] ≥ 1− ε,

where all encryptions are independent.5

A bit encryption scheme is efficient if Gen,Enc,Dec all run in time polyno-
mial in the security parameter s. A homomorphic evaluator H is efficient if it is
computable in time polynomial in s and n and its output length is polynomially
bounded in s.

Definition 3. Let Rer be a randomized function that takes as input a public key
and a ciphertext. In the following definitions R and R′ are independent choices
of randomness for Rer.

– We say Rer is a strong rerandomization with error ε if for every m ∈ {0, 1},
the random variables (PK,E,RerPK(E,R)) and (PK,E,E′) where E,E′ ∼
EncPK(m) are independent are within statistical distance ε.

– For b ∈ {0, 1}, we say Rerb is a one-sided weak rerandomization with
decryption error ε and rerandomization error ρ if for every m ∈ {0, 1},
Pr[DecSK(RerbPK(EncPK(m))) = m] ≥ 1 − ε and the random variables
(PK,RerbPK(E,R),RerbPK(E,R′)) and (PK,RerbPK(E,R),RerbPK(E′, R′))
where E,E′ ∼ EncPK(b) are independent are within statistical distance ρ.

We say the rerandomization is efficient if it can be evaluated in time poly-
nomial in the security parameter.

Sensitivity of boolean functions We will use the following notion of sensitivity
for boolean functions. For x ∈ {0, 1}k let x|i be the string obtained by flipping
the i-th bit of x and leaving the others unchanged. Let f : {0, 1}k → {0, 1} be
a boolean function and b ∈ {0, 1}. We say f has b-sensitivity at least s if there
exists an input x ∈ {0, 1}k and a set S ⊆ [k] of size s such that f(x) = b, xi = b
for every i ∈ S, and f(x|i) = b for every i ∈ S. We call (x, S) a witness that f
has b-sensitivity at least s.

We say a family of functions f = {fk : {0, 1}k → {0, 1}} has certifiable poly-
nomial b-sensitivity if there exists a constant α > 0 so that on input k we can
compute in time polynomial in k a witness that fk has b-sensitivity at least kα.

5 Some works adopt the terms “distribution preserving” and ”compact” homomor-
phic evaluation. We prefer the terms “strong” and “weak” for this work, as we are
concerned with questions of computational complexity.



Examples of functions that have certifiable polynomial 0-sensitivity and 1-
sensitivity include parity and majority. The AND function has certifiable polyno-
mial 0-sensitivity while the OR function has certifiable polynomial 1-sensitivity.

Examples of functions whose 0-sensitivity and 1-sensitivity is less than s
are functions that depend on at most s − 1 of their inputs, i.e. (s − 1)-juntas.
Simon [Sim82] gives an example of a function on k bits that depends on all its
inputs but has 0-sensitivity and 1-sensitivity O(log k).

3 The main theorems

We say (Gen,Enc,Dec) supports weak homomorphic evaluation of f with error
ε if it has an efficient homomorphic evaluator for f with error ε.

A γ-distinguishing oracle for (Gen,Enc,Dec) is a function D such that

Pr[D(PK,EncPK(0)) accepts]− Pr[D(PK,EncPK(1)) accepts] > γ.

A reduction from a decision problem L to γ-distinguishing encryptions is an
efficient randomized oracle algorithm R? such that for every valid input x there
exists a γ-distinguishing oracle D such that RD(x) = L(x) with probability at
least 8/9. (For our results the exact constant won’t matter, as long as it is strictly
greater than 1/2.)

Theorem 1. Let f0 and f1 be functions with certifiable polynomial 0-sensitivity
and 1-sensitivity respectively (possibly the same function). Let ε ∈ (0, 1/18)
be any constant and δ ≥ 2

√
ε. Let (Gen,Enc,Dec) be a public key encryp-

tion scheme that supports efficient homomorphic evaluations of both f0 and f1
with error at most ε. If there is a reduction from L to (1 − δ)-distinguishing
(Gen,Enc,Dec), then L is in AM ∩ coAM.

We will assume that the reduction is query length regular: On input x, the
reduction first computes a query length m ≥ |x| and only makes queries of
length m. The theorem can be proved without this assumption, but we make it
for notational convenience.

