
Plain versus Randomized Cascading-Based
Key-Length Extension for Block Ciphers

Peter Gaži

ETH Zurich, Switzerland
Department of Computer Science

peter.gazi@inf.ethz.ch

Abstract. Cascading-based constructions represent the predominant ap-
proach to the problem of key-length extension for block ciphers. Besides
the plain cascade, existing works also consider its modification containing
key-whitening steps between the invocations of the block cipher, called
randomized cascade or XOR-cascade. We contribute to the understand-
ing of the security of these two designs by giving the following attacks
and security proofs, assuming an underlying ideal block cipher with key
length κ and block length n:

– For the plain cascade of odd (resp. even) length ` we present a generic

attack requiring roughly 2κ+ `−1
`+1

n (resp. 2κ+ `−2
`
n) queries, being a

generalization of both the meet-in-the-middle attack on double en-
cryption and the best known attack on triple cascade.

– For XOR-cascade of odd (resp. even) length ` we prove security up

to 2κ+ `−1
`+1

n (resp. 2κ+ `−2
`
n) queries and also an improved bound

2κ+ `−1
`
n for the special case ` ∈ {3, 4} by relating the problem to

the security of key-alternating ciphers in the random-permutation
model.

– Finally, for a natural class of sequential constructions where block-
cipher encryptions are interleaved with key-dependent permutations,

we show a generic attack requiring roughly 2κ+ `−1
`
n queries. Since

XOR-cascades are sequential, this proves tightness of our above re-
sult for XOR-cascades of length ` ∈ {3, 4} as well as their optimal
security within the class of sequential constructions.

These results suggest that XOR-cascades achieve a better security/effi-
ciency trade-off than plain cascades and should be preferred.

Keywords: Provable security, block ciphers, key-length extension, ideal-
cipher model, cascade, XOR-cascade.

1 Introduction

1.1 Block Ciphers and the Key-Length Extension Problem

It is beyond question that block ciphers play a pivotal role in cryptographic
practice, being the basic building block for most constructions in the realm

of symmetric cryptography. The first standardized block cipher achieving huge
popularity and wide-spread use was DES [1], nowadays being replaced by the
current standard AES [4].

Formally, a block cipher with keyspace {0, 1}κ and message space {0, 1}n is
simply a family of efficiently computable (and invertible) permutations Ek on
the set of n-bit strings indexed by a κ-bit key k, which is often emphasized by
referring to it as a (κ, n)-block cipher. For example, n = 64 and κ = 56 for DES,
and n = 128 and κ ∈ {128, 192, 256} for AES.

In most applications that employ a block cipher as its underlying primitive,
it is assumed (and required) that it behaves as a pseudorandom permutation
(PRP), i.e., if used with a random secret key, it cannot be efficiently distinguished
from a uniformly random permutation. To capture this notion, the PRP security
level of a block cipher is defined as the complexity required to distinguish it from
a random permutation with non-negligible advantage.

Key-Length Extension. The key length κ is a crucial security parameter
of every block cipher E. An attacker, given some plaintext-ciphertext pairs,
can easily identify the secret key being used by a brute-force attack if he is
capable of performing roughly 2κ evaluations of E. This key-recovery attack
can be also transformed into a PRP distinguishing attack, implying that the
bound of 2κ evaluations limits the PRP security of every block cipher. This
represents a problem for existing block ciphers with small key length κ for which
2κ operations can no longer be considered beyond the available computational
power of a potential attacker.

A prominent example of such a design is the former standard DES, which
however, apart from its insufficient key size, is believed to contain no significant
structural weaknesses. It also remains attractive thanks to its short block length
which allows enciphering short inputs and explains the wide-spread use of DES-
based constructions in the financial industry even today (see e.g. [6] for the EMV
standard).

Due to the above reasons, there exists a practical demand for constructions
transforming any (κ, n)-block cipher E into a (κ′, n)-block cipher CE while in-
creasing both the key length (i.e., κ′ > κ) and the generic security achieved (i.e.,
the PRP security of CE should be significantly higher than 2κ assuming that
E itself contains no non-generic weaknesses). This is known as the key-length
extension problem for block ciphers and in this paper we contribute to the un-
derstanding and analysis of several cascading-based constructions addressing this
problem. Note that even though the case of DES constituted the initial moti-
vation for the study of key-length extension, we focus on generic constructions
that are applicable to any block cipher, making our results attractive also from
a theoretic perspective.

Ideal-Cipher Model. To assess the security level achieved by the key-length
extension constructions themselves, we assume the absence of any weaknesses of
the underlying block cipher by modelling it as the ideal block cipher E provid-
ing an independent uniformly random permutation for each key. We consider a
distinguisher D that is allowed to issue two types of queries:

- block-cipher queries to evaluate the block cipher E under any key and on
any input block (both in the encryption and the decryption direction).

- construction queries to evaluate either the key-length extending construction
CE
K′ used with the block cipher E and a uniformly random secret κ′-bit key
K ′; or a uniform random permutation P independent of E (again, both query
directions are allowed).

Hence, the distinguisher is either given to interact with the combined system
(E,CE

K′) or with (E,P) and its goal is to decide which of these two situations
has occurred. Its complexity is determined solely by the sum of its queries of both
types, leading to results of information-theoretic nature. Note that the security
of any key-length extension construction in this model can be upper-bounded by
2κ+n which corresponds to the trivial attack asking all possible block-cipher and
construction queries. This model has already been employed numerous times to
analyze the security of key-length extending constructions, e.g. in [19, 10, 16, 18].

1.2 Plain and Randomized Cascades

Arguably the most natural way to approach the key-length extension problem
is to simply apply the block cipher several times using an independent key at
each step – an approach known as cascading. Its security has been a subject
of extensive study in various models, including the information-theoretic ideal-
cipher model described above. It is well known that a cascade of length two does
not substantially increase security due to the meet-in-the-middle attack [12],
even though a security increase in terms of distinguishing advantage is achieved
for low attack complexities, as shown in [7]. This makes triple encryption the
shortest cascade with a potential for significant security gain, resulting into
its widespread usage as the Triple-DES (3DES) standard [2, 3, 5]. Given keys
k1, k2, k3 ∈ {0, 1}56, 3DES encrypts a 64-bit message m as

3DESk1,k2,k3(m) = DESk3(DESk2(DESk1(m))) .

3DES was formally studied by Bellare and Rogaway [10], showing its security up
to roughly 2κ+min{κ,n}/2 queries when DES is replaced by an ideal block cipher.
Gaži and Maurer [16] showed that the security lower bound increases further
with the length of the cascade for block ciphers where κ ≤ n, reaching roughly

2min{ 2`κ
`+1 ,κ+n

2 } queries for a cascade of odd length `; with increasing ` this term

approaches 2min{2κ,κ+n
2 }. Recently it was shown by Lee [22] that the security of

the cascade actually approaches the value 2κ+min{κ,n} with increasing `, however
his result only gives useful bounds for large ` (say ` ≥ 16). On the negative side,
Lucks [23] presented an attack on triple encryption that, once cast into the ideal-
cipher model, constitutes the best such attack known in this model by requiring
roughly 2κ+n/2 queries.

