
Hash Functions: From Merkle-Damg̊ard to

Shoup

Ilya Mironov?

mironov@cs.stanford.edu

Computer Science Department, Stanford University, Stanford, CA 94305

Abstract. In this paper we study two possible approaches to improv-
ing existing schemes for constructing hash functions that hash arbitrary
long messages. First, we introduce a continuum of function classes that
lie between universal one-way hash functions and collision-resistant func-
tions. For some of these classes efficient (yielding short keys) composite
schemes exist. Second, we prove that the schedule of the Shoup con-
struction, which is the most efficient composition scheme for universal
one-way hash functions known so far, is optimal.

1 Introduction

In the pursuit of efficient and provably secure constructions of practical cryp-
tosystems several basic primitives have emerged as useful building blocks. Two of
them are collision-resistant hash functions (CRHFs) and universal one-way hash
functions (UOWHFs). In the complexity-theoretic sense UOWHF is a strictly
weaker primitive than CRHF, because the latter is also the former but there
is an oracle relative to which UOWHFs exist but not CRHFs [Si98]. Therefore
it might be reasonable to base practical cryptosystems on a weaker primitive,
which can be easier to construct. Also, since no unconditionally secure UOWHFs
are known, the assumption that a particular family of functions is a UOWHF
can be more plausible than the assumption of its collision-resistance.

A UOWHF is a collection of keyed compressing functions {hk}k∈K such that
winning the following game is infeasible: The adversary chooses x, then receives
a key k ∈ K picked at random and wins if he can find y such that hk(x) = hk(y).

A CRHF is a set of keyed compressing functions {fk}k∈K such that for a
random k ∈ K it is infeasible to find x and y that satisfy fk(x) = fk(y).

In many applications it is convenient to have a family of UOWHFs or CRHFs,
i.e., a collection of functions that map bit strings of different lengths into fixed
length strings. The problem is to construct such a family given a single UOWHF
or CRHF, which is typically the case when one begins with an off-the-shelf func-
tion, for instance, MD5 or SHA-1. For CRHFs a widely used, provably secure
and efficient method is the Merkle-Damg̊ard construction [D89,M89]. Surpris-
ingly, this construction does not apply to UOWHFs ([BR97] gave a concrete
example of a UOWHF on which the Merkle-Damg̊ard construction fails). For
building UOWHF families the best method known so far is due to Shoup [Sh00].

? Supported by NSF contract #CCR-9984259

166 Ilya Mironov

In this paper we study applicability of the Merkle-Damg̊ard construction,
introducing a continuum of primitives that lie between CRHF and UOWHF.
Then we give an alternative proof of the Shoup construction and prove that this
construction is optimal in some restricted model of computations. The optimality
result is the major contribution of the paper.

2 Motivation: Key length of different composition

schemes

The first application of UOWHFs in [NY89] was to use them as a tool for
constructing a signature scheme secure under the most general attack. How-
ever, most practical signature schemes that follow “hash-and-sign” paradigm
use UOWHFs or CRHFs in a different way. They take a message M of an arbi-
trary length and hash it to obtain a constant length string, which is then fed into
a signing algorithm. Many schemes use CRHF families to hash M , but as it was
first noted in [BR97] a UOWHF suffices for that purpose. Indeed, if {hk}k∈K is
a UOWHF, then (k, hk(M)), where k chosen at random, can be signed and still
be as secure as the underlying signature algorithm. If the key length varies with
the length of a message, the signing algorithm is applied to (hK′(k), hk(M)),
where K ′ is part of the signer’s public key. Here function hK′ can be replaced by
any second-preimage resistant function, because its input is random and chosen
by the signer. Since messages can be very long, hashing speed is a crucial factor.
Again, because a UOWHF is a weaker primitive than a CRHF, we may hope
to find a more efficient algorithm that implements a UOWHF, thus speeding up
the signature scheme.

A closer look at this approach reveals that the key k must be part of the
signature so the receiver can recompute the hash. Therefore the shorter the key
the better. This is our motivation for studying different composition schemes
that yield hash functions with a short key.

The problem of composing a family of UOWHFs does not exist in case of
CRHFs, since the Merkle-Damg̊ard construction does not increase the key size.
Ironically, if we consider two competing algorithms one implementing a CRHF
and a more efficient one, which is supposedly a UOWHF, a signature scheme
based on the CRHF can outperform a scheme that uses a family of UOWHFs.

Among several composition schemes for UOWHFs [BR97,Sh00] the one with
the smallest key expansion is due to Shoup [Sh00]. Characteristics of the Shoup
construction are the following. Suppose that the starting point is a UOWHF that
has key length l and compresses n bits to m bits. The composition scheme yields
a family of UOWHFs such that a function that compresses N bits to m bits is
keyed by m · log2dN/(n−m)e+ l bits. The key length grows logarithmically with
the length of a message. Schemes in [BR97,NY89] have the same asymptotics
but a bigger constant factor.

