
Min-Round Resettable Zero-Knowledge

In The Public-Key Model

Silvio Micali and Leonid Reyzin

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139
reyzin@theory.lcs.mit.edu

http://theory.lcs.mit.edu/~reyzin

Abstract. In STOC 2000, Canetti, Goldreich, Goldwasser, and Micali
put forward the strongest notion of zero-knowledge to date, resettable
zero-knowledge (RZK) and implemented it in constant rounds in a new
model, where the verifier simply has a public key registered before any
interaction with the prover.

To achieve ultimate round efficiency, we advocate a slightly stronger
model. Informally, we show that, as long as the honest verifier does not
use a given public key more than a fixed-polynomial number of times,
there exist 3-round (which we prove optimal) RZK protocols for all of
NP.

1 Introduction

The Notion of Resettable Zero-Knowledge. A zero-knowledge (ZK)
proof [GMR89], is a proof that conveys nothing but the verity of a given state-
ment. As put forward by Canetti, Goldreich, Goldwasser, and Micali [CGGM00],
resettable zero-knowledge (RZK) is the strongest form of zero-knowledge known
to date. In essence, an RZK proof is a proof that remains ZK even if a polynomial-
time verifier can force the prover to execute the proof multiple times with the
same coin tosses. More specifically,

– The verifier can reset the prover. In each execution, the verifier can choose
whether the prover should execute the protocol with a new random tape or
with one of the tapes previously used.

– The verifier can arbitrarily interleave executions. The verifier can always
start (in particular, in a recursive way) new executions in the middle of old
ones, and resume the old ones whenever it wants.

– The prover is oblivious. As far as it is concerned, the prover is always exe-
cuting a single instance of the protocol.

Resettable ZK is a strengthening of Dwork, Naor and Sahai’s [DNS98] notion
of concurrent ZK (CZK). In essence, in a CZK protocol, a malicious verifier acts

372 Silvio Micali and Leonid Reyzin

as in an RZK protocol, except that it lacks the power of resetting the prover’s
random tapes.

Constructing RZK protocols. Perhaps surprisingly, it is possible to im-
plement such a strong notion: RZK proofs for NP-complete languages are con-
structed in [CGGM00] under standard complexity assumptions. Their construc-
tion is concretely obtained by properly modifying the CZK protocol of Richard-
son and Kilian [RK99]. Because this underlying CZK protocol is not constant-
round, neither is the resulting RZK protocol. (The minimum known number of
rounds for implementing the protocol of [RK99] is polylogarithmic in the security
parameter, as shown by Kilian and Petrank [KP00].)
Unfortunately, it may not be possible to obtain a constant-round RZK pro-

tocol: at least in the black-box model, Canetti, Kilian, Petrank and Rosen
[CKPR01] recently proved that no constant-round protocol exists even for CZK.
However, [CGGM00] also put forward an appealingly simple model, which we
call the bare public-key (BPK) model, and provide a 5-round1 RZK argument
for any NP language in this model.
Let us now quickly recall what their model is.

The Bare Public-Key Model. An interactive proof system in the BPK
model simply assumes that the verifier V has a public key, PK , that is registered
before any interaction with the prover begins. No special protocol needs to be
run to publish PK , and no authority needs to check any property of PK . It
suffices for PK to be a string known to the prover, and chosen by the verifier
prior to any interaction with the prover.
The BPK model is very simple. In fact, it is a weaker version of the frequently

used public-key infrastructure (PKI) model, which underlies any public-key cryp-
tosystem or digital signature scheme. In the PKI case, a secure association be-
tween a key and its owner is crucial, while in the BPK case no such association
is required. The single security requirement of the BPK model is that a bounded
number of keys (chosen beforehand) are “attributable” to a given user.2

We have recently pointed out in [MR01] that the BPK model has four distinct
notions of soundness, depending on the power enjoyed by a malicious prover P∗:
informally,

1. one-time soundness, arising when P∗ is allowed a single interaction with V
per theorem statement;

2. sequential soundness, arising when P∗ is allowed multiple but sequential
interactions with V;

1 Their paper actually presents two related constructions: (1) a 4-round protocol with
an additional 3-round preprocessing stage with a trusted third party, and (2) an
8-round protocol without such preprocessing. Their constructions can be easily mod-
ified to yield the 5-round protocol attributed above.

2 Indeed, having a prover P work with an incorrect public key for a verifier V does
not affect soundness nor resettable zero-knowledgeness; at most, it may affect com-
pleteness. (Working with an incorrect key may only occur when an active adversary
is present— in which case, strictly speaking, completeness does not even apply: this
fragile property only holds when all are honest.)

Min-Round Resettable Zero-Knowledge In The Public-Key Model 373

3. concurrent soundness, arising when P∗ is allowed multiple interleaved inter-
actions with the same V; and

4. resettable soundness, arising when P∗ is allowed to reset V with the same
random tape and interact with it concurrently.

As we have already said, the BPK model permits constant-round RZK pro-
tocols for all of NP. Indeed, the CGGM protocol is 5-round and sequentially
sound, and we have recently constructed a 4-round one that also is sequentially
sound [MR01]. To achieve ultimate round efficiency, we advocate strengthening
the BPK model a bit.

The Upperbounded Public-Key Model. How many public keys can a veri-
fier establish before it interacts with the prover? Clearly, no more than a polyno-
mial (in the security parameter) number of keys. Though innocent-looking, this
bound is a source of great power for the BPK model: it allows for the existence
of constant-round black-box RZK, which is impossible in the standard model.
How many times can a verifier use a given public key? Of course, at most a

polynomial (in the security parameter) number of times. Perhaps surprisingly, we
show that if such an innocent-looking polynomial upperbound U is made explicit
a priori, then we can further increase the round efficiency of RZK protocols.
In our upperbounded public-key (UPK) model, the honest verifier is allowed

to fix a polynomial upperbound, U , on the number of times a public key will be
used; keep track, via a counter, of how many times the key has been used; and
refuse to participate once the counter has reached the upperbound.
Let us now make the following remarks about the UPK model:

– In the RZK setting, the “strong party” is the verifier (who controls quite
dramatically the prover’s executions). Such a strong party, therefore, should
have no problems in keeping a counter in order to save precious rounds of
interaction.

– The UPK model does not assume that the prover knows the current value of
the verifier’s counter. (Guaranteeing the accuracy of such knowledge would
de facto require public keys that “change over time.”)

– While our RZK protocol satisfies interesting efficiency constraints with re-
spect to U , we believe that these should be considered properties of our
specific protocol rather than requirements of the UPK model.
(For instance, our public key length is independent of U , while the secret
key length and each execution of the protocol depend on U only logarith-
mically. Only the verifier’s key-generation phase depends linearly on U —a
dependency that hopefully will be improved by subsequent protocols.)

