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Abstract. In this paper we consider the security of block ciphers which
contain alternate layers of invertible S-boxes and affine mappings (there
are many popular cryptosystems which use this structure, including the
winner of the AES competition, Rijndael). We show that a five layer
scheme with 128 bit plaintexts and 8 bit S-boxes is surprisingly weak
even when all the S-boxes and affine mappings are key dependent (and
thus completely unknown to the attacker). We tested the attack with an
actual implementation, which required just 216 chosen plaintexts and a
few seconds on a single PC to find the 217 bits of information in all the
unknown elements of the scheme.
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1 Introduction

Structural cryptanalysis is the branch of cryptology which studies the security
of cryptosystems described by generic block diagrams. It analyses the syntactic
interaction between the various blocks, but ignores their semantic definition as
particular functions. Typical examples include meet in the middle attacks on
double encryptions, the study of various chaining structures, and the properties
of Feistel structures with a small number of rounds.
Structural attacks are often weaker than actual attacks on given cryptosys-

tems, since they cannot exploit particular weaknesses (such as bad differential
properties or weak avalanche effects) of concrete functions. The flip side of this
is that they are applicable to large classes of cryptosystems, including those in
which some of the internal functions are unknown or key dependent. Structural
attacks often lead to deeper theoretical understanding of fundamental construc-
tions, and thus they are very useful in establishing general design rules for strong
cryptosystems.
The class of block ciphers considered in this paper are product ciphers which

use alternate layers of invertible S-boxes and affine mappings. This structure
is a generalization of substitution/permutation networks (in which the affine
mapping is just a bit permutation), and a special case of Shannon’s encryp-
tion paradigm which mixes complex local operations (called confusion) with
simple global operations (called diffusion). There are many examples of substi-
tution/affine ciphers in the literature, including Rijndael [4] which was recently
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selected as the winner of the Advanced Encryption Standard (AES) competi-
tion. Rijndael is likely to become one of the most important block ciphers in the
next 20-30 years, and thus there is a great interest in understanding its security
properties.
The best non-structural attack on Rijndael (and its predecessor Square [3])

is based on the square attack which exploits the knowledge of the S-box, the
simplicity of the key schedule and the relatively slow avalanche of the sparse
affine mapping (which linearly mixes bytes only along the rows and columns of
some matrix and adds a subkey to the result). It can break versions with six
S-box layers and six affine layers (a seventh layer can be added if the attacker is
willing to guess its 128 bit subkey in a nonpractical attack).
In our structural attacks we do not know anything about the S-boxes, the

affine mappings, or the key schedule, since they can all be defined in a com-
plex key-dependent way. In particular, we have to assume that the avalanche is
complete after a single layer of an unknown dense affine mapping, and that any
attempt to guess even a small fraction of the key would require a nonpractical
amount of time. Consequently, we cannot use the square attack (even though
we are influenced by some of its underlying ideas) and we have to consider a
somewhat smaller number of layers.
In this paper we describe surprisingly efficient structural attacks on substi-

tution/affine structures with five to seven layers. The main scheme we attack is
the five layer scheme S3A2S2A1S1 (see Figure 1) in which each S layer contains
k invertible S-boxes which map m bits to m bits, and each A layer contains an
invertible affine mapping of vectors of n = km bits over GF (2):

Ai(x) = Lix⊕Bi

The only information available to the attacker is the fact that the block cipher
has this general structure, and the values of k and m. Since all the S-boxes and
affine mappings are assumed to be different and secret, the effective key length
of this five layer scheme is 1:

log(2m!)3·
n
m + 2 log(0.29 · 2n2

) ≈ 3 · 2m(m− 1.44) ·
n

m
+ 2n2.