In the case when the reduction has constant query complexity, a stronger
conclusion can be obtained.

Theorem 2. Let f0 and f1 be functions with certifiable polynomial 0-sensitivity
and 1-sensitivity respectively (possibly the same function). Let q be any con-
stant, δ > 0, and ε = ε(q, δ) a sufficiently small constant. Let (Gen,Enc,Dec)
be a public key encryption scheme that supports efficient homomorphic evalu-
ations of f0 and f1 with error at most ε. If there is a reduction from L to
(1− δ)-distinguishing (Gen,Enc,Dec) that makes at most q queries, then L is
in statistical zero-knowledge.

In particular, Theorems 1 and 2 apply to the following cases: (1) f0 and f1
are the parity function; (2) f0 and f1 are the majority function; (3) f0 is OR
and f1 is AND.



Ron Rothblum [Rot11] shows how to turn a private-key encryption scheme
into a public-key one using a homomorphic evaluator for parity. Combining the
two results, the conclusions of Theorems 1 and 2 can be extended to private-key
encryption schemes that support homomorphic evaluation of parity.

Our last result shows how to obtain strong rerandomization given a homo-
morphic evaluator for almost any function. We call a function f : {0, 1}n → {0, 1}
exceptional if it is one of the following functions of the inputs that it depends
on: the constant 0, the constant 1, the identity, the NOT function, the AND
function, the OR function.

Theorem 3. Assume f : {0, 1}n → {0, 1} is not exceptional. If (Gen,Enc,Dec)
is a public key encryption scheme that supports efficient strong homomorphic
evaluation of f with negligible error, then (Gen,Enc,Dec) has an efficient
strong rerandomization with negligible error.

4 One-sided rerandomization from homomorphic
evaluation

In this section we show how to convert a homomorphic evaluation algorithm for a
sensitive function into a one-sided rerandomization. In Section 8 we extend these
ideas to obtain stronger notions of rerandomization under stronger assumptions.
Let H denote entropy and I denote mutual information.

Claim 4. Let X1, . . . , Xn be i.i.d. random variables and I ∼ {1, . . . , n} a uni-
formly random index. Let F,G,G′ be random variables such that (1) F and G
are independent conditioned on XI , (2) F is independent of I, (3) G and G′

are identically distributed and (4) F and G′ are independent. Then the random
variables (F,G) and (F,G′) are within statistical distance

√
2 H(F )/n.

Proof.

H(XI | F ) ≥ H(XI | F, I) =
1

n

n∑
i=1

H(Xi | F )

≥ 1

n
H(X1, . . . , Xn | F ) ≥ 1

n
(H(X1, . . . , Xn)−H(F )) = H(XI)−

H(F )

n
.

Since F and G are conditionally independent of XI , I(F ;G) ≤ I(F ;XI) and so

I(F ;G) ≤ I(F ;XI) = H(XI)−H(XI | F ) ≤ H(F )

n
.

The conclusion follows by Pinsker’s inequality [Pin64]. ut

The following lemma shows how to obtain one-sided rerandomization from
homomorphic evaluation of a sensitive function. This lemma will be used in the
proofs of Theorems 1 and 2. In Section 8 we give a version of this lemma that
applies to a more restricted class of functions but allows us to achieve a stronger
notion of rerandomization. That version will be used for the proof of Theorem 3.



Lemma 5. Assume f has certifiable polynomial b-sensitivity and let δ be any
function inverse polynomial in the security parameter. If (Gen,Enc,Dec) has a
weak efficient homomorphic evaluator for f with error ε, then it has a one-sided
weak rerandomization Rerb with decryption error ε and rerandomization error
δ.

Proof. Suppose fk has b-sensitivity kα. Choose k = (2c/δ2)1/α, where c is the
length of ciphertexts (for the given security parameter). Let (x, S) be the witness
for b-sensitivity of fk. Given public key PK and ciphertext E define Rerb as
follows:

1. Choose a random I ∼ S.
2. Let

Xi =

{
EncPK(xi, Ri) if i 6= I,

E if i = I.

3. Output F = HPK(X1, . . . , Xk).

We first condition on the choice of the public key PK, letting εPK denote the
statistical distance between the two distributions in the definition of strong ho-
momorphic evaluator conditioned on PK.