An alternative approach to the keylength-extension problem is inspired by
the key-whitening technique, first employed in the DESX construction due to
Rivest. Here, the input and output of the block cipher is masked (“whitened”)

by an XOR with additional key material as follows: given a key tuple (ki, ko, k) ∈(
{0, 1}64

)2 × {0, 1}56 a message m is mapped to

DESXki,ko,k(m) = ko ⊕DESk(ki ⊕m).

The generalization of DESX for arbitrary κ, n was shown to be secure up to

2
κ+n

2 queries by Kilian and Rogaway [19] even if the same key is used in both
whitening steps.

In an attempt to combine cascading and key whitening, Gaži and Tessaro [18]
proposed the so-called 2-XOR-cascade (or randomized cascade) construction. It
consists of a cascade of length 2 interleaved with two whitening steps, mapping
each n-bit message m under a key (k, z) ∈ {0, 1}k × {0, 1}n to

2XORk,z(m) = Ek̃(Ek(m⊕ z)⊕ z)

where k̃ is derived from k in a deterministic way (e.g. by flipping a single bit).
They prove 2-XOR-cascade to be secure up to 2κ+n/2 queries and also show
that this bound is tight. The recent independent work by Lee [22] considers the
general case of XOR-cascade of length ` (with independent keys and an XOR
step at the end) and proves that its security approaches the optimal bound 2κ+n,
while again giving useful statements only for large `.

Other Models.There is a vast amount of literature on the security properties
of different cascading-based constructions for block ciphers in various security
models, in the information-theoretic setting [14, 25, 31, 26, 27, 17] as well as in
the computational setting [28, 30, 13]. The models employed in these works are
however orthogonal to ours and hence the results are not directly comparable.

1.3 Our Contributions

Cascades. We start our investigation by looking at the case of a plain cascade
construction of a general length ` (see Fig. 2). As a complement to the above-
mentioned positive results given in [16, 22], in Section 3 we present a generic

attack on `-cascade in our model that requires roughly 2κ+ `−2
` n queries (2κ+ `−1

`+1n

queries) for even (odd) `. The well-known meet-in-the-middle attack [12] and the
attack of Lucks [23] turn out to be special cases of our attack for ` = 2 and ` = 3,
respectively. To the best of our knowledge, our result also constitutes the first
formal analysis of the advantage achieved by the often-cited attack on triple
encryption [23].

XOR-Cascades. After upper-bounding the security of the seemingly simplest
possible construction — the cascade — we turn our attention to the more in-
volved `-XOR-cascade constructions of arbitrary length ` (see Fig. 4) which are
a generalization of the 2-XOR-cascade proposed in [18].

In Section 4 we give a general method to reduce the security of XOR-cascades
in our model to the security of so-called key-alternating ciphers in the random-
permutation model. A key-alternating cipher (KAC) is a block cipher designed

Fig. 1. Upper bounds on distinguishing advantage versus log2 q (where q is the number
of queries) for plain (blue) and randomized (red) cascades of lengths 2–4, using κ = 56
and n = 64. Curves from left to right: (1) single encryption for reference; (2) 2-cascade;
(3) 3- and 4-cascade (same bound); (4) 2-XOR-cascade; (5) 3-XOR-cascade; (6) 4-
XOR-cascade.

to alternate keyed XOR operations with fixed publicly known permutations (see
Fig. 5). Since AES represents a prominent practical example of this design
paradigm, its security has been extensively studied [11, 29, 20, 8, 21]. However,
despite the seeming closeness to the structure of XOR-cascades, these two topics
were never related to each other explicitly.

Our reduction relates the security of an XOR-cascade to the security of one
step shorter KAC, allowing for more modular security analysis of XOR-cascades.
By combining it with recent lower bounds on the security of KAC [11, 29, 20] we

obtain a proof that 3-XOR-cascade and 4-XOR-cascade are secure up to 2κ+ 2
3n

and 2κ+ 3
4n queries, respectively; and finally, that a general `-XOR-cascade of

odd (even) length is secure at least up to 2κ+ `−1
`+1n queries (2κ+ `−2

` n queries),
respectively.

The latter result implies that the security of XOR-cascades with increasing
length approaches the optimum 2κ+n. While this also follows from the inde-
pendent concurrent work [22], the bound presented in [22] is not applicable to
small, practical values of ` (exceeding the trivial security 2κ only for ` ≥ 5). Using
the DES parameters for illustration, our bound for 3-XOR-cascade is roughly
matched by the bound in [22] for 12-XOR-cascade. We also see the modular
approach of our proof as an advantage, exhibiting a general reduction to the
recently studied security of KAC. On the other hand, the result from [22] gives
a better bound for large values of ` (e.g. ` > 22 for DES parameters).

Contrasting our results with the generic attacks on plain cascades given in
Section 3, we see that a 3-XOR-cascade is provably at least as secure as a 6-
cascade and a 4-XOR-cascade is at least as secure as an 8-cascade, while pro-
viding much better efficiency. This gives us a more robust argument in favor
of XOR-cascades as constructions providing security and efficiency at the same
time; a view that was already advocated in [18]. Note that here we are com-
paring security lower bounds (for XOR-cascades) to best known attacks (for
plain cascades), making an even stronger case for the randomization. Alterna-
tively, one can compare the upper bounds on distinguishing advantages for the
constructions considered, we present one such comparison in Fig. 1.

` `-cascade
sequential

`-XOR- `-query
cascade construction

security attack security attack

2 min{κ, n} κ κ+ n
2

κ+ n
2

3 κ+ min
{
κ
2
, n

2

}
κ+ n

2
κ+ 2

3
n (?) κ+ 2

3
n (?)

4 κ+ min
{
κ
2
, n

2

}
κ+ n

2
(?) κ+ 3

4
n (?) κ+ 3

4
n (?)

odd min
{

2`κ
`+1

, κ+ n
2

}
κ+ `−1

`+1
n κ+ `−1

`+1
n
κ+ `−1

`
n (?)≥ 51 (?) (?)

even min
{

2(`−1)κ
`

, κ+ n
2

}
κ+ `−2

`
n κ+ `−2

`
n

Table 1. Best known security lower bounds and generic attacks for various key-length
extension schemes. Each given term is a logarithm of the respective number of queries
and is parameterized by the key length κ and block size n of the underlying block
cipher. References and further details to all depicted bounds are given in the text.
Results denoted by (?) come from this paper.