– The UPK model is somewhat similar to the one originally envisaged in
[GMR88] for secure digital signatures, where the signer posts an explicit
upperbound on the number of signatures he will produce relative to a given
public key, and keeps track of the number of signatures produced so far.
(The purpose and use of our upperbound, however, are totally different.)

– While sufficient for constant-round implementation of the stronger RZK no-
tion, the UPK model is perhaps simpler than those of [DS98] (which uses

374 Silvio Micali and Leonid Reyzin

“timing assumptions”) and that of [Dam00] (which uses trusted third parties
to choose some system parameters) for efficient implementation of CZK.

3-Round RZK in the UPK Model. Because the powerful RZK notion seems
to require substantial interaction, it is important to establish how many rounds a
reasonable model can save. As we have already said, the BPK model can reduce
the number of rounds to four [MR01]. We show that the UPK model can do
even better, reducing the number of rounds to the minimum and, at the same
time, increasing soundness:

Main Theorem: In the UPK model there exist 3-round concurrently sound
RZK arguments for any language in NP, assuming collision-resistant hashing
and the subexponential hardness of discrete logarithm and integer factoriza-
tion.3

Round-Optimality of the UPK Model. Our result is optimal (in either
the UPK or the BPK model), at least for black-box RZK. This fact is evident
from the following argument. Assume that a 2-round RZK (or even just ZK!)
protocol (P, V) existed, in the BPK or the UPK model, for a language L /∈ BPP.
Then one could construct from it a 3-round ZK protocol (P ′, V ′) by adding an
initial round in which the verifier sends its public key PK to the prover.4 Protocol
(P ′, V ′) would thus contradict the result of [GK96], which states that no 3-round,
black-box ZK proofs or arguments exist for non-trivial languages.

Necessity of the UPK Model. In the cited [MR01], we also show that it is
impossible in the BPK model to achieve 3-round ZK with concurrent soundness.
Thus, to achieve 3-round RZK, one needs either to come up with a protocol that
is sequentially (but not concurrently) sound, or to enhance the model in some
reasonable fashion. The former approach seems quite elusive, and whether such
a protocol exists remains an open problem. Our solution is an example of the
latter approach.

2 Resettable Zero-Knowledge in the UPK Model

In this section, we define RZK in the UPK model. Let us refer the reader to the
original exposition of [CGGM00] for motivation and intuition of RZK, which we
do not provide here due to space constraints. Here we focus on:

3 We can replace the integer factorization assumption with the more general as-
sumption that subexponentially secure dense public-key cryptosystems [DDP00] and
subexponentially secure certified trapdoor permutations [FLS99] exist. Or we can
replace both the DL and the factorization assumptions with the assumption that
decision Diffie-Hellman is subexponentially hard.

4 Note that the so constructed (P ′, V ′) will not be RZK (else, being 4-round, it would
contradict the recent lowerbound of [CKPR01]—and indeed even the older lower-
bound of [KPR98]). However, it will still be ZK. To see this, observe that the old
black-box simulator, designed to handle very powerful resetting malicious verifier
(who can choose from among multiple public keys in the public file) can be also
used with the weaker standard verifier (who simply uses only a single public key
transmitted in the first message).

Min-Round Resettable Zero-Knowledge In The Public-Key Model 375

– RZK arguments (rather than proofs). That is, we assume that the prover is
polynomial-time and we let soundness hold in a computational (rather than
probabilistic) sense. Our protocol in Section 4 and the public key protocol
of [CGGM00] are RZK arguments.

– Black-box zero-knowledgeness. That is, we demand that there exist a single
simulator that works for all malicious verifiers V∗ (given oracle access to V∗).
This is a stronger notion, and is indeed the one we satisfy in Section 4.

The Players

Let

– A public file F be a polynomial-size collection of records (id ,PK id), where
id is a string identifying a verifier, and PK id is its (alleged) public key.

– A prover P (for a language L) be an interactive deterministic polynomial-
time TM that is given as inputs (1) a security parameter 1n, (2) a n-bit
string x ∈ L, (3) an auxiliary input y, (4) a public file F , (5) a verifier
identity id , and (6) a random tape ω.
For simplicity of exposition, one can view P as a non-interactive TM that is
given, as an additional input, the entire history of the messages already ex-
changed in the interaction, and outputs the next message. Fixing all inputs,
this view allows one to think of P(1n, x, y, F, id , ω) as a simple deterministic
oracle, which is helpful in defining the notion of RZK below.

— A U -bounded (honest) verifier V, for a positive polynomial U , be an interac-
tive polynomial-time TM that, on first input a security parameter 1n, works
in U(n) + 1 stages, with the ability of keeping state information. In the first
key generation stage, on input a security parameter 1n, V outputs a pub-
lic key PK and remembers the corresponding secret key SK . In subsequent
U(n) verification stages, on input an n-bit string x, V performs an interactive
protocol with a prover.

— An (s, t)-resetting verifier V∗, for any two positive polynomials t and s, be
a TM that runs in two stages so that, on first input 1n,

1. In stage 1, V∗ receives s(n) values x1, . . . , xs(n) ∈ L of length n each,
and outputs an arbitrary public file F and a list of s(n) identities
id1, . . . , ids(n).

2. In stage 2, V∗ starts in the final configuration of stage 1, is given oracle
access to s(n)3 provers, and then outputs whatever it desires (in par-
ticular, it can output its “view” of the interactions, which includes its
random string).

3. The total number of steps of V∗ in both stages is at most t(n).

— A black-box simulator M be a polynomial-time machine that is given oracle
access to V∗. By this we mean that it can run V∗ multiple times, each time
picking V∗’s inputs, random tape and (because V∗ makes oracle queries itself)
the answers to all of V∗’s queries.M is also given s(n) values x1, . . . , xs(n) ∈ L
as input.

376 Silvio Micali and Leonid Reyzin

The Definitions

To define RZK in the UPK model, we must define (1) completeness, (2) sound-
ness and (3) resettable zero-knowledgeness proper. For lack of space, we omit
a formal discussion of completeness in the UPK model. (This property is the
usual one for interactive proofs, except that it has to hold only for the first U(n)
interactions, and to assume that P gets the correct public key for V.) For the
same reason, we omit a formal discussion of concurrent soundness, the type of
soundness actually enjoyed by our protocol and informally specified in our intro-
duction. (The reader is referred to [MR01] for formal details.) The third notion
is the same as in [CGGM00]. Nonetheless, we find it useful to recall it below.

Definition 1. (P,V) is black-box resettable zero-knowledge for an NP-language
L if there exists a simulator M such that for every pair of positive polynomials
(s, t), for every (s, t)-resetting verifier V∗, for every x1, . . . , xs(n) ∈ L and their
corresponding NP-witnesses y1, . . . , ys(n), the following probability distributions
are indistinguishable (in time polynomial in n):

1. The output of V∗ obtained after choosing ω1, . . . , ωs(n) uniformly at random,
running the first stage of V∗ to obtain F , and then letting V∗ interact in its
second stage with the following s(n)3 instances of P: P(xi, yi, F, idk, ωj) for
1 ≤ i, j, k ≤ s(n).