In Table 1 we give a concrete example of the signature length on messages
of various sizes if we couple 1024-bit modulus RSA with either a CRHF or a

Hash Functions: From Merkle-Damg̊ard to Shoup 167

UOWHF. The UOWHF as in [Sh00] results from the Shoup construction applied
to a keyed SHA-1 compression function, which hashes 672 bits to 160 bits.

Table 1. Length of RSA signatures with 1024-bit modulus.

Message length CRHF UOWHF

|M | = 1Kb |S| = 1Kb |S| = 1.81Kb

1Mb 1Kb 3.22Kb

1Gb 1Kb 4.87Kb

3 Between CRHF and UOWHF

The condition imposed on the round function by the Merkle-Damg̊ard compo-
sition theorem can be relaxed. We consider the Merkle-Damg̊ard construction
as a useful test that can be applied to function classes filling the gap between
CRHFs and UOWHFs. We define these classes in the next section.

3.1 Definitions

CRHFs and UOWHFs enjoy different types of collision-resistance and their con-
structions base on different assumptions. This adds to the impression that these
two primitives have nothing in common. In fact, the only difference between
them is in the degree of freedom that the adversary has in choosing one of the
colliding elements. In case of a UOWHF, the adversary commits to x before
he knows the key, while to defeat a CRHF the adversary is free to choose x
afterwards. This difference can be easily quantified by specifying how many bits
of x the adversary commits to before he knows the key. Qualitative differences
between several variations of hash functions were demonstrated in [ZMI90]. We
shall see that the Merkle-Damg̊ard construction may be extended to a class of
functions that lie between CRHF and UOWHF.

Definition 1 (class CR`i(ni → mi)). Let {(ni,mi, `i)}i∈N be a sequence of
non-repeating triplets of integer numbers such that 0 < mi < ni and 0 ≤ `i ≤ ni
for any i. We say that a collection of keyed functions hik : {0, 1}

ni → {0, 1}mi ,
where k ∈ Ki, belongs to class CR`i(ni → mi) if no adversary can win the
following game for infinitely many i in time poly(ni) with probability at least
1/poly(ni):

1. The adversary selects some x0 ∈ {0, 1}
ni−`i .

2. Key k is chosen at random from Ki.
3. The adversary selects x1 ∈ {0, 1}

`i and y ∈ {0, 1}ni such that hik(x1||x0) =
hik(y).

168 Ilya Mironov

PSfrag replacements

Adversary Challenger

k ∈ K random

x0

x0

x1

x1

y

y

hk(x1||x0) = hk(y)

Fig. 1. Function hk from CR`(n → m).

We call the `i bits that the adversary is free to choose the flexibility of a class.

This definition subsumes the definitions of UOWHFs and CRHFs. The class
of functions with zero flexibility, CR0(ni → mi), is the class of UOWHFs, where
the adversary must choose in its entirety one of the colliding elements before he
knows the key. On the other hand, functions with full flexibility, CRni(ni → mi),
constitute the class of CRHFs, since the adversary commits to nothing ahead of
time.

We may omit the index parameter i for the sake of notation brevity. It does
not imply that we consider a single triple (n,m, `) (our asymptotic definition
is inept in this setting), but that the subsequent arguments can be uniformly
applied to the whole family of {(ni,mi, `i)}i∈N. For example, we can formulate
and prove the following propositions without utilizing the index variable.

Proposition 1. CR`1(n→ m) ⊆ CR`2(n→ m) if `1 ≥ `2.

Proof. Because higher flexibility gives more power to the adversary, any set of
functions that qualifies as CR`1(n→ m) also belongs to CR`2(n→ m). ¤

Proposition 2. A collision for a function from CR`(n → m) can be found in
O(2max(m−`,m/2)) evaluations of this function.

Proof. Consider the birthday attack that applies to the flexible part of the input.
¤

Hash Functions: From Merkle-Damg̊ard to Shoup 169

3.2 Merkle-Damg̊ard Construction Applies to CR`(n → m), Where
` ≥ m

Suppose we have a family of functions {hk}k∈K ∈ CR`(n → m), where ` ≥ m.
Merkle-Damg̊ard construction with variable IV and r rounds (Merkle-Damg̊ard
construction for short) is an operator that takes a function hk and transforms
it into a function MDrhk : {0, 1}

r·(n−m)+m 7→ {0, 1}m. This function is built
according to this rule:
Merkle-Damg̊ard construction with variable IV and r rounds
1. Input x formatted as (x0, x1, . . . , xr) such that |x0| = m, |x1| = · · · = |xr| =

n−m.
2. Chaining variable C0 is initialized as x0.
3. For i = 1 to r let Ci = hk(Ci−1, xi).
4. Output of the function MDrhk(x) is Cr.PSfrag replacements

x0

x1 x2 xr

C0 C1 C2 Cr−1 Cr
hkhkhk

. . .