Sequential Constructions. Motivated by the question of tightness of the
above-mentioned bounds for XOR-cascades, we proceed by investigating generic
attacks on a particular class of key-length extending constructions that include
them. In Section 5 we look at constructions issuing ` queries to the block cipher
while working in a sequential way: they consist of ` block-cipher encryptions
interleaved with applications of arbitrary permutations that only depend on the
key being used. For this class of constructions that we call sequential we exhibit

an attack requiring approximately 2κ+ `−1
` n queries. Since XOR-cascades clearly

belong to the class of sequential constructions, an `-XOR-cascade cannot be

secure beyond 2κ+ `−1
` n queries. This shows that the obtained security bounds

for ` ∈ {3, 4} are tight and moreover, the `-XOR-cascades of this length are
optimally secure among the class of all sequential constructions, emphasizing
that the extremely cheap XOR operation is sufficient to achieve the full potential
of sequential constructions. This was previously only shown for ` = 2 in [18].

Summary. Table 1 summarizes the results of this paper in the context of pre-
viously known results. To serve as an overview, most bounds are presented in
a simplified form. For numerical illustration, let us again consider the DES pa-
rameters and the case ` = 3. For 3-cascade we have a security lower bound of
278.4 [10, 16] and an upper bound of 289.6 queries due to the attack [23] ana-
lyzed here. For 3-XOR-cascade the lower and upper bounds are 293.0 and 2102.4

queries, respectively, both obtained in this paper. In both cases, lower bounds
are threshold values where the advantage bound reaches 1/2, upper bounds are
numbers of queries required by our attacks resulting in advantage at least 1/2.

1 For large ` (e.g. ` > 16 for cascade and ` > 22 for XOR-cascade, considering DES
parameters) the security lower bounds are superseded by the results in [22].

Finally, note that all generic attacks presented in this paper can be mounted
even if the distinguisher is only allowed to ask forward construction queries.
Moreover, these queries can be chosen arbitrarily, resulting in known-plaintext
attacks. In contrast, our security proofs are valid also with respect to an adaptive
adversary allowed to ask also inverse construction queries (CCA adversary).

2 Preliminaries

2.1 Basic Notation

We typically denote sets by calligraphic letters X ,Y, . . ., and by |·| we denote
their cardinalities. The set of all k-tuples xk = (x1, . . . , xk) of elements of X
is denoted by X k. The symbols Func(m, `) and Perm(n) refer to the sets of all
functions from {0, 1}m to {0, 1}` and of all permutations of {0, 1}n, respectively;
while id ∈ Perm(n) represents the identity mapping when n is implicit. All
logarithms are understood to the base 2.

Random variables and concrete values they can take are usually denoted by
upper-case letters X,Y, . . . and lower-case letters x, y, . . ., respectively. For events
A and B and random variables U and V with ranges U and V, respectively, we
denote by PUA|V B the corresponding conditional probability distribution, seen
as a (partial) function U×V → [0, 1]. The value PUA|V B(u, v) = P[U = u∧A|V =
v∧B] is well-defined for all u ∈ U and v ∈ V such that PV B(v) > 0 and undefined
otherwise. Two probability distributions PU and PU ′ on the same set U are equal,
denoted PU = PU ′ , if PU (u) = PU ′(u) for all u ∈ U . Conditional probability
distributions are equal if the equality holds for all arguments for which both of
them are defined. To emphasize the random experiment E in consideration, we
sometimes write it in the superscript, e.g. PEU |V (u, v). The expected value of a

discrete random variable X is denoted by E(X) =
∑
x∈X (x · P[X = x]). The

complement of an event A is denoted by A.

2.2 Random Systems

To present our results we make use of Maurer’s random systems framework [24],
which we now introduce in a self-contained exposition sufficient to follow the
rest of the paper.

We start by observing that the input-output behavior of any kind of reactive
discrete system with inputs in X and outputs in Y can be described by an infinite
family of functions specifying, for each i ≥ 1, the probability distribution of the
system’s i-th output Yi ∈ Y given the values of the first i inputs Xi ∈ X i and
the previous i − 1 outputs Y i−1 ∈ Yi−1. Using this viewpoint, we say that an
(X ,Y)-(random) system F is an infinite sequence of functions pFYi|XiY i−1 : Y ×
X i × Yi−1 → [0, 1] such that

∑
yi
pFYi|XiY i−1(yi, x

i, yi−1) = 1 for all i ≥ 1,

xi ∈ X i and yi−1 ∈ Yi−1. Note that pFYi|XiY i−1 by itself does not represent a

(conditional) probability distribution in any particular random experiment with
well-defined random variables Yi, X

i, Y i−1 until the system is connected to a

distinguisher (see below), in which case these random variables will exist and take
the role of the transcript. We shall typically define discrete systems by a high level
description, as long as the resulting conditional probability distributions could
be derived easily from this description. A system F is deterministic if the range
of pFYi|XiY i−1 is {0, 1} for all i ≥ 1. Moreover, it is stateless if the probability
distribution of each output depends only on the current input, i.e., if there
exists a distribution pY |X : Y × X → [0, 1] such that pFYi|XiY i−1(yi, x

i, yi−1) =

pY |X(yi, xi) for all yi, x
i and yi−1.

A system F might often be used as a component (subsystem) in a construc-
tion C(·), resulting in the composed system CF. While a construction C(·) does
not define a random system by itself, CF does define a random system. The
notions of being deterministic and of being stateless naturally extend to con-
structions.2 Two (possibly dependent) systems F and G can also be composed
in parallel, denoted (F,G), which simply results in a system that allows queries
to both systems F and G.

Examples. A special case of a random system is a random function F : X → Y
that implements a function f initially chosen according to some distribution
on the set of all functions from X to Y.3 In particular, the uniform random
function (URF) R : {0, 1}m → {0, 1}` realizes a uniformly chosen function f ∈
Func(m, `), and the uniform random permutation (URP) P : {0, 1}n×{+,−} →
{0, 1}n realizes a uniformly chosen permutation π ∈ Perm(n) allowing both
forward queries of the form (x,+) returning π(x) as well as backward queries
(y,−) returning π−1(y). Throughout this paper we meet the convention that
any system realizing a random function (possibly by means of a construction)
which is a permutation will always allow both forward and backward queries.
Furthermore, by E : {0, 1}κ×{0, 1}n×{+,−} → {0, 1}n we denote the random
function realizing an ideal block cipher that provides an independent uniform
random permutation Ek ∈ Perm(n) for each key k ∈ {0, 1}κ, allowing both
forward and backward queries to each Ek. Finally, note that with some abuse of
notation, we often write Ek or P to refer to the randomly chosen permutation
P implemented by the system Ek or P, respectively.