2. The output of M with input x1, . . . , xs(n) interacting with V
∗ .

3 Tools

Let us quickly recall the notation, the definitions and the constructions that we
utilize in our protocol.

3.1 Probabilistic Notation

(The following is taken verbatim from [BDMP91] and [GMR88].) If A(·) is an
algorithm, then for any input x, the notation “A(x)” refers to the probability
space that assigns to the string σ the probability that A, on input x, outputs σ.

If S is a probability space, then “x
R
← S” denotes the algorithm which assigns

to x an element randomly selected according to S. If F is a finite set, then the

notation “x
R
← F” denotes the algorithm that chooses x uniformly from F .

If p is a predicate, the notation PROB[x
R
← S; y

R
← T ; · · · : p(x, y, · · ·)] de-

notes the probability that p(x, y, · · ·) will be true after the ordered execution of

the algorithms x
R
← S; y

R
← T ; · · ·. The notation [x

R
← S; y

R
← T ; · · · : (x, y, · · ·)]

denotes the probability space over {(x, y, · · ·)} generated by the ordered execu-

tion of the algorithms x
R
← S, y

R
← T, · · ·.

Min-Round Resettable Zero-Knowledge In The Public-Key Model 377

3.2 Trapdoor Commitment Schemes

In this section we present trapdoor commitment schemes that are secure against
subexponentially strong adversaries (satisfying an additional key-verification
property).5

Informally, a trapdoor commitment scheme consists of a quintuple of algo-
rithms. Algorithm TCGen generates a pair of matching public and secret keys.
Algorithm TCCom takes two inputs, a value v to be committed to and a public
key, and outputs a pair, (c, d), of commitment and decommitment values. Algo-
rithm TCVer takes the public key and c, v, d and checks whether c was indeed a
commitment to v.
What makes the commitment computationally binding is that without knowl-

edge of the secret key, it is computationally hard to come up with a single com-
mitment c and two different decommitments d1 and d2 for two different values
v1 and v2 such that TCVer would accept both c, v1, d1 and c, v2, d2. What makes
it perfectly secret is that the value c yields no information about the value v.
Moreover, this has to hold even if the public key is chosen adversarially. Thus,
there has to be an algorithm TCKeyVer that takes a public key as input and ver-
ifies whether the resulting commitment scheme is indeed perfectly secret. (More
generally, TCKeyVer can be an interactive protocol between the committer and
the key generator, rather than an algorithm; however, for our application, the
more restricted view suffices).
Perfect secrecy ensures that, information-theoretically, any commitment c

can be decommitted arbitrarily: for any given commitment c to a value v1,
and any value v2, there exists d2 such that TCVer accepts c, v2, d2 and the
public key (indeed, if for some v2 such d2 did not exist, then c would leak
information about the actual committed value v1). The trapdoor property makes
this assurance computational: knowing the secret key enables one to decommit
arbitrarily through the use of the TCFake algorithm.

Definition 2. A Trapdoor Commitment Scheme (TC) is a quintuple of prob-
abilistic polynomial-time algorithms TCGen,TCCom,TCVer,TCKeyVer and
TCFake, such that

1. Completeness. ∀n, ∀v,

PROB[(TCPK ,TCSK)
R
← TCGen(1n) ; (c, d)

R
← TCCom(TCPK , v) :

TCKeyVer(TCPK , 1n) = TCVer(TCPK , c, v, d) = YES] = 1

2. Computational Soundness. ∃ α > 0 such that for all sufficiently large n and
for all 2n

α

-gate adversaries ADV

PROB[(TCPK ,TCSK)
R
← TCGen(1n) ;

(c, v1, v2, d1, d2)
R
← ADV(1n,TCPK) :

TCVer(TCPK , c, v1, d1) = YES and
TCVer(TCPK , c, v2, d2) = YES and v1 6= v2] < 2

−nα

We call α the soundness constant.
5 We follow a similar discussion in [CGGM00] almost verbatim.

378 Silvio Micali and Leonid Reyzin

3. Perfect Secrecy. ∀ TCPK such that TCKeyVer(TCPK , 1n) = YES and
∀v1, v2 of equal length, the following two probability distributions are identi-
cal:

[(c1, d1)
R
← TCCom(TCPK , v1) : c1] and

[(c2, d2)
R
← TCCom(TCPK , v2) : c2]

4. Trapdoorness. ∀ (TCPK ,TCSK) ∈ {TCGen(1n)}, ∀v1, v2 of equal length
the following two probability distributions are identical:

[(c, d1)
R
← TCCom(TCPK , v1) ;

d′2
R
← TCFake(TCPK ,TCSK , c, v1, d1, v2) : (c, d

′
2)] and

[(c, d2)
R
← TCCom(TCPK , v2) : (c, d2)]

(In particular, the above states that faked commitments are cor-

rect: indeed, d′2
R
← TCFake(TCPK ,TCSK , c, v1, d1, v2) implies that

TCVer(TCPK , c, v2, d
′
2) = YES)

In this paper, we will also require that the relation (TCPK ,TCSK) be
polynomial-time; this is easy to satisfy by simply including the random string
used in key generation into the secret key.

Such commitment schemes can be constructed, in particular, based on a
subexponentially strong variant of the Discrete Logarithm assumption. We refer
the reader to [BCC88] (where, in Section 6.1.2, it is called a DL-based “chameleon
blob”) for the construction.

3.3 Hash-Based Commitment Schemes

We also have a need of non-trapdoor, non-interactive, computationally-binding
commitment schemes (which, unlike trapdoor commitments, need not be se-
cure against subexponentially strong adversaries). Because of the absence of the
trapdoor requirement, these simpler commitment schemes can be implemented
more efficiently if one replaces perfect secrecy by the essentially equally power-
ful property of statistical secrecy (i.e., even with infinite time one can get only a
statistically negligible advantage in distinguishing the commitments of any two
different values). In particular [DPP97,HM96] show how to commit to any value
by just one evaluation of a collision-free hash function H : {0, 1}∗ → {0, 1}k. To
differentiate trapdoor commitments from these simpler ones, we shall call them
hash-based commitments.
Though the trapdoor property does not hold, we still insist that, given any

commitment and any value, it is possible in time 2k to decommit to that value.