The new attack is applicable to any choice of m and n, but to simplify the
analysis we concentrate on the Rijndael-like parameters of m = 8 bit S-boxes
and n = 128 bit plaintexts. The effective key length of this version is about
3 · 212 · 6.56 + 215 ≈ 113, 000 ≈ 217 bits, and thus exhaustive search or meet
in the middle attacks are completely impractical. Our attack requires only 216

chosen plaintexts and 228 time to find all the unknown elements. This is quite

1 The probability thatm randomly chosen linear equations inm unknowns are linearly
independent over GF (2) is:
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Fig. 1. Five-layer scheme.

close to the information bound since the 216 given ciphertexts contain at most
223 bits of information about the 217 key bits.

It is important to note that not all the information about the S-boxes and
the affine mappings can be extracted from the scheme, since there are many
equivalent keys which yield the same mapping from plaintexts to ciphertexts.
For example, we can change the order of the various S-boxes in a single layer and
compensate for it by changing the definition of the adjacent affine mapping. In a
similar way, we can move the additive constants in the affine mappings into the
definition of the adjacent S-boxes. Our attack finds an equivalent representation
of all the elements in the scheme which makes it possible to encrypt and decrypt
arbitrary texts, but it may be different from the original definition of these
elements.

A related structural attack on a five layer substitution/affine structure was
recently published by Biham [2]. He attacked the slightly different structure
A3S2A2S1A1 (with two S-box layers and three affine layers) which was proposed
by Patarin as a new algebraic public key cryptosystem called 2R. However, in
Patarin’s scheme the S-boxes are implemented by multivariate quadratic poly-
nomials, which are non-bijective due to design constraints. The starting point
of Biham’s attack is the existence of random collisions created by such S-boxes,
and its time and data complexities were forced by the birthday paradox to be
at least 260. Biham’s attack is thus inapplicable to substitution/affine structures
with invertible operations which have no collisions, and has higher complexity
than our attack.
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2 The Multiset Attack

2.1 Multiset Properties

In this section we develop a calculus of multiset properties, which makes it
possible to characterize intermediate values deep in the encryption structure
even though nothing is known about the actual functions in it. Each multi-
set can be represented as a list of (value, multiplicity) pairs (e.g., the multiset
{1, 1, 1, 2, 2, 2, 2, 7} can also be represented as (1, 3), (2, 4), (7, 1)). The size of the
multiset is the sum of all its multiplicities (8 in this example). We now define
several multiset properties:

Definition 1 A multiset M of m-bit values has property C (constant) if it con-
tains an arbitrary number of repetitions of a single value.

Definition 2 A multiset M of m-bit values has property P (permutation) if it
contains exactly once each one of the 2m possible values.

Definition 3 A multiset M of m-bit values has property E (even) if each value
occurs an even number of times (including no occurrences at all).

Definition 4 A multiset M of m-bit values has property B (balanced) if the
XOR of all the values (taken with their multiplicities) is the zero vector 0m.

Definition 5 A multisetM of m-bit values has property D (dual) if it has either
property P or property E.

We will consider now the issue of how the multiset properties defined above are
transformed by various mappings. In general if a bijective function is applied
to a multiset we get a new multiset with possibly new values, but the same
collection of multiplicities. If a non-bijective function is applied to a multiset,
then the multiplicities of several distinct input values that are mapped to a
common output value are added. The following observations are easy to prove:

Lemma 1 1. Any multiset with either property E or property P (whenm > 1)
also has property B.

2. The E and C properties are preserved by arbitrary functions over m-bit
values.

3. The P property is preserved by arbitrary bijective functions overm-bit values.
4. The B property is preserved by an arbitrary linear mapping from m bits to n
bits when m > 1. It is preserved by arbitrary affine mappings when the size
of the multiset is even.