Distinguishing Random Systems. A distinguisher D for an (X ,Y)-random
system asking q queries is a (Y,X)-random system which is “one query ahead:”
its input-output behavior is defined by the conditional probability distributions
of its queries pDXi|Xi−1Y i−1 for all 1 ≤ i ≤ q. (Its first query is determined by

pDX1
.) After the distinguisher asks all q queries, it outputs a bit Wq depending

on the transcript (Xq, Y q). Given a random system F and a distinguisher D,
we denote by DF the random experiment where D interacts with F, with the
distributions of the transcript (Xq, Y q) and of the bit Wq being uniquely defined
by their conditional probability distributions. For two (X ,Y)-random systems

2 We dispense with a formal definition. However, we point out that we allow a stateless
construction to keep a state during invocations of its subsystem.

3 As for the notion of a random variable or a random system, the word “random” does
not imply any uniformity of the distribution.

F and G, the distinguishing advantage of D in distinguishing systems F and G
by q queries is the quantity ∆D(F,G) = |PDF

Wq
(1) − PDG

Wq
(1)| and the maximal

distinguishing advantage over all distinguishers asking q queries is denoted by
∆q(F,G) = maxD∆D(F,G) (with D ranging over all such distinguishers).

If a detailed description of some distinguisher’s internal workings is needed,
we use standard pseudocode notation (see e.g. Fig. 3). To capture that the
distinguisher issues a query x to a system F and stores the response as y we
always use the explicit notation “query y := F(x)”.

Monotone Conditions. For a random system F, we often consider an in-
ternal monotone condition defined on it. Such a condition is initially satisfied
(true), but once it gets violated, it cannot become true again (hence the name
monotone). We use such conditions to capture whether the behavior of the sys-
tem meets some additional requirement (e.g. distinct outputs, consistent out-
puts) or this was already violated during the interaction that occurred so far.
A monotone condition is formalized by a sequence of events A = A0, A1, . . .
such that A0 always holds, and Ai holds if the condition holds after answering
the i-th query. The probability that a distinguisher D issuing q queries to F
makes a monotone condition A fail in the random experiment DF is denoted by
νD(F, Aq) = PDF(Aq) and maximum over all such distinguishers is denoted by
ν(F, Aq) = maxD νD(F, Aq).

For any random system F with a monotone condition A defined on it, fol-
lowing [27] we define F blocked by A to be a new random system that behaves
exactly like F as long as the condition A is satisfied; but once A is violated, it
only outputs a special blocking symbol ⊥ not contained in the output alphabet
of F. We will make use of the following helpful claims on random systems proven
in previous works.

Lemma 1. Let C(·) and C′(·) be two constructions invoking a subsystem, and let
F and G be random systems. Let A and B be two monotone conditions defined
on F and G, respectively.

(i) [16, Lemma 2] Let F⊥ denote the random system F blocked by A and let G⊥

denote G blocked by B. Then for every distinguisher D asking q queries we
have ∆D(F,G) ≤ ∆q(F

⊥,G⊥) + νD(F, Aq).
(ii) [24, Lemma 5] ∆q(C

F,CG) ≤ ∆q′(F,G), where q′ is the maximum number
of invocations of any internal system H for any sequence of q queries to CH,
if such a value is defined.

(iii) [16, Lemma 3] There exists a fixed permutation S ∈ Perm(n) (represented
by a deterministic stateless system) such that ∆q(C

P,C′P) ≤ ∆q(C
S ,C′S).

3 Plain Cascades

We start by investigating the security of the plain cascade construction. Given
the lower bounds on the security of plain cascades given in [16, 22], it is natural
to approach the question from the opposite direction and explore generic attacks
on the cascade construction in our model. In this section we describe such an

x EK1 EK2 · · · EK`

K1 K2 K`

Fig. 2. The cascade construction realized by CascE`,K̄ .

attack for the general case of a cascade of arbitrary length ` ≥ 2. It shows that,

roughly speaking, plain cascade of length ` can be attacked in 2κ+ `−2
` n queries

(2κ+ `−1
`+1n queries) for even (odd) `.

Let Casc
(·)
` : ({0, 1}κ)

` × {0, 1}n × {+,−} → {0, 1}n denote a (determin-
istic stateless) construction which expects a subsystem E : {0, 1}κ × {0, 1}n ×
{+,−} → {0, 1}n realizing a block cipher. CascE` then realizes cascaded encryp-
tion of length ` using the block cipher E and the keys given, i.e., CascE` answers
each forward query (k1, . . . , k`, x,+) by Ek` (· · ·Ek1 (x) · · ·) and each backward
query (k1, . . . , k`, y,−) by E−1

k1
(· · ·E−1

k`
(y) · · ·). Moreover, we let CascE`,K̄ be the

system that chooses a uniformly random (secret) key tuple K̄ = (K1, . . . ,K`) ∈
({0, 1}κ)

`
and then gives access to the permutation CascE` (K̄, ·) in both direc-

tions (i.e., takes inputs from {0, 1}n×{+,−}). The evaluation of a forward query
by CascE`,K̄ is depicted in Fig. 2.

Theorem 1. For the cascade construction Casc
(·)
`,K̄

of even length ` ≥ 2 using

an ideal block cipher E and for any4 parameter 0 < t < 22n/`−1 there exists a
distinguisher D such that

∆D
(

(E,CascE`,K̄), (E,P)
)
≥ 1− 2

t
− 2`κ−t(n−1)

and D asks at most ` · 2κ+ `−2
` n queries to E and 2t · 2 `−2

` n forward queries to

either of CascE`,K̄ and P. For odd-length cascades, D requires at most ` · 2κ+ `−1
`+1n

queries to E and 2t · 2
`−1
`+1n forward queries to either of CascE`,K̄ and P.

Our proof relies on the following technical lemma proven in the full version
of this paper. Let E, Var and Cov denote the usual notions of expected value,
variance and covariance, respectively.

Lemma 2. Let U be a set such that |U| = N and for m ∈ N let A1, · · · ,Am
be sets of size a1, . . . , am respectively, such that each Ai for i ≥ 2 is chosen
independently uniformly at random from all subsets of U having ai elements;
A1 may be chosen arbitrarily. If the random variable X denotes the number of
elements of the intersection A1∩· · ·∩Am then we have E(X) = (

∏m
i=1 ai)/N

m−1

and Var(X) ≤ (
∏m
i=1 ai)/N

m−1.

4 For some intuition about the bound obtained, consider e.g. κ ≈ n and t :≈ `+ 1.

Distinguisher D(E,S): where S ∈ {CascE`.K̄ ,P}

1: choose arbitrary S0 ⊆ {0, 1}n s.t. |S0| = 2t · 2
`−2
`
n

2: for i := 1 to `/2− 1 do

3: choose uniformly at random S2i ⊆ {0, 1}n s.t. |S2i| = 2
`−2
`
n

4: for all x ∈ S0 do
5: query y(x) := S(x,+)
6: S` := {y(x) | x ∈ S0}
7: for all x ∈ S0 ∪ S2 ∪ · · · ∪ S`−2 do
8: for all k ∈ {0, 1}κ do
9: query ek(x) := E(k, x,+)

10: for all y ∈ S2 ∪ S4 ∪ · · · ∪ S` do
11: for all k ∈ {0, 1}κ do
12: query e−1

k (y) := E(k, y,−)

13: for all k̄ = (k1, . . . , k`) ∈ ({0, 1}κ)` do
14: choose I ⊆ S0 s.t. |I| = t and ∀x ∈ I,∀i ∈ {1, . . . , `} :

eki(· · · ek1(x)) is known from lines 9 and 12
15: if I exists ∧ ∀x ∈ I : y(x) = ek`(· · · ek1(x)) then
16: return 1
17: return 0

Fig. 3. Distinguisher D for the proof of Theorem 1 for the case of ` being even.