Fig. 2. r-round Merkle-Damg̊ard construction.

This is the usual Merkle-Damg̊ard construction except that the initializing
value (IV) is also part of the input. The following theorem proves that the
construction works correctly on functions from the class CR`(n → m), where
` ≥ m.

Theorem 1. Suppose we have a family of functions {hik}i∈N,k∈K ∈ CR`i(ni →
mi), where `i ≥ mi, and a sequence {ri}i∈N such that ri < poly(ni). Then
{MDrihik}i∈N,k∈K is in the class CR`i(ri · (ni −mi) +mi → mi).

Proof. Suppose that `i = mi. The case of `i > mi is treated analogously. Assume
for contradiction that there is an algorithm A that wins the game described in
Definition 1 for infinitely many i. We build an algorithm B that contradicts the
fact that {hik}i∈N,k∈K ∈ CR`i(ni → mi).

Fix some i. Denote the value A commits to on the first step of this game
by x = (x1, . . . , xr). Choose 0 < j ≤ ri at random. Commit to xj in the game
played by B.

Key k is chosen at random. Let A find x0 and y = (y0, y1, . . . , yr) that make
a collision. Now MDrihik(x0||x) = MD

rihik(y). With probability at least 1/r

170 Ilya Mironov

we have a collision on the jth application of the function hik. It means that
hik(Cj−1||xj) = hik(C

′
j−1||yj), but Cj−1||xj 6= C ′

j−1||yj , where Cj and C ′
j are

the chaining variables. If it is the case, B outputs a colliding pair Cj−1||xj and
C ′
j−1||yj . ¤

The fact that `i ≥ mi is crucial for the proof. Because the flexible part of the
hashes’ input is longer than their output, the adversary does not need to commit
to the chaining variable if he wants to use A to find a collision. The value of the
chaining variable depends on the key and cannot be predicted ahead of time. It
is where the proof breaks if we want to apply it to the case when `i < mi.

Note 1. In practice we want to have a CRHF or a UOWHF that takes as input
any string of some bounded length and maps it to a fixed-length string. This
is stronger primitive than a collection of functions each taking a fixed-length
input, because it must be collision resistant (resp. be a UOWHF) across inputs
of different length. It turns out that a collection of fixed-input length functions
can be strengthened to allow a variable input length. We assume that the message
is padded to a length divisible by the block size (n −m in case of the Merkle-
Damg̊ard construction) and the last block of the message uniquely encodes the
message length before padding. This preprocessing stage was proposed in [M89]
and discussed in [LM92] along with a definition of a free-start attack. Theorem 1
can be generalized to hold for this strengthened construction ([LM92] proved the
theorem for families of pure CRHFs and UOWHFs).

3.3 Boundary

Because there is a complexity-theoretic jump between CRHFs and UOWHFs,
we may expect to observe at least one such a jump in the sequence of classes
CR0(n → m) ⊇ · · · ⊇ CRn(n → m). The following theorems show that this is
indeed the case and there are two classes of complexity-theoretic equivalence.
The boundary between them coincides with the limit of validity of the Merkle-
Damg̊ard construction (Section 3.2).

We recall that UOWHFs are one-way functions and can be built from a family
of one-way functions [Ro90]. This also implies existence (via black-box construc-
tions) of other cryptographic primitives such as secure signature schemes [NY89],
pseudo-random generators [HILL99], telephone coin flipping [B82] and bit com-
mitment protocols [N91]. [Si98] proved that there is no black-box (relativizing)
construction of a CRHF based on a UOWHF. In our terminology it means
that there is no unconditional construction of CRn(n → m) given access to
CR0(n→ m) as a black-box.

Theorem 2. CRm−O(logn)(n→ m) is non-empty if and only if CRHFs exist.

Proof. The adversary playing the game from Definition 1 may choose values for
O(log n) bits randomly. His probability of success drops in this case by a factor
of 2O(logn) = poly(n). Therefore CRm−O(logn)(n→ m) = CRm(n→ m).

Hash Functions: From Merkle-Damg̊ard to Shoup 171

Since CRm(n→ m) ⊇ CRn(n→ m) by Proposition 1, the “if” part is trivial.
Suppose we have a {hk}k∈K ∈ CRm(n → m). Define gk : {0, 1}

m+1 7→
{0, 1}m for any k ∈ K as follows. Suppose that gk takes two arguments—a
single bit b and x, which is m-bit long. Let

gk(b, x) = hk(x|| b . . . b
︸ ︷︷ ︸

n−m times

).