The decryption error of Rerb follows directly from the definition. We now
show the rerandomization error is at most δ. Let F,G be two independent in-
stantiations of Rerb on the same input E. Conditioned on PK, the random
variables Xi : i ∈ S and F,G satisfy the assumptions of Claim 4. It follows that
(F,G) and (F,G′), where G′ is i.i.d with G and therefore with F , are within
statistical distance

√
2c/kα, which is at most δ by our choice of parameters.

Averaging over εPK we prove the lemma. ut

5 The distinguishing protocol

In this section we describe a constant-round interactive proof system DP that,
given input (PK,C, b), certifies that C is an encryption of b under PK when
b ∈ {0, 1} and that (PK,C) is an invalid pair when b = ⊥. The proof system
is parametrized by two gaps [`, r) and [`′, r′), which describe a promise on the
inputs.

We will assume we have the following constant-round protocols for statistical
closeness (SC[`,r)) and statistical farness (SF[`,r)), where 0 ≤ ` < r ≤ 1. The
protocols take as inputs a pair of sampler circuits D,D′ producing distributions
over the same set {0, 1}m with the following completeness / soundness properties:

– If D,D′ are at statistical distance less than ` / at least r, SC[`,r)(D,D
′)

accepts / rejects with probability 1− σ.
– If D,D′ are at statistical distance at least r / less than `, SF[`,r)(D,D

′)
accepts / rejects with probability 1− σ.



Here σ can be any inverse polynomial in the size of the input. The following
two theorems state the existence of these protocols. The second one is stronger
as it provides statistical zero-knowledge implementation, but makes a stronger
assumption about the gaps.

Formally we will view SC and SF as promise problems that take `, r,D,D′ as
their inputs. Theorem 6 essentially follows from work of Bhatnagar, Bogdanov,
and Mossel [BBM11]. We provide the missing details in the full version..

Theorem 6. For r > `, the problems SC and SF are in AM where the running
time of the verifier is polynomial in the size of D, the size of D′, and 1/(r− `).

Theorem 7 is proved by Sahai and Vadhan [SV03].

Theorem 7. For r2 > `, the problems SC and SF are in SZK where the run-
ning time of the verifier is polynomial in the size of D, the size of D′, and
1/`1/ log(r

2/`).

The protocol DP will certify that the rerandomization of C is close to an
rerandomized encryption of b but far from a rerandomized encryption of b when
b ∈ {0, 1}. When b = ⊥, it certifies that either the rerandomized encryptions of
0 and 1 are close, or the rerandomized encryption of C is far from both.

Let ZPK,b (b ∈ {0, 1}) be the following circuit: On input R,R′, output

RerbPK(EncPK(b, R), R′), i.e. a one-sided rerandomized encryption of b.

The distinguishing protocol DP[`,r),[`′,r′)

On input (PK,C, b), where b ∈ {0, 1,⊥}:
1. If b = 0 or b = 1:
2. Verifier and Prover execute SF[`,r)(ZPK,0, ZPK,1).
3. If the protocol rejects, reject. Otherwise:

4. Verifier and Prover execute SC[`′,r′)(ZPK,b,RerbPK(C)).
5. If the protocol accepts, accept, else reject.
6. If b = ⊥:
7. Verifier and Prover execute SC[`,r)(ZPK,0, ZPK,1).
8. If the protocol accepts, accept. Otherwise:
9. Verifier and Prover execute SF[`′,r′)(ZPK,0,Rer0PK(C)).

10. Verifier and Prover execute SF[`′,r′)(ZPK,1,Rer1PK(C)).
11. If both accept, accept, else reject.

The distinguishing oracle We define an oracle π that distinguishes between en-
cryptions of 0 and encryptions of 1. This oracle answers ⊥ on all queries (PK,C)
that do not represent valid key-ciphertext pairs and answers bad on all queries
that fall inside the gaps of the underlying protocols SC and SF . We then show
that for every pair (PK,C) that falls outside the gaps, b = π(PK,C) is the
unique answer that makes DP (PK,C, b) accept. Owing to lack of space the
definition of π, as well as the proof of the following claim which shows π is a
distinguishing oracle, are given in the full version.