Proof (of Theorem 1). Assume ` is even, we give the description of the distin-
guisher D in Fig. 3. It first chooses an arbitrary set S0 ⊆ {0, 1}n and independent

random sets S2,S4, . . . ,S`−2 ⊆ {0, 1}n of the given sizes and issues 2t · 2 `−2
` n

queries to the construction (cascade or random permutation – let us denote it S)
to obtain S` := S(S0). Each Si will represent the subset of values {0, 1}n that D

“cares about” after i steps of the cascade. Then D issues ` ·2κ+ `−2
` n block-cipher

queries to obtain all the values

Ek(S0),E−1
k (S2),Ek(S2), . . . ,E−1

k (S`−2),Ek(S`−2),E−1
k (S`)

with all possible keys k ∈ {0, 1}κ. These are all the queries D makes, it remains
to justify that they are sufficient to expect that there is a constant number of
values x ∈ {0, 1}n that, in case the correct keys are guessed, can be traced
through the whole cascade only with the information obtained above. Each such
path then allows us to compare its endpoint with S(x) which will most probably
only match if S is the cascade.

Let us analyze the probability that the set I is found on line 14 in the setting
where S = CascE`.K̄ and the examined key is the correct one, i.e., for k̄ chosen on
line 13 we have k̄ = K̄. Consider the sets

P0 = S0

P2 = E−1
k1

(E−1
k2

(S2))

...

P`−2 = E−1
k1

(· · ·E−1
k`−3

(E−1
k`−2

(S`−2)) · · ·),

i.e., P2i for i ≥ 1 is the subset of the plaintext space {0, 1}n that gets mapped to
S2i after applying the first 2i steps of the cascade with the correct keys. Since the
sets S2i for i ≥ 1 were chosen independently at random, we can invoke Lemma 2

to obtain that for P =
⋂`/2−1
i=0 P2i we have

E(|P|) =

∏`/2−1
i=0 |P2i|
2n(`2−1)

=

∏`/2−1
i=0 |S2i|
2n(`2−1)

= 2t

and similarly Var(|P|) ≤ 2t. Using Chebyshev inequality, this gives us P(|P| <
t) ≤ 2/t. If this does not occur (i.e., if |P| ≥ t) then any t-element subset of P
clearly satisfies all requirements imposed on the set I on lines 14 and 15 (note
that any such subset can be chosen, we assume that D has a fixed way of doing
so). Since the desired I exists, D will output 1 in this case. Overall, this gives
us that D(E,CascE`.K̄) outputs 1 with probability at least 1− 2/t.

On the other hand, if S = P then for each k̄ the condition on line 15 can only
be satisfied with probability at most 2−t(n−1), hence by union bound D(E,P)
outputs 1 with probability at most 2`κ−t(n−1), which concludes the proof for the
case of even `.

For odd ` we just start by choosing S0,S1,S3, . . . ,S`−2 ⊆ {0, 1}n with |S0| =
2t ·2

`−1
`+1n and each of the remaining sets having size 2

`−1
`+1n. The rest of the attack

and its analysis is analogous and therefore omitted. ut

Interestingly, for ` = 2 our attack corresponds to the well-known meet-in-
the-middle attack against double encryption [12] and for ` = 3 it corresponds to
one of the attacks given in [23].

Note that there is a trade-off between the number of construction queries
and block-cipher queries required for the attack presented in Theorem 1. The
attack can be modified in a straightforward way to use a lower number 2tm of

construction queries and 2κ+n− 2 logm
`−2 block-cipher queries. Moreover, the con-

struction queries can be chosen arbitrarily, making it a known-plaintext attack.

4 XOR-Cascades

We now turn to investigate the so-called XOR-cascades that, loosely speaking,
consist of multiple encryption steps interleaved with key-whitening steps using
the XOR operation.

This design paradigm still offers several degrees of freedom: the addition or
omission of the key-whitening step at the beginning and at the end; as well as
repetition or dependence of keys across the encryption and whitening steps. We
resolve the first choice by including the first XOR operation and omitting the last
one, see Fig. 4 and the formal definition below. In the choice of key-scheduling
we consider the variant that derives all keys used in the encryption steps from
a single one in a fixed deterministic way such that they are distinct. This is
safe thanks to the properties of the ideal-cipher model that we are working in
that postulates the independence of the permutations realized for each key by

x
⊕

EK(1)

⊕
EK(2) · · ·

⊕
EK(`) XE

`,K,Z̄(x)

Z1 K(1) Z2 K(2) Z` K(`)

Fig. 4. The XOR-cascade construction realized by XE
`,K,Z̄ .

the block cipher; any practical instantiation would however require a form of
security under related-key attack [9]. In order to avoid such an assumption, one
could also consider independent keys for each of the encryption steps, arriving
at the same security statement for a construction requiring more key material.
Finally, we assume the whitening keys to be random and independent. A formal
definition of the `-XOR-cascade construction follows.

Let us fix a deterministic way to derive ` distinct κ-bit keys (k(1), . . . , k(`))
from a given κ-bit key k in such a way that each mapping k 7→ k(i) is a bijection.
For example, if we assume ` ≤ κ then we can simply set k(i) := k ⊕ 0i−110κ−i,
i.e., k(i) will differ from k in the i-th bit. The definition extends naturally to
random variables K(1), . . . ,K(`) derived from a uniformly random key K.

In the following discussion, let us model the XOR-cascade of length ` by

a (deterministic stateless) construction X
(·)
` : {0, 1}κ × ({0, 1}n)

`+1 × {+,−} →
{0, 1}n which expects to access a subsystem E : {0, 1}κ × {0, 1}n × {+,−} →
{0, 1}n realizing a block cipher. The combined system XE

` then answers each
forward query (k, z1, . . . , z`, x,+) by Ek(`) (· · ·Ek(2) (Ek(1) (x⊕ z1)⊕ z2) · · · ⊕ z`)
and each backward query (k, z1, . . . , z`, y,−) by E−1

k(1)
(· · ·E−1

k(`−1)(E
−1
k(`)

(y)⊕z`)⊕
z`−1 · · ·) ⊕ z1. Again, we let XE

`,K,Z̄
be the system that first chooses uniformly

random (secret) keys (K, Z̄) ∈ {0, 1}κ × ({0, 1}n)
`

where Z̄ = (Z1, . . . , Z`) and
then gives access to the permutation XE

` (K, Z̄, ·) in both directions (i.e., takes
inputs from {0, 1}n × {+,−}). The evaluation of a forward query by XE

`,K,Z̄
is

depicted in Fig. 4.