We claim that {gk}k∈K ∈ CRm+1(m+ 1→ m), i.e., it is a CRHF family.
Assume the opposite. There is an efficient algorithm A that for a random

k finds a collision gk(b0, x) = gk(b1, y). Wlog we may assume that b0 = 0 with
probability at least 1/2. We want to show that {hk}k∈K /∈ CRm(n → m). In
order to prove it we build algorithm B that wins the game from Definition 1 as
follows:
step 1. Commit to 0n−m.
step 2. Get k ∈ K.
step 3. Run A to find a collision gk(b0, x) = gk(b1, y). If b0 = 0 proceed to
the next step, otherwise the algorithm fails.
step 4. Output (x||0n−m, y||bn−m

1) as a collision for hk.

The output of B is indeed a collision, since

hk(x||0
n−m) = gk(x, 0) = gk(x, b0) = gk(y, b1) = hk(y||b

n−m
1)

and, because b0||x 6= b1||y, these two elements of the domain of hk are different.
The success probability of B is at least one half of the success probability of A.

Notice that gk(0, x) and gk(1, x) is a pair of claw-free pseudo-injections
(see [Ru95]). ¤

Theorem 3. CRm−mΩ(1)(n→ m) is not empty if and only if UOWHFs exist.
Formally, if some CR`i(ni → mi) is not empty, then UOWHFs exist. If

UOWHFs exist, then for any `(m) : N 7→ N, such that m− `(m) > mc for some

0 < c < 1, a non-empty class CR`(mi)(ni → mi) exists.

Proof. Since CR0(n→ m) ⊇ CR`(n→ m), the “only if” part is trivial.
Suppose UOWHFs exist. Take {hk}k∈K ∈ CR0(n → m). Then for any ` <

poly(n) we may define gk : {0, 1}
n+` 7→ {0, 1}m+` as

gk(x, y) = y||hk(x),

where |y| = ` and |x| = n. We claim that {gk}k∈K ∈ CR`(n+ `→ m+ `).
Indeed, if there is a collision gk(x0, y0) = gk(x1, y1), then y0 = y1 and

hk(x0) = hk(x1). Note that y0 is the flexible part of the input and x0 is the
part that the adversary commits to before he knows the key. The adversary
works poly-time in n+ `. Since ` < poly(n), the adversary’s running time is also
polynomial in n. Therefore the same adversary can be used to break UOWHF-
ness property of {hk}k∈K .

172 Ilya Mironov

Suppose we are given a family of UOWHFs {hik}i∈N,k∈K ∈ CR0(n
′
i → m′

i).
For every m′

i there is some m, such that mc/2 < m′
i < mc ≤ m − `(m). The

construction above with ` = m − m′
i < (2m′

i)
1/c < (2n′

i)
1/c = poly(n′

i) yields
a collection of functions from CR`(n

′
i + ` → m′

i + `) = CR`(n
′
i + ` → mi) ⊆

CR`(mi)(n
′
i + `→ mi). The last inclusion is because ` = m−m′

i > `(m) and by
Proposition 1. ¤

PSfrag replacements

CRHFs = CRn(n → m) ⊆ . . .

⊆ CRm−O(log m)(n → m) ⊆ . . . ⊆ CRm−mΩ(1)(n → m) ⊆ . . .

⊆ CR0(n → m) = UOWHFs

oracle separation

Fig. 3. Hierarchy of classes.

Theorems 2 and 3 show that there are two classes of complexity-theoretic
equivalence of classes CR`(n → m) (Figure 3). One contains CRHFs and all
CR`(n→ m) for ` ≥ m−O(log n), the other one spans classes between UOWHFs
and CR`(n → m) for ` < m − mΩ(1). The following note eliminates the gap
between them.

Note 2. The claim of Theorem 3 can be improved if we assume that n < poly(m)
and CR0(n → m) has “ideal” security Ω(2m) as in Proposition 2. With these
assumptions there is no gap between the two theorems and there are only two
classes of equivalence.

4 Optimality of the Shoup Construction

[BR97] gave an example of a UOWHF on which the two-round Merkle-Damg̊ard
construction fails. Since we want to build UOWHFs the same way we build
families of CRHFs, i.e., starting with a keyed function that has fixed-length in-
put, other constructions have to be studied. The most efficient among different
composition schemes that have appeared in the literature is the Shoup construc-
tion. We give an alternative proof of its correctness, which is technically simpler
than in [Sh00] and conceptually better matches our main result, the proof of its
optimality.

Hash Functions: From Merkle-Damg̊ard to Shoup 173

4.1 Shoup Construction

The Shoup construction (see Figure 4) can be viewed as an extended Merkle-
Damg̊ard construction, where the chaining variable is XORed with some mask
on each iteration. Because these masks are reused, the key length grows loga-
rithmically with the size of the message.