Definition 3. A Hash-Based Commitment Scheme (HC) is a pair of proba-
bilistic polynomial-time algorithms HCCom,HCVer, along with the algorithm
HCFake that runs in time 2kpoly when its first input is k and poly is some
polynomial in the size of its input, such that

Min-Round Resettable Zero-Knowledge In The Public-Key Model 379

1. Completeness. ∀k, ∀v,

PROB[(c, d)
R
← HCCom(1k, v) : HCVer(1k, c, v, d) = YES] = 1

2. Computational Soundness. For all probabilistic polynomial-time machines
ADV, and all sufficiently large k,

PROB[(c, v1, v2, d1, d2)
R
← ADV(1k) :

v1 6= v2 and HCVer(1
k, c, v1, d1) = YES = HCVer(1

k, c, v2, d2)]

is negligible in k.
3. Statistical Secrecy. ∀v1, v2 of equal length, the statistical difference between
the following two probability distribution is negligible in k:

[(c1, d1)
R
← HCCom(1k, v1) : c1] and [(c2, d2)

R
← HCCom(1k, v2) : c2]

4. Breakability. ∀v1, v2 of equal length, the statistical difference between the fol-
lowing two probability distribution is negligible in k:

[(c, d1)
R
← HCCom(1k, v1) ; d

′
2

R
← HCFake(1k, c, v1, d1, v2) : (c, d

′
2)] and

[(c, d2)
R
← HCCom(1k, v2) : (c, d2)]

We refer the reader to [DPP97,HM96] for the constructions of such schemes,
which are based on the assumption that collisions-resistant hash functions exist.

3.4 Non-Interactive Zero-Knowledge Proofs of Knowledge

Non-interactive zero-knowledge (NIZK) proofs for any language L ∈ NP were
put forward and exemplified in [BFM88,BDMP91]. Ordinary ZK proofs rely on
interaction. NIZK proofs replace interaction with a random shared string, σ,
that enters the view of the verifier that a simulator must reproduce. Whenever
the security parameter is 1n, σ’s length is NIσLen(n), where NIσLen is a fixed,
positive polynomial.
Let us quickly recall their definition, modified for polynomial-time provers

and security against subexponentially strong adversaries.

Definition 4. Let non-interactive prover NIP and non-interactive verifier NIV
be two probabilistic polynomial-time algorithms, and let NIσLen be a positive
polynomial. We say that (NIP,NIV) is a NIZK argument system for an NP-
language L if

1. Completeness. ∀ x ∈ L of length n, σ of length NIσLen(n), and NP-witness
y for x,

PROB[Π
R
← NIP(σ, x, y) : NIV(σ, x,Π) = YES] = 1.

2. Soundness. ∀ x /∈ L of length n,

PROB[σ
R
← {0, 1}NIσLen(n) : ∃ Π s. t. NIV(σ, x,Π) = YES]

is negligible in n.

380 Silvio Micali and Leonid Reyzin

3. Zero-Knowledgeness. ∃ α > 0 and a probabilistic polynomial-time simulator
NIS such that, ∀ sufficiently large n, ∀ x of length n and NP-witness y
for x, the following two distributions are indistinguishable by any 2n

α

-gate
adversary:

[(σ′, Π ′)
R
← NIS(x) : (σ′, Π ′)] and

[σ
R
← {0, 1}NIσLen(n) ; Π

R
← NIP(σ, x, y) : (σ,Π)]

We call α the zero-knowledgeness constant.

In [DP92], De Santis and Persiano propose to add a proof of knowledge prop-
erty to NIZK. Let R ⊆ {0, 1}∗×{0, 1}∗ be a polynomial-time relation (i.e., given
a pair of strings (x, y), it is possible to check in time polynomial in |x| whether
(x, y) ∈ R). L be the NP language corresponding to R (L = {x : ∃ y s.t. (x, y) ∈
R}). Let (NIP,NIV) be a NIZK proof system for L. An extractor is a proba-
bilistic polynomial-time TM that runs in two stages: in stage one, on input 1n,
it outputs a string σ of length NIσLen(n) (and saves any information it wants
to use in stage two); in stage two, on input x of length n and a proof Π for x
relative to shared string σ, it tries to find a witness y for x.

Definition 5. An NIZK argument (NIP,NIV) is a NIZKPK if there exists an
extractor NIExt = (NIExt1,NIExt2) such that, for all probabilistic polynomial-
time malicious provers NIP∗, for all constants a > 0, for all sufficiently large n
and for all x,

PROB [(σ, state) = NIExt1(1
n) ; Π = NIP∗(σ, x) ;

y = NIExt2(state, x,Π) : (x, y) ∈ R] ≥ pn,x(1− n−a),

where pn,x = PROB[σ
R
← {0, 1}n;Π = NIP∗(σ, x) : NIV(σ, x,Π) = 1].

The authors of [DP92] show that NIZKPKs exist for all polynomial-time re-
lations under the RSA assumption. Furthermore, the results of [DDP00] (com-
bined with those of [FLS99]) show the same under more general assumptions:
that dense public-key cryptosystems and certified trapdoor permutations exist.
They also present constructions secure under the specific assumptions of factor-
ing Blum integers or decision Diffie-Hellman. Because we need NIZKPKs to be
secure against subexponentially strong adversaries, we need subexponentially
strong versions of these assumptions. We refer the reader to these papers for
details.

3.5 Additional Basic Tools

We also use two basic and commonly used tools, whose definitions are recalled in
the appendix. The first is a Merkle tree [Mer89], which can be constructed based
on a collision-resistant hash function. The second is a subexponentially-strong
pseudorandom function [GGM86], i.e., one that is secure against adversaries of
size 2n

α

(such α is called the pseudorandomness constant). It can be constructed
based on subexponentially strong one-way functions [HILL99].

Min-Round Resettable Zero-Knowledge In The Public-Key Model 381

4 Our Construction

Why the Obvious Solution Does Not Work. Before we begin, let us
demonstrate that our goal cannot be more easily achieved by the following sim-
pler construction.
Let cmax = U(n) be the upperbound on the number of uses of the verifier’s

public key (i.e., the max value for the verifier’s counter). Take a four-round ZK
protocol, and have the verifier post cmax independently generated first-round
messages in its public key. Then execution number c simply uses first-round
message number c appearing in the public key, and performs the remaining
three rounds of the protocol as before.
The above construction does not work, because the prover does not know the

real value c of the verifier’s counter. This enables a malicious verifier to choose
the value of c after it sees the prover’s first message. Thus, if such a verifier
resets the prover while varying c, it will typically gain knowledge. (Typically, in
a 4-round ZK protocol, the verifier commits to a question without revealing it,
the prover sends a first message, the verifier asks the question, and the prover
answers it. However, if the prover were to answer two different questions relative
to the same first message, then zero-knowledgeness disappears. Now, in the above
construction, varying c enables the verifier to ask different questions.)