Before presenting our results, we introduce the notion of key-alternating ci-
phers. This concept, studied for example in [15, 11, 29, 20, 8, 21], is surprisingly
close to the notion of XOR-cascades, however introduced with a very different
motivation. It refers to a construction of a block cipher by alternating two types
of steps: an XOR of a secret key and an application of a publicly known permuta-
tion (see Fig. 5 and the formal definition below). A prominent example of a block
cipher having this structure is the current standard AES [4]. This approach to
block-cipher construction is then typically studied in the random-permutation
model where one assumes that the permutation steps consist of applications of
uniformly random and independent, publicly accessible permutations. Below we
model the key-alternating ciphers under this assumption. Note that in this set-
ting it is natural to consider constructions that both start and end with the
XOR operation.

x
⊕

P1

⊕
P2 · · ·

⊕
P`

⊕
AP̄`
`,Z̄

(x)

Z1 Z2 Z` Z`+1

Fig. 5. The key-alternating cipher realized by AP̄`
`,Z̄

.

In the following, let us denote by A
(·)
`,Z̄

the key-alternating cipher as it is

formalized in the random permutation model (e.g. in [15, 11, 29, 20]). More pre-

cisely, let A
(·)
` : ({0, 1}n)

`+2×{+,−} → {0, 1}n be a construction which expects

to access a subsystem P̂` giving bidirectional access to ` arbitrary permutations
(denoted P1, . . . , P`), using some fixed addressing mechanism for the queries.

The combined system AP̂`
` then answers each forward query (z1, . . . , z`+1, x,+)

by the value P` (· · ·P2 (P1 (x⊕ z1)⊕ z2) · · · ⊕ z`)⊕z`+1 and each backward query
(z1, . . . , z`+1, y,−) by P−1

1 (· · ·P−1
`−1(P−1

` (y⊕ z`+1)⊕ z`)⊕ z`−1 · · ·)⊕ z1. Again,

we let AP̂`
`,Z̄

be the system that first chooses uniformly random (secret) keys

Z̄ ∈ ({0, 1}n)
`+1

where Z̄ = (Z1, . . . , Z`+1) and then gives access to the per-

mutation AP̂`
` (Z̄, ·) in both directions (taking inputs from {0, 1}n × {+,−}).

Finally, let P̄i denote a system that provides bidirectional access to i indepen-

dent uniformly random permutations. The evaluation of a forward query by AP̄`
`,Z̄

is depicted in Fig. 5 and some known results on the security of key-alternating
ciphers in the random-permutation model are summarized using our formalism
in Appendix A.

We are now ready to present the reduction of the security of XOR-cascades
in the ideal-cipher model to the problem of the security of one step shorter key-
alternating ciphers in the random-permutation model. This reduction allows one
to analyze the problem in a simpler setting without considering the block-cipher
keys, as well as invoke existing results on key-alternating ciphers. The proof
modularizes the approach used in [18] to analyze the security of XOR-cascade
of length 2 and generalizes it to arbitrary lengths.

Theorem 2. For ` ≥ 2, for the constructions X
(·)
`,K,Z̄

and A
(·)
`−1,Z̄

defined as

above, and for every distinguisher D making q queries to E,

∆D
((

E,XE
`,K,Z̄

)
, (E,P)

)
≤ min

h

{
`q

h2κ
+∆h

((
P̄`−1,A

P̄`−1

`−1,Z̄

)
, P̄`

)}
.

In particular, D can make arbitrarily many queries to either of XE
`,K,Z̄

and P.

Proof. In accordance with [10, 16, 18] we first reduce the original distinguishing
problem to a simpler one, involving only block-cipher queries. Overall, the sys-
tem (E,XE

`,K,Z̄
) provides an interface to query 2κ+1 (dependent) permutations:

2κ of them correspond to the block cipher E being used under all possible keys
and the last permutation is provided by XE

`,K,Z̄
, where the values K and Z̄ are

chosen at the beginning by the construction X`,K,Z̄ . (All these permutations can
be queried both in forward and backward direction.) Since the last permutation
is also uniformly distributed and Perm(n) forms a group under composition, the
joint distribution of these permutations does not change if we first choose the
last permutation uniformly at random, i.e., we replace it by P, then pick random
K and Z̄ and finally choose the permutations of the block cipher independently
and uniformly for all keys except K(`), for which we choose the permutation
x 7→ P(E−1

K(1)(· · ·E−1
K(`−2)(E

−1
K(`−1)(x ⊕ Z`) ⊕ Z`−1) · · ·) ⊕ Z1). To formalize this

transition, let G(·) be a construction that expects a single permutation as its
subsystem (let us denote it P) and itself provides an interface to a block cipher
(let us denote it G). Any query to G is answered in the following way: in ad-
vance, G chooses random keys (K, Z̄) and then generates random independent
permutations for G used with any key except K(`). For K(`), G instead realizes
the permutation x 7→ P (G−1

K(1)(· · ·G−1
K(`−2)(G

−1
K(`−1)(x ⊕ Z`) ⊕ Z`−1) · · ·) ⊕ Z1),

querying P for any necessary values. By the above argument we then have(
E,XE

`,K,Z̄

)
= (GP,P) and hence also

∆q

((
E,XE

`,K,Z̄

)
, (E,P)

)
= ∆q

((
GP,P

)
, (E,P)

)
.

Now we can apply claim (iii) in Lemma 1 to obtain ∆q

((
GP,P

)
, (E,P)

)
≤

∆q

((
GS , S

)
, (E, S)

)
where S denotes the fixed permutation whose existence is

guaranteed by this claim. Since S is fixed and hence can be seen as known to
the distinguisher, it makes no sense to query it and therefore we only have to
bound ∆q

(
GS ,E

)
for an arbitrary permutation S. To simplify the notation, we

shall denote the system GS by G.

Let us call a (forward or backward) query to G relevant if it involves any of the
keys K(1), . . . ,K(`). Similarly, we can see the system E as also choosing some
random key K (and hence also all K(i)) that does not affect its behavior, it
just serves to define relevant queries for E in an analogous way. We now define
monotone conditions Ah and Bh on systems E and G respectively, such that
each of these conditions remains satisfied as long as at most h of the queries
asked so far were relevant. In E the probability of violating this condition can
be upper-bounded easily since the keys K(i) do not affect the system’s behavior
and hence it suffices to consider non-adaptive strategies. The expected number of
relevant queries among any given q queries asked by the distinguisher is `q · 2−κ

and from Markov inequality we obtain ν(E,Ahq) ≤ `q/h2κ. Hence by claim (i)
of Lemma 1 we have

∆q(G,E) ≤ ∆q(G
⊥,E⊥) + ν(E,Ahq) ≤ ∆q(G

⊥,E⊥) + `q/h2κ

where E⊥ and G⊥ denote the systems E and G blocked by Ah and Bh, respec-
tively.