PSfrag replacements

x1 x2 x3 x4 x5 x6 x7

M0M0M0M0

M1M1

M2

hkhkhkhkhkhkhk ⊕⊕⊕⊕⊕⊕⊕IV
C0 S0 C1 S1 C2 S2 C3 S3 C4 S4 C5 S5 C6 S6 C7

Fig. 4. 7-round Shoup construction.

Formally, the r-round Shoup construction is an operator that takes function
hk : {0, 1}

n 7→ {0, 1}m, bit-vector M with length Lm > mblog rc, which is for-
matted as L masks M = (M0, . . . ,ML−1), and transforms it into a function
Sr,Mhk : {0, 1}

r·(n−m) 7→ {0, 1}m. This function is built according to this rule:
r-round Shoup construction
1. Input x formatted as (x1, . . . , xr) such that |x1| = · · · = |xr| = n−m.
2. Chaining variable C0 is initialized as IV.
3. For i = 1 to r let Ci = hk(Ci−1 ⊕Mν(i), xi), where the auxiliary function

ν(i) is the highest power of 2 that divides i.
4. Output of the function Sr,Mhk(x) is Cr.

We defer the proof of correctness of this construction to Section 4.3.

4.2 Optimality of the Shoup Construction

The Shoup construction achieves its short, compared to other constructions, key
length of the composite scheme by reusing the bit-masks. A legitimate question
is whether the masks can be reused even more. In this section we give a negative
answer to this question. We prove that the Shoup construction really reuses
masks as much as possible in the strongest sense.

Definition 2. A generalized r-round Shoup construction is the Shoup
construction as described in Section 4.1 but with function ν, which selects a

174 Ilya Mironov

mask to use on every iteration of the construction, being any function that
maps [1, . . . , r] to [0, . . . , L− 1]. Function ν is the schedule of the construction.
The construction is valid if it transforms any UOWHF family into a UOWHF
family.

The Shoup construction instantiates the function ν(i) = max{j : 2j |i}, so
L = blog rc+1. A schedule is optimal if L is minimal for a fixed r. The following
theorem says the Shoup scheduling is optimal for all r.

Theorem 4. For any valid generalized r-round Shoup construction r < 2L.

Proof. The proof consists of two steps. First, we show that any schedule of a
valid construction must be even-free (defined below). Second, we prove that any
schedule with r ≥ 2L is not even-free.

Definition 3 (even-freeness property). We say that a schedule ν is even-
free if for any a and b, such that 1 ≤ a ≤ b ≤ r, there is some 0 ≤ η < L, such
that the number of times ν(c) takes value η for a ≤ c ≤ b is odd. In other words,
there is no sub-interval that contains every mask an even number of times.

Lemma 1. Any valid schedule ν is even-free.

Proof. Suppose there is a non even-free schedule ν of some valid r-round general-
ized Shoup construction. We build a UOWHF family on which this construction
fails, thus contradicting validity of the construction.

Assume that gk : {0, 1}
n 7→ {0, 1}m is a UOWHF, 2m+ 2 < n and k ∈ K =

{0, 1}m. Of course, if UOWHFs do not exist, then every construction is valid
but the problem itself is moot. If we have some UOWHF family, by adding an
additional argument to its input that gets replicated to the output we can ensure
that 2m+ 2 < n. The size of the key space can be adjusted similarly. We define
function hk : {0, 1}

n 7→ {0, 1}2m+1 as follows:

hk(y, z, b, x) =







gk(y, z, b, x)||z||1 if x 6= 0l and z 6= k

gk(y, z, b, x)||k||1 if x = 0l and z 6= k

02m+1 if z = k,

where |y| = |z| = |k| = m, b is a bit and |x| = l = n− 2m− 1 > 1. As usual, we
omit the index i of the family of UOWHFs, assuming that the construction of
hk and the proof below apply uniformly to all functions of the family.

We claim that hk is a UOWHF. Indeed, a collision hk(y, z, x) = hk(y
′, z′, x′)

also yields a collision gk(y, z, x) = gk(y
′, z′, x′) unless z = k and z′ = k. Proba-

bility that the adversary hits z = k before he knows k is negligible.

If ν is not even-free, there is a sub-interval [a, b] that contains each mask
an even number of times. We exploit this property to find a collision with a
previously committed value.

Hash Functions: From Merkle-Damg̊ard to Shoup 175

The composite scheme takes as its input x = (x1, . . . , xr), where |xi| = l =
n− 2m− 1 for all i. We claim that the following x and x′ collide:

x = 0l|| . . . ||0l
︸ ︷︷ ︸

a times

|| 1l|| . . . ||1l
︸ ︷︷ ︸

r − a times

,

x′ = 0l|| . . . ||0l
︸ ︷︷ ︸

a − 1 times

||1l−10|| 1l|| . . . ||1l
︸ ︷︷ ︸

r − a times

.