Claim 8. Assume Rer0,Rer1 are one-sided rerandomizations with decryption
error ε < (1 − r)2/2 and rerandomization error ρ < `′2. Then
Pr[π(PK,EncPK(b)) = b] ≥ 1−

√
2ε−√ρ for every b ∈ {0, 1}.

The following claims are immediate from the definitions and the completeness
and soundness assumptions on SC and SF .

Claim 9. (Completeness) Assume `′ < r/2 and π(PK,C) 6= bad. Then
DP (PK,C, π(PK,C)) accepts with probability at least 1− 3σ.

Claim 10. (Soundness) Assume `′ < r/2. If DP (PK,C, b) accepts with proba-
bility more than 3σ, then π(PK,C) ∈ {b,bad}.

6 Complexity theoretic setup

In this section we cover the complexity-theoretic framework for the proofs of
Theorems 1 and 2. Proof of the claims can be found in the full version.

6.1 Promise oracles for adaptive reductions

Let Ξ be any finite set of values that includes the special symbol bad. An oracle
family over input length m with size d is a multiset Π of functions π : {0, 1}m →
Ξ. We say Π is ε-bad if for every input x, Prπ∼Π [π(x) = bad] ≤ ε.

Let F : {0, 1}m → [d] be a function. The oracle ΠF : {0, 1}m → Ξ is given by
ΠF (z) = πF (z)(z). In the lemma below F will be a randomized function of the
same form.

Lemma 11. Let R? be a reduction that on an input of length n, makes at most
q queries of length m. Let Π be an oracle family of size d. Assume d is a power
of two. There exists a randomized function F : {0, 1}m → [d] such that:

– F is computable in time (and hence uses randomness) polynomial in m, q,
and d.

– For every input x of length n, the probability that RΠF (x) never receives bad
as an answer to any of its queries is at least (1− ε)q.

6.2 Statistical zero-knowledge

We recall some results about the complexity of statistical zero-knowledge SZK.
Sahai and Vadhan [SV03] show that the statistical distance problem SD =
SF[1/9,8/9) is complete for SZK under many-one reductions.

We also need the following result of Sahai and Vadhan [SV03] that states the
closure of SZK under truth-table reductions.

Theorem 12. There is a deterministic algorithm that takes as input instances
x1, . . . , xk of SD and a boolean predicate P : {0, 1}k → {0, 1} and outputs an
instance x of SD such that SD(x) = P (SD(x1), . . . , SD(xk)). The running
time of the algorithm is polynomial in 2k and the sizes of x1, . . . , xk.



We also need the following fact, which says that reductions within SZK can
without loss of generality be assumed deterministic.

Claim 13. If there is a randomized many-one reduction R from L to SD such
that Pr[SD(R(x)) = L(x)] ≥ p, where p is any constant above 1/2, then L is in
SZK.

Combining Theorem 12 and Claim 13 we get the following corollary.

Corollary 14. Suppose there is a randomized algorithm A that on input x of
length n and randomness r computes inputs x1, . . . , xk and a predicate
P : {0, 1}k → {0, 1}, where k = O(log n) and accepts if P (SD(x1), . . . , SD(xk))
is true. If Pr[A(x) = L(x)] ≥ p, where p is any constant greater than 1/2, then
L is in SZK.

7 Proofs of the main theorems

7.1 Proof of Theorem 1

Let Fω : {0, 1}m → [d] be the randomized function from Lemma 11, with ω
describing the randomness. We set Ij =

[
1
3 + j−1

3d ,
1
3 + j

3d

)
and I ′j = 1

3Ij , where
1 ≤ j ≤ d.

The decision protocol DL: On input x:

V: Compute the oracle query length m. Let d be the smallest power of two
above 90q where q is an upper bound on the number of queries R?(x) makes.
Choose randomness r for the reduction and randomness ω for Fω. Send r, d, ω
to the prover.

P: Send a sequence ((PKi, Ci), bi), 1 ≤ i ≤ q of oracle query-answer pairs.
V: Verify that the received query-answer pairs determine an accepting compu-

tation of R?(x, r). If not, reject. For every query i, compute j = Fω(PKi, Ci)
and let [`i, ri) = Ij and [`′i, r

′
i) = I ′j .