In order to upper-bound the term ∆q(G
⊥,E⊥), we notice that the systems

G⊥ and E⊥ only differ in a small part. Moreover, this part corresponds to the
systems considered in the security definition of key-alternating ciphers in the
random-permutation model. More precisely, G⊥ = CS and E⊥ = CT where:

- S denotes a system that chooses ` random keys Z̄ ∈ ({0, 1}n)
`

and then
provides access (by means of both forward and backward queries) to ` ran-
domly chosen permutations π1, . . . , π` ∈ Perm(n) such that they satisfy the
equation

π−1
` (π`−1(· · ·π2(π1(· ⊕ Z1)⊕ Z2)⊕ Z3 · · ·)⊕ Z`) = id;

i.e., π1, . . . , π`−1 are chosen independently at random and π` is set to

x 7→ π`−1(· · ·π2(π1(x⊕ Z1)⊕ Z2)⊕ Z3 · · ·)⊕ Z`.

Note that this corresponds to the system
(
P̄`−1,A

P̄`−1

`−1,Z̄

)
.

- T denotes a system that provides access (by means of both forward and
backward queries) to ` uniformly random permutations π1, . . . , π` ∈ Perm(n)
that are independent. This in turn corresponds to the system P̄`.

- C(·) denotes a randomized construction expecting a subsystem providing
bidirectional access to ` permutations π1, . . . , π`. The construction C(·) itself
then provides access to a block cipher (let us denote it C) as follows: it first
chooses a uniformly random key K and then sets CK(i) := πi for all i ∈
{1, . . . , `− 1} and CK(`)(·) := S(π−1

` (·)). (C only queries its subsystem once
it is necessary in order to answer a relevant query to C). The permutations
for all other keys are chosen independently at random and maintained by C.
Moreover, C only allows h relevant queries, after that it returns ⊥.

It is now straightforward to verify that we indeed have G⊥ = CS and E⊥ = CT.
Since C(·) issues at most h queries to its subsystem, we can invoke Lemma 1(ii)
to obtain

∆q(G
⊥,E⊥) ≤ ∆h(S,T) = ∆h

((
P̄`−1,A

P̄`−1

`−1,Z̄

)
, P̄`

)
.

The whole argument holds for any parameter h, hence we can minimize over it
to conclude the proof of the theorem. ut

Combining our Theorem 2 with the known results on the security of key-
alternating ciphers in the random permutation model [11, 29, 20] given in Ap-
pendix A we obtain the following corollary.

Corollary 1. Let X
(·)
`,K,Z̄

denote the `-XOR-cascade construction as above. Then

we have:

1. 3-XOR-cascade is secure up to roughly 2κ+ 2
3n queries; more precisely, for

n ≥ 20 we have

∆q

((
E,XE

3,K,Z̄

)
, (E,P)

)
≤ 3 ·

(
q

2κ+ 2
3n

) 1
2

+ 9 ·
(

q

2κ+ 2
3n

) 3
2

+ 3 · q

2κ+ 2
3n

.

2. `-XOR-cascade is secure up to roughly 2κ+ 3
4n queries for ` ≥ 4; more pre-

cisely, for n ≥ 27 we have

∆q

((
E,XE

`,K,Z̄

)
, (E,P)

)
≤ ` ·

(
q

2κ+ 3
4n

) 1
2

+ 9 · q

2κ+ 3
4n

+ 4 ·
(

q

2κ+ 3
4n

) 3
2

.

3. `-XOR-cascade is secure up to roughly 2κ+ `−1
`+1n queries for odd `; more pre-

cisely, we have

∆q

((
E,XE

`,K,Z̄

)
, (E,P)

)
≤ (`+1)·

(
q

2κ+ `−1
`+1n

) 1
2

+23+ `−1
4 ·
(

q

2κ+ `−1
`+1n

) `+1
8

.

For even ` one can prove the same security as for one step shorter odd-length
XOR-cascade.

Proof (sketch). We combine the statement of Theorem 2 with the bounds on the
security of the key-alternating cipher listed in Theorem 4, choosing the value h

to be q
1
2 2

n
3−

κ
2 , q

1
2 2

3n
8 −

κ
2 and q

1
2 2

(`−1)n
2(`+1)

−κ2 in the three cases above, respectively.
The statements for constructions with more rounds follow from the fact that

∆h

((
P̄`,A

P̄`
`,Z̄

)
, P̄`+1

)
≤ ∆h

((
P̄`−1,A

P̄`−1

`−1,Z̄

)
, P̄`

)
which can be shown by a straightforward reduction. ut

5 Sequential Constructions

To obtain an upper bound on the security achievable by the `-XOR-cascade con-
struction, in this section we consider keylength-extending constructions having
a particular natural form which we call sequential.

A construction C : {0, 1}κ′×{0, 1}n×{+,−} → {0, 1}n is sequential if, given
an underlying block cipher E, the mapping it realizes can be written as

CE(k′, x,+) = Q`,k′ (Ek` (Q`−1,k′ (· · ·Ek2 (Q1,k′ (Ek1 (Q0,k′(x)))) · · ·)))

where all keys ki are determined by k′ and Qi,k′ is a fixed permutation for

all (i, k′) ∈ {0, . . . , `} × {0, 1}κ′ . Again, we let CE
K′ be the system that first

chooses a uniformly random (secret) key K ′ ∈ {0, 1}κ′ and then gives access
to the permutation CE(K ′, ·) in both directions (i.e., takes inputs from the set
{0, 1}n × {+,−}).

The attack on a class of so-called injective 2-query constructions given in [18]
can be generalized to sequential `-query constructions for arbitrary `, resulting
in the statement below. Its proof is given in the full version of this paper. Note
that this attack can also be seen as a lifting of an attack presented in [11] into
the ideal block-cipher setting.

Theorem 3. Let C(·) : {0, 1}κ′ × {0, 1}n × {+,−} → {0, 1}n be a sequential `-
query construction. For any parameter 0 < t < 2n/`−1 there exists a distinguisher
D such that

∆D((E,CE
K′), (E,P)) ≥ 1− 2/t− 2κ

′−t(n−1),

where D makes at most (2t + `) · 2κ+ `−1
` n block-cipher queries as well as 2n

forward construction queries.

Again, a trade-off between the number of construction queries and block-
cipher queries is possible: an analogous attack can be mounted with a lower

number m of construction queries and at most (2t+ `) · 2κ+n− logm
` block-cipher

queries. Also here the construction queries can be arbitrary, resulting in a known-
plaintext attack.