Denote the input of hk on the ith iteration of the composite scheme by
(yi, zi, bi, xi) and (y

′
i, z

′
i, b

′
i, x

′
i) for the inputs x and x′ respectively. Format masks

Mi = (M
(1)
i ,M

(2)
i ,M

(3)
i), where |M

(1)
i | = |M

(2)
i | = m, |M

(3)
i | = 1. By definition

of hk we may compute za,. . . ,zb and z′
a,. . . ,z

′
b as follows:

za = k ⊕M
(2)
ν(a) z′

a = k ⊕M
(2)
ν(a)

za+1 = za ⊕M
(2)
ν(a+1) z′

a+1 = z′
a ⊕M

(2)
ν(a+1)

.

zb = zb−1 ⊕M
(2)
ν(b) z′

b = z′
b−1 ⊕M

(2)
ν(b).

Therefore,

zb = z′
b = k ⊕M

(2)
ν(a) ⊕M

(2)
ν(a+1) · · · ⊕M

(2)
ν(b).

Since every mask appears between a and b an even number of times, all masks
XOR themselves out and

zb = z′
b = k.

If Ci(x) and Ci(x
′) are the ith chaining variable of the composite scheme evalu-

ated on x and x′,

Cb(x) = hk(yb, k, bb, xb) = 0
2m+1,

Cb(x
′) = hk(y

′
b, k, b

′
b, x

′
b) = 0

2m+1

by the third case of the definition of hk.

Since x and x′ agree after their ath component, the output of the composite
scheme will be the same on both inputs. ¤(Lemma 1)

Lemma 2. If schedule is even-free, then r < 2L.

Proof. Assume the opposite. There is an even-free schedule ν with r ≥ 2L.

Let #a,b(i) be a function that counts the number of appearances of the ith

mask between ν(a) to ν(b) inclusive.

Define a sequence of bit-vectors di = (#1,i(0) mod 2, . . . ,#1,i(L−1) mod 2).
Each vector has length L. Because the schedule is even-free, none of these vectors
is (0, . . . , 0). Therefore, there are r ≥ 2L L-bit vectors and one of 2L possible

176 Ilya Mironov

values is not available. By the pigeonhole principle there are two equal vectors
da = db among them. Consider their difference.

db − da = (0, . . . , 0)

= ((#1,b(0)−#1,a(0)) mod 2, . . . , (#1,b(L− 1)−#1,a(L− 1)) mod 2)

= (#a+1,b(0) mod 2, . . . ,#a+1,b(L− 1) mod 2).

Because of the interval [a + 1, b] the schedule function is not even-free.
¤(Lemma 2)

From lemmas 1 and 2 the theorem follows. ¤

Note 3. It is instructive to see why the Shoup scheduling ν(i) = max{j : 2j |i}
is even-free. In any interval [a, b] there is a unique element c that maximizes ν.
Indeed, if there were two such elements c1 and c2, necessarily ν(c1) = ν(c2).
But then the element c = (c1 + c2)/2 would be divisible by a higher power of 2.
Existence of an element that appears only once, i.e., an odd number of times, in
every interval is enough for even-freeness.

Note 4. What if one uses addition modulo 2m instead of XOR to mingle a mask
and a chaining variable? If this operation is commutative and has an efficiently
computable inverse, then the proof goes through with minor modifications. Hav-
ing an inverse is required for our proof of the Shoup construction (below, Theo-
rem 5), but being commutative is not necessary.

4.3 Correctness of the Shoup Construction

In this section we give an alternative proof of the Shoup construction. It is
different from [Sh00] in presentation of the key reconstruction algorithm.

Theorem 5. If {hk}k∈K is a UOWHF, so is {S
r,Mhk}k∈K,|M |=m(blog rc+1) for

r < poly(n).

Proof. Suppose that there is an adversary A that finds a collision of Sr,Mhk with
a non-negligible probability over the key of the composite scheme. We build an
algorithm B that finds a collision in {hk}k∈K . Let Sj(x) = Cj−1 ⊕Mν(j)—first

m bits of the input of hk on the j
th iteration of the scheme on input x.

Algorithm B
1. Run A. A commits to some x = (x1, . . . , xr).
2. Choose randomly j from {1, . . . , r} and anm-bit string C ∈ {0, 1}m. Commit
to C||xj .

3. Receive a key k ∈ K.
4. Run the key reconstruction algorithm (described below) that will output M
such that Sj(x) = C.

5. Feed k and M to A.

Hash Functions: From Merkle-Damg̊ard to Shoup 177

6. If A finds a collision x′ = (x′
1, . . . , x

′
r), check if Sj(x)||xj 6= Sj(x

′)||x′
j and

hk(Sj(x)||xj) = hk(Sj(x
′)||x′

j). If so, output Sj(x
′)||x′

j that collides with
C||xj .