B: Execute in parallel the protocols DP[`i,ri),[`′i,r
′
i)

(PKi, Ci, bi) for 1 ≤ i ≤ q
with completeness/soundness gap σ = 1/9q. If any of them result in rejec-
tion, reject. Otherwise, accept.

Let πj = πIj ,I′j and ΠF be the oracle from Lemma 11.

Claim 15. The oracle family {πj}1≤j≤d is at most 3/d-bad.

Proof of Theorem 1 It is sufficient to prove that L ∈ AM. By applying the same
argument to its complement L we also get L ∈ coAM.

Assume (Gen,Enc,Dec) supports homomorphic evaluation of f with error
at most ε and there is a reduction R? from L to (1−δ)-distinguishing encryptions.

We instantiate the constructions with the following parameters. Let ε be the
homomorphic evaluation error and c an upper bound on the length of ciphertexts



queried by the reduction on input x. Let Rerb be the rerandomization from
Lemma 5 with parameters chosen so that the decryption error is ε and the
rerandomization error is at most ρ ≤ ε2. The protocol DP is instantiated with
the rerandomizations Rer0 and Rer1.

Claim 16. For an appropriate choice of parameters and for every F , ΠF is a
(1− δ)-distinguishing oracle.

By Theorem 6, the verifier for DL can be implemented in polynomial time.
Theorem 1 the follows by the next two claims:

Claim 17. (Completeness) If x ∈ L, there exists a prover that makes DL(x)
accept with probability at least 2/3.

Claim 18. (Soundness) If x 6∈ L then no prover makes DL(x) accept with prob-
ability at least 1/3.

7.2 Proof of Theorem 2

Let Ij , 1 ≤ j ≤ d be the following collection of intervals: Ij = [`j , rj) where
r1 = 1/2, `j = r2j/4, and rj+1 = `j . Let I ′j = 1

3Ij . Assume the reduction makes
at most q queries on every input and let d = 27q · 3q.

By Theorem 7, for every j the problems SCIj , SCI′j , SFIj , SFI′j are all in
SZK so by Theorem 12 and the completeness of SD, DPIj ,I′j is also in SZK for
every j.

Consider the following algorithm A. On input x, choose randomness r for
R and a random j ∼ [d] and accept if there exists a sequence of answers
(a1, . . . , aq) ∈ {0, 1,⊥}q such that R(x, r) accepts given these oracle answers
and DPIj ,I′j (Qi, ai) accepts for all 1 ≤ i ≤ q. Since DPIj ,I′j is in SZK and SD is
complete for SZK, A satisfies the assumption of Corollary 14, so if we can prove
that Pr[A(x) = L(x)] ≥ 2/3, it will follow that L is in SZK.

Say j is bad if πj = πIj ,I′j answers bad on any pair (Q, a) queried by A. Since
A makes at most q3q queries, by Claim 15 and a union bound the probability
that A answers bad on any of its queries is at most 1/9.

Fix an input x. By our choice of parameters, when ε is sufficiently small and
ρ = ε2, Claim 8 guarantees that πj is a (1 − 4ε)-decryption oracle for every
1 ≤ j ≤ d. So for at least 8/9 fraction of r, Rπj (x, r) = L(x). Therefore with
probability at least 7/9, both Rπj (x, r) = L(x) and πj never answers bad on any
of A’s queries. By Claims 9 and Claim 10, it must then hold that a = πj(Q) for
all query-answer pairs (Q, a) made by A, and so A(x) = L(x).

8 Strong rerandomization from strong homomorphic
evaluation

In this Section we prove Theorem 3. We begin by defining “t-symmetric func-
tions”. The proofs of the claims in this section can be found in the full version.



t-symmetric functions Let G be a subgroup of the symmetric group Sk and
x ∈ {0, 1, ?}k be a string containing exactly one ?. Let t0(G, x) (resp., t1(G, x))
be the number of transpositions τ ∈ G that transpose a 0 and a ? (resp., a 1
and a ?) when acting on x. Observe that tb(G, σx) = tb(G, x) for every σ ∈ G.