Acknowledgements. I would like to thank Stefano Tessaro for useful discus-
sions and helpful comments to earlier versions of this work and also the anony-
mous reviewers for their feedback.

References

1. Data encryption standard. In In FIPS PUB 46, Federal Information Processing
Standards Publication, 1977.

2. ANSI X9.52: Triple Data Encryption Algorithm Modes of Operation, 1998.
3. FIPS PUB 46-3: Data Encryption Standard (DES). National Institute of Standards

and Technology, 1999.
4. Advanced encryption standard. In FIPS PUB 197, Federal Information Processing

Standards Publication, 2001.
5. Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher.

National Institute of Standards and Technology, Special Publication 800-67, 2004.
6. EMV Integrated Circuit Card Specification for Payment Systems, Book 2: Security

and Key Management, v.4.2. June 2008.
7. William Aiello, Mihir Bellare, Giovanni Di Crescenzo, and Ramarathnam Venkate-

san. Security amplification by composition: The case of doubly-iterated, ideal ci-
phers. In CRYPTO ’98, volume 1462 of LNCS, pages 390–407. Springer, 1998.

8. Elena Andreeva, Andrey Bogdanov, Yevgeniy Dodis, Bart Mennink, and John P.
Steinberger. On the indifferentiability of key-alternating ciphers. Cryptology ePrint
Archive, Report 2013/061, 2013. http://eprint.iacr.org/.

9. Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks:
RKA-PRPs, RKA-PRFs, and applications. In EUROCRYPT 2003, volume 2656
of LNCS, pages 491–506. Springer, 2003.

10. Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs and the se-
curity of triple encryption. In EUROCRYPT 2006, volume 4004 of LNCS, pages
409–426. Springer, 2006. Full version at http://eprint.iacr.org/2004/331.

11. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Francois-Xavier Standaert,
John Steinberger, and Elmar Tischhauser. Key-alternating ciphers in a prov-
able setting: encryption using a small number of public permutations. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 45–62. Springer, 2012.

12. W. Diffie and M. E. Hellman. Exhaustive Cryptanalysis of the NBS Data Encryp-
tion Standard. Computer, 10(6):74–84, 1977.

13. Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Efficient dissection
of composite problems, with applications to cryptanalysis, knapsacks, and com-
binatorial search problems. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 719–740. Springer, 2012.

14. S. Even and O. Goldreich. On the power of cascade ciphers. ACM Trans. Comput.
Syst., 3(2):108–116, 1985.

15. Shimon Even and Yishay Mansour. A construction of a cipher from a single pseu-
dorandom permutation. In Journal of Cryptology, pages 151–161. Springer, 1991.

16. Peter Gaži and Ueli Maurer. Cascade encryption revisited. In M. Matsui, editor,
ASIACRYPT 2009, volume 5912 of LNCS, pages 37–51. Springer, December 2009.

17. Peter Gaži and Ueli Maurer. Free-start distinguishing: Combining two types of
indistinguishability amplification. In K. Kurosawa, editor, The 4th International
Conference on Information Theoretic Security - ICITS 2009, volume 5973 of LNCS,
pages 28–44. Springer, 2010.

18. Peter Gaži and Stefano Tessaro. Efficient and optimally secure key-length ex-
tension for block ciphers via randomized cascading. In David Pointcheval and
Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages
63–80. Springer, 2012.

19. Joe Kilian and Phillip Rogaway. How to Protect DES Against Exhaustive Key
Search (an Analysis of DESX). Journal of Cryptology, 14:17–35, 2001.

20. Rodolphe Lampe, Jacques Patarin, and Yannick Seurin. An Asymptotically Tight
Security Analysis of the Iterated Even-Mansour Cipher. In Xiaoyun Wang and
Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 278–295.
Springer, 2012.

21. Rodolphe Lampe and Yannick Seurin. How to construct an ideal cipher from a
small set of public permutations. Cryptology ePrint Archive, Report 2013/255,
2013. http://eprint.iacr.org/.

22. Jooyoung Lee. Towards Key-Length Extension with Optimal Security: Cascade En-
cryption and Xor-cascade Encryption. In Thomas Johansson and Phong Nguyen,
editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 405–425. Springer, 2013.

23. Stefan Lucks. Attacking triple encryption. In Serge Vaudenay, editor, Fast Software
Encryption, volume 1372 of LNCS, pages 239–253. Springer, 1998.

24. Ueli Maurer. Indistinguishability of random systems. In Lars Knudsen, editor,
EUROCRYPT 2002, volume 2332 of LNCS, pages 110–132. Springer, May 2002.

25. Ueli Maurer and James L. Massey. Cascade ciphers: The importance of being first.
Journal of Cryptology, 6(1):55–61, 1993.

26. Ueli Maurer and Krzysztof Pietrzak. Composition of random systems: When two
weak make one strong. In Moni Naor, editor, Theory of Cryptography — TCC
2004, volume 2951 of LNCS, pages 410–427. Springer, February 2004.

27. Ueli Maurer, Krzysztof Pietrzak, and Renato Renner. Indistinguishability ampli-
fication. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages
130–149. Springer, August 2007.

28. Ueli Maurer and Stefano Tessaro. Computational indistinguishability amplifi-
cation: Tight product theorems for system composition. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 350–368. Springer, August 2009.

29. John Steinberger. Improved Security Bounds for Key-Alternating Ciphers
via Hellinger Distance. Cryptology ePrint Archive, Report 2012/481, 2012.
http://eprint.iacr.org/.

30. Stefano Tessaro. Security amplification for the cascade of arbitrarily weak PRPs:
Tight bounds via the interactive Hardcore Lemma. In Theory of Cryptography —
TCC 2011, volume 6597 of LNCS, pages 37–54. Springer, 2011.

31. Serge Vaudenay. Decorrelation: a theory for block cipher security. Journal of
Cryptology, 16(4):249–286, 2003.

A Security of Key-Alternating Ciphers

In this appendix we present several bounds recently proved for the security
of key-alternating ciphers in the random-permutation model, recast into our
formalism.

Theorem 4. Let A`,Z̄ denote the key-alternating cipher of length ` as described
above.

1. [11] For any q < 2n/100 we have

∆q((P̄2,A
P̄2

2,Z̄
), P̄3) ≤ 8.6q3

22n
+

3q2

2
4
3n
.

2. [29] For any ` ≥ 1 and q < 2n/100 we have

∆q((P̄`,A
P̄`
`,Z̄

), P̄`+1) ≤ 3` · q
2

2
3
2n

+ (`+ 1) · q`

2
`2

`+1n
.

3. [20] For any even ` ≥ 1 we have

∆q((P̄`,A
P̄`
`,Z̄), P̄`+1) ≤ 2

`
4 +3 ·

(
q`+2

2`n

) 1
4

.