Suppose that the output of the key reconstruction algorithm on uniformly dis-
tributed C with fixed x, j and k also has the uniform distribution. Then the
probability that B finds a collision is 1/r of the success probability of A. Indeed,
if A finds a collision, there is at least one i ∈ {1, . . . , r} such that Si(x)||xi 6=
Si(x

′)||x′
i but hk(Si(x)||xi) = hk(Si(x

′)||x′
i) (consider the output of each it-

eration of the scheme going backward). This contradicts the assumption that
{hk}k∈K is a UOWHF. From this the claim of the theorem follows.

Now all we need is to show and prove the key reconstruction algorithm.
Key reconstruction algorithm

Input: x = (x1, . . . , xr), k ∈ K, C ∈ {0, 1}m.
Output: M = (M0, . . . ,ML−1), such that Sj(x) = C.
1. Label all masks M0, . . . ,ML−1 as “undefined.”
2. Repeat the following steps while j > 0. If j = 0, randomly define all unde-
fined masks and quit.

3. Let i = j − 2ν(j).
4. Pick D at random from {0, 1}m.
5. Randomly define all yet undefined masks from the listMν(i+1), . . . ,Mν(j−1).
6. If i = 0, let C0 = IV, otherwise let Ci = hk(D,xi). Compute Ci+1 =

hk(Mν(i+1) ⊕ Ci, xi+1),. . . ,Cj−1 = hk(Mν(j−1) ⊕ Cj−2, xj−1).
7. Let Mν(j) = Cj−1 ⊕ C.
8. Assign C ← D, j ← i and go to step 2.

First, note two invariants of the algorithm.
Invariant 1. ν(i) > ν(j).
Invariant 2. ν(j) > ν(l) for any i < l < j.

Both invariants follow from the fact that j ≡ 2ν(j) (mod 2ν(j)+1).
To prove the correctness of the algorithm we need to show that a mask is

never redefined. Masks are defined in three steps of the algorithm. In steps 2
and 5 only undefined masks are assigned random values. By Invariant 2 their
numbers are less than ν(j). In step 7 maskMν(j) is defined. Because ν(j) always
increases (by Invariant 1) and masks that have been defined have numbers less
than ν(j), before execution of this step Mν(j) was not defined.

Since Ci, . . . , Cj−1 computed in step 6 of the algorithm are indeed the values
of the corresponding chaining variables, Sj(x) = Cj−1⊕Mν(j) = Cj−1⊕Cj−1⊕
C = C as required. It completes our proof of correctness of the key reconstruction
algorithm.

As the last step toward the proof of the theorem we have to show that the bit-
vectorsM output by the algorithm have the uniform distribution. Write down all
the “decisions” (strings chosen at random) done during the execution of the al-
gorithm (including its input C). It is a list of type C, Sj1(x),Mν(j2), . . . ,Mν(j3),
Sj4(x), Mν(j5),. . . ,Mν(j6),. . . that contains exactly L + 1 m-bit string (because
all strings are equally long, and every mask must be defined in steps 2, 5, or 7).

178 Ilya Mironov

Since the algorithm never stops without yielding a result, there is a mapping
from the set of these strings into the set of possible outputs, which has the same
cardinality. This mapping is an injection, because a preimage of an output value
can be uniquely determined (it suffices to compute Sj(x) for all corresponding
j given M,k and x, which is trivial). Therefore, if the “decisions” are uniformly
distributed, so are the outputs of the algorithm. ¤

Shoup proved the security of the construction above. Our proof makes the
key reconstruction algorithm more explicit and one-pass, thus giving a more
efficient reduction, and requires less from the function ν (we do not need Fact
2 in [Sh00]). The operation performed by the key reconstruction algorithm in
step 2 brings in Theorem 5. The mask Mν(i) for i = j − 2ν(j) is the only mask
that appears an odd number of times betweenMν(j) and its previous appearance
(if there exists one) at Mν(j−2·2ν(j)) =Mν(j).

We stress that our result of optimality of the Shoup scheduling does not rule
out existence of a composite scheme with a shorter key. Even more important,
our result implies that there must be at least 1+blog rc different masks, but says
nothing about their independence. However, the proof of validity of the Shoup
construction does need full independence of masks. There is an apparent gap
between these two proofs.

We may try to reduce the key length by letting the masks be the output of a
pseudo-random generator initialized with a short seed. Unfortunately, once the
seed is exposed we cannot suppose anything about the output of the generator
unless we resort to the random-oracle model. But in this model one could assume
existence of CRHFs in the first place and our construction would be of no use
in this world.