Let us consider now blocks of larger size n = k·m with mixed multiset properties.
For example, we denote by Ci−1PCk−i a multiset with the property that when
we decompose each n bit value into k consecutive blocks of m contiguous bits,
k−1 of the blocks contain (possibly different) constants across the multiset, and
the i-th block contains exactly once each one of the 2m possible m-bit values.
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Similarly, we denote by Dk a multiset that decomposes into k multisets each
one of which has property D. This decomposition should be understood not as
a cross product of k multisets but as a collection of k projections of n bit to
m bit values. Note that this decomposition operation is usually nonreversible,
since we lose the order in which the values in the various blocks are combined.
For example the multiset decomposition

{0, 1, 2, 3}{1, 1, 2, 2}{1, 1, 1, 1}

(which has the multiset property PEC form = 2) can be derived from several dif-
ferent multisets such as {(011), (111), (221), (321)} or {(021), (121), (211), (311)}.
Let us consider now how these extended multiset properties are transformed

by layers of S-boxes and affine mappings:

Lemma 2 1. Property Ci−1PCk−i is preserved by a layer of arbitrary S-boxes
provided that the i-th S-box is bijective.

2. Property Dk is transformed into property Dk by a layer of bijective S-boxes.
3. Property Dk is transformed into Bk by an arbitrary linear mapping on n bits,
and by an arbitrary affine mapping when the size of the multiset is even.

4. Property Ci−1PCk−i is transformed into property Dk by an arbitrary affine
mapping when the size of the multiset is even.

Proof

The only non-trivial claims are 3 and 4. Let us show why claim 3 holds. Denote
by

yj =

n
∑

i=1

djixi

a bit yj at the output of the linear mapping. Property B holds since for each j,
the sum (mod 2) of yj bits over the 2

m elements of the multiset is zero:
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The last expression is zero since by Lemma 1, claim 1, both P and E (and thus
D) imply the B-property. The result remains true even when we replace the
linear mapping by an affine mapping if we XOR the additive constant an even
number of times.
Let us now show why claim 4 holds. Any affine mapping over GF (2) can be

divided into k distinct n to m-bit projections. Since (k − 1)m of the input bits
are constant, we will be interested only in restrictions of these affine mappings
to new affine mappings that map the i-th block of m bits (the one which has
the P property) into some other m-bit block in the output:

y = Aij(x) = Lij · x⊕Bj , j = 1, . . . k.

Here Lij is an arbitrary m ×m (not necessarily invertible) binary matrix and
Bj ∈ {0, 1}

m. We can again ignore Bj since it is XOR’ed an even number of
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times. If Lij is invertible over GF (2), then Lij · x is a 1-1 transform and thus
Lij · x gets all the 2

m possible values when x ranges over all the 2m possible
inputs, so it has property P .
Thus we are left with the case of non-invertible Lij . Suppose that

rank(Lij) = r < m.

The kernel is defined as the set of solutions of the homogeneous linear equa-
tion Lij · x = 0. Let x0 be some solution of the non-homogeneous equation
Lij · x = y. Then all the solutions of the non-homogeneous equation have the
form x0 ⊕ v0, where v0 is any vector from the kernel. The size of the kernel is
2m−r, and thus each y has either no preimages or exactly 2m−r preimages. Since
r < m by assumption, 2m−r is even, and thus the multiset of m-bit results has
property E. Consequently each block of m bits of the output has either property
P or property E, and thus the n bit output has property Dk, as claimed.

2.2 Recovering Layers S1 and S3.

The first phase of the attack finds the two outermost layers S1 and S3, in order
to “peel them off” and attack the inner layers.
Consider a multiset of chosen plaintexts with property C i−1PCk−i. The key

observations behind the attack are:

1. The given multiset is transformed by layer S1 into a multiset with property
Ci−1PCk−i by Lemma 2, claim 1.

2. The multiset Ci−1PCk−i is transformed by the affine mapping A1 into a
multiset with property Dk by Lemma 2, claim 4.

3. The multiset property Dk is preserved by layer S2, and thus the output
multiset is also Dk, by Lemma 2, claim 2.

4. The multiset property Dk is not necessarily preserved by the affine mapping
A2, but the weaker property Bk is preserved.