Let x|?→0, x|?→1 be the string obtained when the ? in x is replaced by a
0 and a 1 respectively. We will say a boolean function f : {0, 1}k → {0, 1} is
t-symmetric if there exist x and G with t0(G, x), t1(G, x) > t and f(σx|?→b) = b
for every σ ∈ G.

For example, the majority function on 3 bits is 2-symmetric: Take G = S3

and let x = 01?. So is parity on 4 bits: Take G = S4 and x = 110?. The
DNF (x11 ∧ x12) ∨ (x21 ∧ x22) is also 2-symmetric. To see this take x to be the
string x11 = ?, x12 = 1, x21 = 0, x22 = 1 and G to be the “wreath product”
S2 o S2, which acts on x by first permuting the inputs in each term of the DNF
independently, then permuting the terms.

Proof of Theorem 3 The theorem follows from the next two claims, proved below.

Claim 19. Let f : {0, 1}k → {0, 1}, k ≥ 2 be any boolean function that depends
on all its inputs and is not one of OR / AND. If (Gen,Enc,Dec) supports
efficient strong homomorphic evaluation of f with error ε, then (Gen,Enc,Dec)
supports efficient strong homomorphic evaluation of a 2-symmetric function with
error at most 12ε.

Claim 20. Let f : {0, 1}k → {0, 1} be a 2-symmetric function. If (Gen,Enc,Dec)
is a public key encryption scheme that supports efficient strong homomorphic
evaluation of f with negligible error, then (Gen,Enc,Dec) has an efficient
strong rerandomization with negligible error.

8.1 Proof of Claim 19

Claim 21. Let f : {0, 1}k → {0, 1}, k ≥ 2 be a monotone function that depends
on all its inputs.

1. If f is not the AND function, then f has 0-sensitivity at least 2.
2. If f is not the OR function, then f has 1-sensitivity at least 2.

Let f : {0, 1}k → {0, 1} be a boolean function. We say f is an extension of g

if there exists a set S ∈ [k] and z ∈ {0, 1}S such that g is the restriction of f to
S using z, i.e. fS|z(x) = g(x) for every x ∈ {0, 1}S .

Claim 22. Let g be a function with b-sensitivity at least s and f be any extension
of g. Let (Gen,Enc,Dec) be a public key encryption scheme. If (Gen,Enc,Dec)
supports strong homomorphic evaluation of f with error ε, (Gen,Enc,Dec)
supports strong homomorphic evaluation of g with error ε.

Claim 23. Let g : {0, 1}k → {0, 1} be a boolean function. For every i ∈ [k], let
fi : {0, 1}ki → {0, 1} be a boolean function. Let (Gen,Enc,Dec) be a public key
encryption scheme. If (Gen,Enc,Dec) supports strong homomorphic evaluation
of g with error ε and each of the fi’s with error εi, then (Gen,Enc,Dec) sup-
ports strong homomorphic evaluation of g(f1, . . . , fk) with error ε+ε1 + · · ·+εk.



Proof (of Claim 19). First, we show that (Gen,Enc,Dec) supports homomor-
phic evaluation of f0 and f1 with error at most 4ε, where fb has b-sensitivity 2.
Consider the 2-symmetric function g : {0, 1}4 → {0, 1} defined by
g(x11, x12, x21, x22) = f0(f1(x11, x12), f1(x21, x22)). Since g is a composition of
f0 and f1, by Claim 23 (Gen,Enc,Dec) has a strong homomorphic evaluation
of g with error at most 12ε.

Now we show that (Gen,Enc,Dec) supports homomorphic evaluation of f0
and f1. This follows from Claim 21 and 22 if f is monotone. If f is not monotone,
there is an x ∈ {0, 1}k and i ∈ [k] such that xi = 1, f(x) = 0 and f(x|i) = 1. Let
g be the restriction of f to the rest of the bits using xi. Note that g is the NOT
function and so by Claim 22 (Gen,Enc,Dec) supports homomorphic evaluation
of the NOT function with error ε. It is easy to see that one can obtain f0 and
f1 by composing g with a restriction of f . The rest follows by Claim 23. ut

8.2 Proof of Claim 20

We start with the following Corollary of Claim 4 for the special case when
G = XI .