High-Level Description. As in the CGGM protocol, we use the NP-complete
language of graph 3-colorability and the parallel repetition of the protocol of
[GMW91] as our starting point. Thus, in the first round, P commits to a number
of random recolorings of a graph G, in the second round V requests to reveal
the colors of one edge for each committed recoloring, and in the third round P
opens the relevant commitments.
To allow the RZK simulator to work, our protocol uses trapdoor commitment

schemes as in many prior ZK protocols (e.g., the RZK one of [CGGM00], the
CZK one of [DNS98], and the ZK one of [FS89]). That is, V’s public key contains
a key for a trapdoor commitment scheme, and P’s first-round commitments with
respect to that public key. If the simulator knows the trapdoor, then it can open
the commitments any way it needs in the the third round.
To ensure that the simulator knows the trapdoor, the CGGM protocol uses

a three-round proof-of-knowledge subprotocol, with V proving to P knowledge
of the trapdoor. This requires V to send two messages to P. Because we have a
total of only three rounds, we cannot use such a subprotocol—in three rounds
V only sends one message to P. We therefore use non-interactive ZK proofs of
knowledge. This, of course, requires P and V to agree on a shared random string
σ.
It is because of the string σ that we cannot use the BPK model directly, and

have to strengthen it with a counter. Let cmax = U(n) be the bound on the
number of times public key is used. During key generation, V generates cmax
random strings σ1, . . . , σcmax , and commits to each one of them using hash-
based commitments (to make the public key length independent of cmax , the
resulting commitments are then put into a Merkle tree). In its first message,

382 Silvio Micali and Leonid Reyzin

P sends a fresh random string σP , and in its message V decommits σc , where
c is the current counter value and provides the NIZKPK proof with respect to
σ = σP ⊕ σc .
The RZK simulator, after seeing the value of σc can rewind the verifier and

choose σP so that σ = σP ⊕ σc allows it to extract the trapdoor from the
NIZKPK proof. Of course, there is nothing to prevent a malicious verifier V∗

from choosing a value of c after seeing σP ; but because the number of choices
for V∗ is only polynomial, the simulator has an inverse polynomial probability
of guessing c correctly.
One question still remains unresolved: how to ensure that a malicious verifier

V∗ does not ask P multiple different queries for the same recoloring of the graph?
If V∗ resets P, then it will get the same committed recolorings in the first round;
if it can then ask a different set of queries, then it gain a lot of information
about the coloring of the graph (eventually even recovering the entire coloring).
To prevent this, the CGGM protocol makes the verifier commit to its queries
before it receives any information from P. Our protocol, however, cannot afford
to do that, because we only have three rounds. Instead, during key generation
the verifier commits (using hash-based commitments) to a seed PRFKey for
a pseudorandom function PRF, and adds the commitment to the public key.
The verifier’s queries are then computed using PRF(PRFKey , ·) applied to the
relevant information received from P in the first round and the counter value c.
To prove to P that they are indeed computed correctly, the verifier has to include
in its NIZKPK proofs of knowledge of PRFKey that leads to such queries and
knowledge of the decommitment to PRFKey .

A Few More Technical Details. In our protocol, just like in the CGGM
protocol all probabilistic choices of the prover are generated as a pseudorandom
function of the input. (This is indeed the first step towards resettability, as it
reduces the advantages of resetting the prover with the same random tape.)
Because the prover makes no probabilistic choices in its second step, we do not
need to include the verifier’s message in the input to the pseudorandom function.
To ensure soundness and avoid problems with malleability of V’s commit-

ments, we use complexity leveraging in a way similar to the CGGM protocol.
That is, and we shall use two polynomially-related security parameters: n for all
the components except the hash-based commitment scheme HC, and k = nε for
HC.
This will ensure that any algorithm that is endowed with a subroutine for

breaking HC commitments, but is polynomial-time otherwise, is still unable
(simply by virtue of its running time) of breaking any other of our components.
This property will be used in our proof of soundness.
We actually choose the constant ε in a particular way. Namely, we shall use

a trapdoor commitment scheme TC with soundness constant α1, an NIZKPK
system (NIP,NIV) (for a relation to be specified later) with zero-knowledgeness
constant α2, and a pseudorandom function PRF with pseudorandomness con-
stant α3, and set ε < min(α1, α2, α3).

The Full Description. The complete details of P and V are given below.

Min-Round Resettable Zero-Knowledge In The Public-Key Model 383

Key Generation Algorithm for V

System Parameter:
A polynomial U

Security Parameter:
1n

Procedure:
1. Let cmax = U(n).
2. Generate random strings σ1, . . . , σcmax of length NIσLen(n) each.
(Note: to save secret key length, the strings σc can be generated
using a pseudorandom function of c, whose short seed can be
made part of the secret key).

3. Let k = nε.

4. Commit to each σc using (σComc , σDecomc)
R
← HCCom(1k, σc).

5. Combine the values σComc into a single Merkle tree with root R.
(Note: If the values σc ’s are generated via a PRF to save on secret
key length then also the values σComc , the resulting Merkle tree,
etc. can be computed efficiently in space logarithmic in cmax .)

6. Generate a random string PRFKey of length n.
7. Commit to the PRFKey using

(PRFKeyCom,PRFKeyDecom)
R
← HCCom(1n,PRFKey).

8. Generate keys for the trapdoor commitment scheme:

(TCPK ,TCSK)
R
← TCGen(1n).

Output:
PK = (R,PRFKeyCom,TCPK)
SK = ({(σc , σDecomc)}

cmax
c=1 , (PRFKey ,PRFKeyDecom),TCSK).

Protocol (P,V)

Public File:
A collection F of records (id , PKid), where PKid is allegedly the
output of the Key Generation Algorithm above

Common Inputs:
A graph G = (V,E), and a security parameter 1n

P Private Input:
A valid coloring of G, col : V → {0, 1, 2}; V’s id and the file F ;
a random string ω

V Private Input:
A secret key SK , a counter value c, and a bound cmax .

P Step One :
1. Using the random string ω as a seed for PRF, generate
a sufficiently long “random” string from the input to be used
in the remaining computation.

384 Silvio Micali and Leonid Reyzin

2. Find PK id in F ; let PK id = (R,PRFKeyCom,TCPK)
(if more than one PK id exist in F , use the alphabetically first one).

3. Verify TCPK by invoking TCKeyVer(1n,TCPK).
4. Let σP be a random string of length NIσLen(n).
5. Commit to random recolorings of the G as follows.
Let π1, . . . , πn be random permutations on {0, 1, 2}.
For all i (1 ≤ i ≤ n) and v ∈ V , commit to πi(col(v)) by computing

(cComi,v, cDecomi,v)
R
← TCCom(TCPK , πi(col(v))).