5. We can now express the fact that the collection of inputs to each S-box in
S3 satisfies property B by a homogeneous linear equation. We will operate
with m-bit quantities at once as if working over GF (2m) (XOR and ADD
are the same in this field). Variable zi represents the m-bit input to the
S-box which produces i as an output (i.e., the variables describe S−1, which
is well defined since S is invertible), and we use 2m separate variables for
each S-box in S3. When we are given a collection of actual ciphertexts, we
can use their m-bit projections as indices to the variables, and equate the
XOR of the indexed variables to 0m. Different collections of chosen plaintexts
are likely to generate linear equations with different random looking subsets
of variables (in which repetitions are cancelled in pairs). When sufficiently
many linear equations are obtained we can solve the system by Gaussian
elimination in order to recover all the S-boxes in S3 in parallel.

Unfortunately, we cannot get a system of equations with a full rank of 2m.
Consider the truth table of the inverted S-box as a 2m×m-bit matrix. Since the
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S-box is bijective, the columns of this matrix are m linearly independent 2m-bit
vectors. Any linear combination of the S-box input bits (which are outputs of
the inverted S-box) is also a possible solution, and thus the solution space must
have a dimension of at least m. Moreover, since all our equations are XOR’s of
an even number (2m) of variables, the bit complement of any solution is also a
solution. Since the system of linear equations has a kernel of dimension at least
m+1, there are at most 2m−m−1 linearly independent equations in our system.
When we tested this issue in an actual implementation of the attack for m = 8,
we always got a linear system of rank 247 in 256 variables, as expected from the
formula.
Fortunately, this rank deficiency is not a problem in our attack. When we pick

any one of the non-zero solutions, we do not get the “true” S−1, but A(S−1),
where A is an arbitrary invertible affine mapping over m-bits. By taking the
inverse we obtain S(A−1). This is the best we can hope for at this phase, since
the arbitrarily chosen A−1 can be compensated for when we find A(A2) = A′

2

instead of the “true” affine transform A2, and thus the various solutions are
simply equivalent keys which represent the same plaintext/ciphertext mapping.
A single collection of 2m chosen plaintexts gives rise to one linear equation in

the 2m unknowns in each one of the k S-boxes in layer S3. To get 2
m equations,

we can use 22m (216) chosen plaintexts of the form (A, u,B, v, C), in which we
place the P structures u and v at any two block locations, and choose A,B,C
as arbitrary constants. For each fixed value of u, we get a single equation by
varying v through all the possible 2m values. However, we can get an additional
equation by fixing v and varying u through all the 2m possible values. Since
we get 2 · 2m equations in 2m unknowns, we can reduce the number of chosen
plaintexts to 3

4
· 22m by eliminating the 1

4
of the plaintexts in which u and v are

simultaneously chosen in the top half of their range. The matrix of these (u, v)
values has a missing top-right quarter, and we get half the equations we need
from the full rows and half the equations we need from the full columns of this
“L” shaped matrix.
Solving each system of linear equations by Gaussian elimination requires 23m

steps, and thus we need k23m steps to find all the S-boxes in S3. For the Rijndael-
like choice of parameters n = 128, m = 8 and k = 16, we get a very modest time
complexity of 228.
To find the other external layer S1, we can use the same attack in the reverse

direction. However, the resultant attack requires both chosen plaintexts and
chosen ciphertexts. In Section 3 we describe a slightly more complicated attack
which requires only chosen plaintexts in all its phases.