Corollary 24. Let X1, . . . , Xn be i.i.d and I ∼ {1, . . . , n} a uniformly random
index and F be independent of I. Then (F,XI) and (F,X) are within statistical
distance

√
2 H(F )/n, where X is i.d. with X1, . . . , Xn and independent of F .

The following lemma shows how to obtain strong rerandomization from any
t-symmetric function. The resulting rerandomization error is noticeable. It is
similar to Lemma 5 and the proof is given in the full version.

Lemma 25. Let f : {0, 1}k → {0, 1} be any t-symmetric function. If
(Gen,Enc,Dec) has a strong efficient homomorphic evaluator for f with er-
ror ε, then it has a strong efficient rerandomization Rer with error at most
ε+

√
2c/t (resp. decryption error ε and rerandomization error

√
2c/t), where c

is the length of ciphertexts.

We now show that for strong homomorphic evaluation, the error can be
reduced and prove Theorem 3.

For a boolean function f : {0, 1}k → {0, 1}, Let f (r) : {0, 1}kr → {0, 1} be
defined recursively by first applying f (r−1) on k independent tuples of kr−1

inputs and then applying f to these k values. For the base case we take f (1) = f .

Claim 26. If f is t-symmetric, then f (r) is tr-symmetric.

Proof (of Claim 20). Let Rer be the rerandomization of f from the proof of

Lemma 25. We define Rer(r) recursively by Rer(1) = Rer and

Rer
(r)
PK(E, (R1, . . . , Rr)) = RerPK(Rer

(r−1)
PK (E, (R1, . . . , Rr−1)), Rr).

where R1, . . . , Rr are independent random strings. We now argue that Rer(r)

has the desired properties.



Let Rer′(r) be the rerandomization obtained by applying the construction of

Lemma 25 to the function f (r). We claim that the distributions (PK,E,Rer
(r)
PK(E))

and (PK,E,Rer
′(r)
PK(E)), where E ∼ EncPK(b), are within statistical distance

at most εkr−1. We show this by induction. The base case r = 1 is obvious (the
statistical distance is zero).

For the inductive step, we can describe Rer
(r)
PK(E) as follows: First, choose

X by applying a random permutation π to the indices of x ∈ {0, 1, ?}. Then

Rer
(r)
PK(E) = HPK(e1, . . . , ek) where ei = EncPK(Xi) when Xi 6= ? and

ei = Rer
(r−1)
PK (E) when Xi = ?. On the other hand Rer

′(r)
PK(E) can be de-

scribed as follows: First, choose X by applying a random permutation π to

the indices of x ∈ {0, 1, ?}. Then Rer
′(r)
PK(E) = HPK(e′1, . . . , e

′
k) where e′i =

Rer
′(r−1)
PK (EncPK(Xi)) when Xi 6= ? and e′i = Rer

′(r−1)
PK (E) when Xi = ?. By

inductive assumption, the statistical distance between (PK,Rer
(r−1)
PK (E)) and

(PK,Rer
′(r−1)
PK (E)) is at most εkr−2. Since HPK has error ε, the statistical

distance between (PK,EncPK(b)) and (PK,Rer
′(r−1)
PK (EncPK(b)) can also be

bounded by εkr−2 using an inductive argument. Applying a hybrid argument we
conclude that the distributions (PK, e1, . . . , ek) and (PK, e′1, . . . , e

′
k) are within

distance at most εkr−1 and therefore so are the distributions (PK,Rer
(r)
PK(E))

and (PK,Rer
′(r)
PK(E)).

By Claim 26, f (r) is tr symmetric. It follows from Claim 23 that the function

H
(r)
PK defined recursively by H

(1)
PK = HPK and H

(r)
PK = HPK(H

(r−1)
PK , . . . ,H

(r−1)
PK )

is a homomorphic evaluation of f (r) with error at most εkr. By Lemma 25,
Rer′(r) has error krε +

√
2c/tr. Therefore Rer(r) has error at most ε(kr−1 +

kr) +
√

2c/tr. Let α = log t/ log k. By choosing r = 1/(2 + α) · log(2c/ε2)/ log k

we get that Rer(r) has error O(εα/(2+α)), which is negligible when ε is negligible.
ut
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