6. If all the verifications hold, send σP and {cComi,v}1≤i≤n,v∈V to V.
V Step One:
1. Increment c and check that it is no greater than cmax .
2. For each j (1 ≤ j ≤ n), compute a challenge edge ej ∈ E by
applying PRF to the counter value c, j and the
commitments received from P:
ej = PRF(PRFKey , c ◦ j ◦ {cCom i,v}1≤i≤n,v∈V)

3. Let σ = σP ⊕ σc . Compute a NIZKPK proof Π using NIP on σ
and the following statement:
“∃ key K for PRF that generated the challenge edges {ej}1≤j≤n;
∃ decommitment D s. t. HCVer(1n,PRFKeyCom,K,D) = YES;
∃ secret key S corresponding to the public key TCPK .”
(Note: this can computed efficiently because V knows witnesses
PRFKey for K, PRFKeyDecom for D, and TCSK for S).

4. Send c, σc , σComc together with its authenticating path in
the Merkle tree, σDecomc , Π and {ej}1≤j≤n to P.

P Step Two:
1. Verify the authenticating path of σComc in the Merkle tree
2. Verify that HCVer(1k, σc , σComc , σDecomc) = YES.
3. Let σ = σP ⊕ σc . Verify Π using NIV.
4. If all the verifications hold, for each ej = (v

0
j , v

1
j) and b ∈ {0, 1},

send cbj = πj(col(v
b
j)) and cDecomj,vb

j
to V.

V Step Two:
1. Verify that, for all j (1 ≤ j ≤ n), and for all b ∈ {0, 1}
TCVer(TCPK , cComj,vb

j
, cbj , cDecomj,vb

j
) = YES.

2. Verify that for all j (1 ≤ j ≤ n), c0
j 6= c1j .

3. If all the verifications hold, accept. Else reject.

Theorem 1. (P,V) is a 3-round RZK protocol in the UPK model.

As usual, completeness is easily verified. We address soundness in Section 4.1
and resettable zero-knowledgeness in Section 4.2.

4.1 Computational Soundness

Suppose G is a graph that is not 3-colorable, and P∗ is a circuit of size t < 2k that
can make V accept (G, 1n) with probability p > 1/2k. Then, we shall construct

Min-Round Resettable Zero-Knowledge In The Public-Key Model 385

a small circuit A that receives TCPK as input, and, using P∗, will output two
trapdoor decommitments for the same TC commitment. The size of A will be
poly(n) · t ·2k/poly(p). Thus, A will violate the soundness of TC, because its size
is less (for a sufficiently large n) than 2n

α1

allowed by the soundness property
of TC (recall in fact that k = nε and ε < α1).

A is constructed as follows. It receives as input a public key TCPK for TC
generated by TCGen(1n). A then generates PK as if it were the public key of
the specified honest verifier V, using the V’s key generation procedure with the
exception of step 7, for which it simply uses TCPK . Note that A knows all the
components of corresponding secret key of V, with the exception of TCSK . A
selects an identity id and creates a file F to contain the single record (id ,PK)
(or embeds it into a larger such file containing other identities and public keys,
but honestly generated).

A will now run P∗ multiple times with inputs F and id (G and 1n are already
known to P∗), each time with the same random tape. Thus, each time, P∗ will
send the same set of strings σP and {cComi,v}1≤i≤n,v∈V . Our goal, each time,
is to allow A to respond with a different random set of challenges {e′j}1≤j≤n.
Then, after an expected number of tries that is inversely polynomial in p, there
will exist a recoloring i and a node v such that cCom i,v has been opened by
P∗ in two different ways. That is, there will be a “break” of the commitment
scheme TC.
Therefore, all there remains to be shown is how A can ask a different random

set of challenges, despite the fact that it has committed to V’s PRFKey in PK .
Recall that honest V executes the protocol at most cmax time, and that the
current value of V’s counter will be known to P ∗. If P ∗ has such an overall
success probability p of proving G 3-colorable, then there exists a value of V’s
counter for which the success probability of P∗ is at least p. Let c be such a
value. Because of A’s non-uniformity, we assume A “knows” c.
To issue a set of (different) random challenges in response to the same first

message of P∗, A uses the NIZKPK simulator NIS as follows. First, A selects a
set of random challenges {e′j}1≤j≤n. Second, it invokes NIS to obtain a “good
looking proof” σ′ and Π ′ for the following statement Σ:

Σ =“∃ key K for PRF that generated the challenge edges {e′j}1≤j≤n;
∃ decommitment D s. t. HCVer(1n,PRFKeyCom,K,D) = YES;
∃ secret key S corresponding to the public key TCPK .”

(Note that Σ is potentially false, because it may be the case that no such K
exists at all; we address this below.) Third, A sets τ = σ′⊕σP . Fourth, A comes
up with a decommitment τDecom that decommits σComc (the commitment to
the c-th shared string computed during key generation) to τ rather than the
originally committed σc . This can be done by implementing HCFake by means
of a (sub)circuit of size poly(k)2k. Fifth, A sends τ, σComc together with its
authenticating path in the Merkle tree (A knows that path from key generation),
τDecom, Π ′ and {e′j}1≤j≤n to P

∗.
Thus, all that’s left to show is that P∗ will behave the same way as it would

for the true verifier V, even though it received random, rather than pseudoran-

386 Silvio Micali and Leonid Reyzin

dom, challenges, together with a faked decommitment and a simulated proof of
a potentially false statement Σ. This is done by a properly constructed hybrid
argument that relies on the zero-knowledgness of (NIP,NIV), the pseudoran-
domness of PRF and the statistical secrecy and breakability of HC.
First, note that random {e′j}1≤j≤n cannot be distinguished from pseudoran-

domly generated {e′j}1≤j≤n (wihout knowledge of PRFKey): otherwise, we’d
violate the pseudorandomness of PRF. Moreover, this holds even in the pres-
ence of PRFKeyCom, because PRFKeyCom is statistically secret, and thus re-
veals a negligible amount of information about PRFKey . It follows that the
tuple (PRFKeyCom, {e′j}1≤j≤n, σ

′, Π ′) cannot be distinguished from the tu-
ple (PRFKeyCom, {ej}1≤j≤n, σ

′′, Π ′′), where the challenge edges {ej}1≤j≤n are
produced by the true PRF with the true committed-to PRFKey , and σ′′, Π ′′

are produced by NIS. This, in turn, by zero-knowledgeness is indistinguish-
able from (PRFKeyCom, {ej}1≤j≤n, σ,Π), with the pseudorandomly generated
{ej}1≤j≤n, a truly random σ and Π honestly generated by NIP. By a hybrid
argument, therefore, the tuple (PRFKey , {ej}1≤j≤n, σ,Π) is indistinguishable
from the tuple (PRFKey , {e′j}1≤j≤n, τ,Π

′). Of course, if we replace σ by the
pair (σP , τ = σ ⊕ σP) and σ′ by the pair (σP , σc = σ ⊕ σP), the statement
still holds. Moreover, it holds in the presence of σComc , because the commit-
ment to σc is statistically secret (and thus is almost equally as likely to be a
commitment to τ). The authenticating path of σComc in the Merkle tree is
just a (randomized) function of σComc and root R of the tree, and thus does
not affect indistinguishability. Finally, note that this indistinguishability holds
with respect to any distinguishing circuit of size 2kpoly(n), because the zero-
knowledgeness and pseudorandomness constants α2 and α3 are greater than ε.
Therefore, indisntinguishability holds even in the presence of the decommitment
τDecom or σDecomc , because this decommitment can be computed by such a
circuit from σComc using HCFake.