5 Conclusion and Open Problem

Recent attacks on MD4, MD5 and a flaw in the first version of SHA demon-
strate that practical CRHFs are hard to construct. The oracle separation result
due to [Si98] backed up this empirical fact by proving that CRHFs cannot be
constructed from one-way permutations. Though UOWHFs, an alternative to
CRHFs, have been known for years, their deployment in practical cryptosys-
tems was hindered by lack of efficient composite schemes. While a family of
CRHFs can be based on a single compression function, similar constructions
for UOWHFs can only yield families of functions with variable key length. A
variable key-length hash function stands out from all cryptographic primitives
we use in practice and this annoying property can propagate to higher levels of
construction (see [SS00] for an example).

We may approach this problem from two directions. First, it is possible that
there exists a class of functions that are weaker than CRHFs, at least as strong
as UOWHFs and for which an efficient composite scheme exists. We introduce
a continuum of function classes that lie between CRHFs and UOWHFs and

Hash Functions: From Merkle-Damg̊ard to Shoup 179

characterized by the degree of freedom the adversary has in choosing one of the
colliding elements. From the complexity-theoretic point of view the hierarchy
almost collapses to two large classes. The Merkle-Damg̊ard construction, which
yields fixed length-key families of functions, applies to one class of functions and
not to the other.

Another approach is to improve existing composite schemes for UOWHFs.
We take the Shoup construction, which is the most efficient (key length-wise),
and prove that the scheme is optimal in respect to its mask scheduling. We also
give a simplified proof of the Shoup construction.

An open problem is whether there exists a lower bound on the key length of a
family of UOWHFs built via a black-box construction out of one-way functions.
The upper bound given by numerous schemes from [BR97,Sh00] is O(log n),
where n is the length of the input to a particular function. Such a lower bound
would complement the line of research of [KST99,GT00] on efficiency of black-
box constructions for UOWHFs.

6 Acknowledgement

The author is grateful to Victor Shoup for motivational discussions on this prob-
lem and Michael Waidner for his hospitality rendered through IBM Zurich. Ad-
ditional thanks go to Dan Boneh and anonymous referees for their valuable
comments.

References

[B82] M. Blum, “Coin flipping by telephone,” CRYPTO 81, pp. 11–15, 1981.
[BR97] M. Bellare, P. Rogaway, “Collision-resistant hashing: towards making

UOWHFs practical,” Proc. of CRYPTO 97, pp. 470–484, Full version of this
paper is available from http://www-cse.ucsd.edu/users/mihir/, 1997.

[D89] I. Damg̊ard, “A design principle for hash functions,” Proc. of CRYPTO 89,
pp. 416–427, 1989.

[GT00] R. Gennaro, L. Trevisan, “Lower bounds on the efficiency of generic crypto-
graphic constructions,” Proc. of FOCS’00, pp. 305–313, 2000.

[HILL99] J. Hastad, R. Impagliazzo, L. Levin, M. Luby,“A pseudo-random generator
from any one-way function,” SIAM J. Computing, 28(4):1364–1396, 1999.

[KST99] J.H. Kim, D. Simon, P. Tetali, “Limits on the efficiency of one-way
permutation-based hash functions,” Proc. of FOCS’99, pp. 535–542, 1999.

[LM92] X. Lai, J. Massey, “Hash function based on block ciphers,” Proc. of EURO-
CRYPT 92, pp. 55–70, 1992.

[M89] R. Merkle, “One way hash functions and DES,” Proc. of CRYPTO 89,
pp. 428–446, 1989.

[N91] M. Naor, “Bit commitment using pseudorandomness,” J. Cryptology, 4(2):
151–158, 1991.

[NY89] M. Naor, M. Yung, “Universal one-way hash functions and their cryptographic
applications,” Proc. of STOC’89, pp. 33–43, 1989.

[Ro90] J. Rompel, “One-way functions are necessary and sufficient for secure signa-
tures,” Proc. of STOC’90, pp. 387–394, 1990.

180 Ilya Mironov

[Ru95] A. Russell, “Necessary and sufficient condtions for collision-free hashing,” J.
of Cryptology 8(2), pp. 87–100, 1995.

[SS00] T. Schweinberger, V. Shoup, “ACE: The Advanced Cryptographic Engine,”
Manuscript. Available from http://www.shoup.net, 2000.

[Sh00] V. Shoup, “A composite theorem for universal one-way hash functions,” Proc.
of EUROCRYPT 2000, pp. 445–452, 2000.

[Si98] D. Simon, “Finding collisions on a one-way street: Can secure hash functions
be based on general assumptions?” Proc. of EUROCRYPT 98, pp. 334-345,
1998.

[ZMI90] Y. Zheng, T. Matsumoto, H. Imai, “Structural properties of one-way hash
functions,” Proc. of Crypto 90, pp. 285–302, 1990.