4.2 Resettable Zero-Knowledgeness (Sketch)

Let V∗ be an (s, t)-resetting verifier. We will show how to construct the simulator
M as required by Definition 1. Due to lack of space in this extended abstract,
below we present only the essential points of our construction.
As alredy proven in [CGGM00], resettability is such a strong capability of a

malicious verifier, that it has nothing else to gain by interleaving its executions
with the honest prover. Thus, we can assume that our V∗ executes with P only
sequentially.
Recall that V∗ runs in two stages. ThenM operates as follows. First,M runs

the first stage of V∗ to obtain a public file F . Then, for every record (id ,PK id)
in F , M remembers some information (whose meaning will be explained later
on):

1. M remembers whether PK id is “broken” or not
2. If PK id is broken, M also remembers the value of TCSK
3. If PK id is not broken, M also remembers a list of tuples (c, σc , σComc)

Min-Round Resettable Zero-Knowledge In The Public-Key Model 387

Initially, every PK id in F is marked as not broken, and the list of pairs for each
record is empty.

Whenever V∗ starts a new session for an id that is not broken and whose list
of pairs is empty, M computes the “first prover message” as follows: it commits
to arbitrary color values for graph G, and then selects σP at random. (Of course,
if V∗ dictates thatM ’s random tape and inputs be equal to those in a prior inter-
action,M has no choice but to use the same first message as in that interaction.)
When V∗ responds with the verifier message, M takes (c, σc , σComc) from this
message and adds it to the list of tuples maintained for PK id . M then rewinds
V∗ to the beginning of V∗’s second stage.

Whenever V∗ starts a new session for an id that is not broken but whose list
of pairs is non-empty,M randomly chooses a tuple (c ′, σc′ , σComc′) from the list
of tuples for PK id . M then uses the extractor of the non-interactive ZK proof
of knowledge, NIExt1, to obtain a shared string σ, and sets σP = σ ⊕ σc′ . M
then commits to arbitrary color values for graph G and sends the commitment
and σP as the “first prover message” to V

∗. When V∗ responds with the verifier
message, M compares the counter value c included in this response to the value
c′ from the pair chosen above.

1. If c = c′, then it must be the case that σc = σc′ . (Otherwise, if the commit-
ment σComc′ previously stored by M is equal to the commitment σComc

included in V∗’s response, σc and σc′ have been easily found, so as to violate
the soundness of HC; and if the σComc 6= σCom ′c , then a collision has been
easily found in the Merkle tree). Thus, the string Π, also included in the
response of V ∗, is an NIZK proof of knowledge with respect to the string σ
output by NIExt1. Therefore,M can use NIExt2 to extract a witness TCSK
for the secret key of the commitment scheme. In this case, PK id is marked
as broken and M remembers TCSK .

2. If c 6= c′, then M has learned a potentially new tuple (c, σc , σComc), which
it remembers as its list of pairs for PK id .

M then rewinds V∗ to the beginning of V∗’s second stage.

Whenever V∗ starts a new session for an id that is broken,M can always sim-
ulate P’s behavior because M knows the trapdoor to the commitment scheme.
Thus, it can commit to arbitrary color values in its first message, and then de-
commit in its second message so that they look like a valid response to V∗’s
challenge edges.

The expected running time ofM is polynomial, because the expected number
of rewinds before M breaks a given PK id is polynomial in cmax and inverse
polynomial in the frequency with which V∗ uses id .

It remains to show that V∗ cannot ask for two different sets of challenge edges
for the same first message of M (if it could, then, unless M knows the correct 3-
coloring of the graph, it maybe unable to faithfully simulate the decommitments).
However, if V∗ has a non-negligible probability of doing so, then one can build
a machine ADV to violate the soundness of HC in polynomial time with non-
negligible probability, as follows.

388 Silvio Micali and Leonid Reyzin

ADV guesses, at random, for what instance of P the machine V∗ will first
give two different sets of challenges on the same first message. A also guesses,
at random, the counter values c1 and c2 that V

∗ will use in these two cases. A
then attempts to find out σc1

and σc2
by using the same technique as M . A

then runs the second stage of V∗ two more times: once to extract a witness K
for PRFKey and its decommitment D in the first case, and the other to extract
a witness K ′ for PRFKey and its decommitment D′ in the second case (this
witness extraction is done the same way as M). K 6= K ′ and D and D′ are valid
decommitments, which violates soundness of HC.

Acknowledgements

We would like to thank Amit Sahai, Anna Lysyanskaya and the anonymous
referees for helpful comments. The second author was supported, in part, by a
National Science Foundation Graduate Research Fellowship and a grant from
the NTT corporation.

References

[BCC88] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of
knowledge. Journal of Computer and System Sciences, 37(2):156–189, 1988.

[BDMP91] M. Blum, A. De Santis, S. Micali, and G. Persiano. Noninteractive zero-
knowledge. SIAM Journal on Computing, 20(6):1084–1118, December 1991.

[BFM88] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its
applications (extended abstract). In Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing, pages 103–112, 1988.

[Bra89] G. Brassard, editor. Advances in Cryptology—CRYPTO ’89, volume 435
of Lecture Notes in Computer Science. Springer-Verlag, 1990.

[CGGM00] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable zero-
knowledge. In Proceedings of the 32nd Annual ACM Symposium on Theory
of Computing, 2000. Updated version available at the Cryptology ePrint
Archive, record 1999/022, http://eprint.iacr.org/.

[CKPR01] R. Canetti, J. Kilian, E. Petrank, and A. Rosen. Black-box concurrent zero-
knowledge requires Ω̃(log n) rounds. In Proceedings of the Thirty-Second
Annual ACM Symposium on Theory of Computing, 6–8 July 2001.

[Dam00] I. Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string
model. In Bart Preneel, ed., Advances in Cryptology—EUROCRYPT 2000,
volume 1807 of Lecture Notes in Computer Science, Springer-Verlag, 2000.

[DDP00] A. De Santis, G. Di Crescenzo, and G. Persiano. Necessary and sufficient
assumptions for non-interactive zero-knowledge proofs of knowledge for all
np relations. In U. Montanari, J. D. P. Rolim, and E. Welzl, editors, Au-
tomata Languages and Programming: 27th International Colloquim (ICALP
2000), volume 1853 of Lecture Notes in Computer Science, pages 451–462.
Springer-Verlag, July 9–15 2000.

[DNS98] C. Dwork, M. Naor, and A. Sahai. Concurrent zero knowledge. In 30th
Annual ACM Symposium on Theory of Computing, 1998.

Min-Round Resettable Zero-Knowledge In The Public-Key Model 389

[DP92] A. De Santis and G. Persiano. Zero-knowledge proofs of knowledge with-
out interaction. In 33rd Annual Symposium on Foundations of Computer
Science, 1992.

[DPP97] I. B. Damg̊ard, T. P. Pedersen, and B. Pfitzmann. On the existence of sta-
tistically hiding bit commitment schemes and fail-stop signatures. Journal
of Cryptology, 10(3):163–194, Summer 1997.

[DS98] C. Dwork and A. Sahai. Concurrent zero-knowledge: Reducing the need
for timing constraints. In H. Krawczyk, ed., Advances in Cryptology—
CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science, 1998.

[FLS99] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowl-
edge proofs under general assumptions. SIAM Journal on Computing,
29(1):1–28, 1999.

[FS89] U. Feige and A. Shamir. Zero knowledge proofs of knowledge in two rounds.
In Brassard [Bra89], pages 526–545.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random
functions. Journal of the ACM, 33(4):792–807, October 1986.

[GK96] O. Goldreich and H. Krawczyk. On the composition of zero-knowledge proof
systems. SIAM Journal on Computing, 25(1):169–192, February 1996.

[GMR88] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, April 1988.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18:186–208, 1989.

[GMW91] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems.
Journal of the ACM, 38(1):691–729, 1991.

[HILL99] J. H̊astad, R. Impagliazzo, L.A. Levin, and M. Luby. Construction of pseu-
dorandom generator from any one-way function. SIAM Journal on Com-
puting, 28(4):1364–1396, 1999.

[HM96] S. Halevi and S. Micali. Practical and provably-secure commitment
schemes from collision-free hashing. In Neal Koblitz, editor, Advances in
Cryptology—CRYPTO ’96, volume 1109 of Lecture Notes in Computer Sci-
ence, pages 201–215. Springer-Verlag, 18–22 August 1996.

[KP00] J. Kilian and E. Petrank. Concurrent zero-knowledge in poly-
logarithmic rounds. Technical Report 2000/013, Cryptology ePrint Archive,
http://eprint.iacr.org, 2000.

[KPR98] J. Kilian, E. Petrank, and C. Rackoff. Lower bounds for zero-knowledge
on the Internet. In 39th Annual Symposium on Foundations of Computer
Science, pages 484–492, Los Alamitos, California, November 1998. IEEE.

[Mer89] R. C. Merkle. A certified digital signature. In Brassard [Bra89], pages
218–238.

[Mic] Silvio Micali. CS proofs. SIAM Journal on Computing, to appear.
[MR01] S. Micali and L. Reyzin. Soundness in the public-key model. Unpublished

manuscript, 2001.
[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient

pseudo-random functions. In 38th Annual Symposium on Foundations of
Computer Science, pages 458–467, Miami Beach, Florida, 20–22 October
1997. IEEE.

[RK99] R. Richardson and J. Kilian. On the concurrent composition of zero-
knowledge proofs. In Jacques Stern, editor, Advances in Cryptology—

390 Silvio Micali and Leonid Reyzin

EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science,
pages 415–431. Springer-Verlag, 2–6 May 1999.

A Merkle Trees

The description below is almost verbatim from [Mic].
Recall that a binary tree is a tree in which every node has at most two

children, hereafter called the 0-child and the 1-child. A Merkle tree [Mer89] with
security parameter n is a binary tree whose nodes store values, some of which
are computed by means of a collision-free hash function H : {0, 1}∗ → {0, 1}n

in a special manner. A leaf node can store any value, but each internal node
should store a value that is the one-way hash of the concatenation of the values
in its children. That is, if an internal node has a 0-child storing the value u and
a 1-child storing a value v, then it stores the value H(u ◦ v). Thus, because H
produces n-bit outputs, each internal node of a Merkle tree, including the root,
stores an n-bit value. Except for the root value, each value stored in a node of a
Merkle tree is said to be a 0-value, if it is stored in a node that is the 0-child of
its parent, a 1-value otherwise.
The crucial property of a Merkle tree is that, unless one succeeds in finding a

collision for H, it is computationally hard to change any value in the tree (and,
in particular, a value stored in a leaf node) without also changing the root value.
This property allows a party A to commit to L values, v1, . . . , vL (for simplicity
assume that L is a power of 2 and let d = logL), by means of a single n-bit value.
That is, A stores value vi in the i-th leaf of a full binary tree of depth d, and
uses a collision-free hash function H to build a Merkle tree, thereby obtaining an
n-bit value, R, stored in the root. This root value R “implicitly defines” what the
L original values were. Assume in fact that, as some point in time, A gives R, but
not the original values, to another party B. Then, whenever, at a later point in
time, A wants to “prove” to B what the value of, say, vi was, A may just reveal
all L original values to B, so that B can recompute the Merkle tree and the
verify that the newly computed root-value indeed equals R. More interestingly,
A may “prove” what vi was by revealing just d + 1 (that is, just 1 + logL)
values: vi together with its authenticating path, that is, the values stored in the
siblings of the nodes along the path from leaf i (included) to the root (excluded),
w1, . . . , wd. Party B verifies the received alleged leaf-value vi and the received
alleged authenticating path w1, . . . , wd as follows. She sets u1 = vi and, letting
i1, . . . , id be the binary expansion of i, computes the values u2, . . . , ud as follows:
if ij = 0, she sets uj+1 = H(wj ◦ uj); else, she sets uj+1 = H(uj ◦ wj). Finally,
B checks whether the computed n-bit value ud equals R.

B Pseudorandom Functions

A pseudorandom function family, introduced by Goldreich, Goldwasser and Mi-
cali [GGM86] is a keyed family of efficiently computable functions, such that a
function picked at random from the family is indistinguishable (via oracle access)

Min-Round Resettable Zero-Knowledge In The Public-Key Model 391

from a truly random function with the same domain and range. More formally,
let PRF(·, ·) : {0, 1}n × {0, 1}∗ → {0, 1}n be an efficiently computable function.
Our definition below is quite standard, except that it requires security against
subexponentially strong adversaries.

Definition 6. We say that PRF is a pseudorandom function if ∃ α > 0 such
that for all sufficiently large n and all 2n

α

-gate adversaries ADV, the following
difference is negligible in n:

PROB[PRFKey
R
← {0, 1}n : ADVPRF(PRFKey,·) = 1]−

PROB[F
R
← ({0, 1}n)

{0,1}n×{0,1}∗
: ADVF (·) = 1]

We call α the pseudorandomness constant.

Pseudorandom functions can be constructed based on a variety of assump-
tion. We refer the reader to [GGM86,NR97] (and references therein) for details.