2.3 Attacking the Inner Layers ASA

The second phase of the attack finds the middle three layers. We are left with
a structure A′

2S2A
′
1 – two (possibly modified) affine layers and an S-box layer

in the middle. In order to recover the affine layers we use Biham’s low rank
detection technique from [2]. Consider an arbitrary pair of known plaintexts P1

and P2 with difference P1 ⊕ P2. With probability k/2m, after A′
1 there will be
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no difference at the input to one of the k S-boxes in S2. Thus there will also be
no difference at the output of this S-box. Consider now the set of pairs P1 ⊕Ci,
P2 ⊕ Ci for many randomly chosen n-bit constants Ci. Any pair in this set still
has this property, and thus the set of all the obtained output differences after
A′

2 will have a rank of at most n − m, which is highly unusual for random n
dimensional vectors. Consequently, we can confirm the desired property of the
original pair P1 and P2 by applying this low rank test with about n modifiers
Ci.
We want to generate and test pairs with zero input differences at each one

of the k S-boxes. We choose a pool of t random vectors Pj and another pool
of n modifiers Ci, and encrypt all the nt combinations Pj ⊕ Ci. We have about
t2/2 possible pairs of Pj ’s, each one of them has a probability of k/2m to have
the desired property at one of the S-boxes, and we need about k · log(k) random
successes to cover all the k S-boxes. The critical value of t thus satisfies t2/2 ·
k/2m = k · log(k) and thus t =

√

2m+1log(k). For n = 128 m = 8 and k = 16 we
get t = 25.5, and thus the total number of chosen plaintexts we need is nt = 212.5,
which is much smaller than the number we used in the first phase of the attack.
Now we use linear algebra in order to find the structure of A′

2. Consider the
representation of A′

2 as a set of n vectors V0, V1, . . . Vn−1, Vi ∈ {0, 1}
n, where A′

2

transforms an arbitrary binary vector b = b0, b1, . . . bn−1 by producing the linear
combination:

A′
2(b) =

n−1
⊕

i=0

biVi.

(we can ignore the affine constants viewing them as part of the S-box). From the
data pool we extract information about k different linear subspaces of dimension
n−m (= 120). Then we calculate the intersection of any k − 1(= 15) of them.
This intersection is an m-dimensional linear subspace which is generated by all
the possible outputs from one of the S-boxes in layer S2, after it is expanded
from 8 bits to 128 bits by A′

2. We perform this operation for each S-box and by
this we find a linear mapping A∗

2 which is equivalent to the original choice. The
complexity of this phase is that of Gaussian elimination on a set of O(n −m)
equations.
After finding and discarding A′

2, we are left with the two layer structure S2A
′
1.

If we need to perform only decryption, we can recover this combined mapping
by writing formal expressions for each bit, and then solving the linear equations
with k2m (212) variables. If we also need to perform encryption this trick will not
work, since the formal expressions will be huge. However, we can just repeat our
attack in the reverse direction by using chosen ciphertexts and recover A∗

1. After
that we can find the remaining layer S1 with about 2

m known plaintexts. Again
we will find not the real S-box layer S2 but the equivalent one which corresponds
to the modified A∗

1, A
∗
2 that we have found in earlier phases.

Comment: for one of the mappings we need to know the order of the sub-
spaces: we can assume arbitrary order of subspaces in A2 together with arbitrary
order of S-boxes in S2, however at this point the order of subspaces in A1 is no
longer arbitrary. If after finding A2 we mount the same attack on S2A1 from
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the ciphertext direction, we can recover A′
1 together with the correct ordering

information.
The complete attack uses about 22m chosen plaintexts (216) and about k23m

(16 · 224 = 228) steps. We tested the attack with an actual implementation, and
it always ended successfully after a few seconds of computation on a single PC.
The attack remains practical even if we increase the size of the plaintexts from
128 to 1024 bits and replace the 8-bit S-boxes by 16-bit S-boxes, since with these
parameters the attack requires 232 chosen plaintexts and 64 · 23·16 = 254 time.

3 A Chosen Plaintext Attack on ASAS

In this section we show how to use a pure chosen plaintext attack, and avoid the
less realistic chosen plaintext and chosen ciphertext attack. The modified attack
has the same time and data complexities as the original attack.
After the first phase of the original attack we are left with a A′

2S2A1S1

structure, since we can recover only one of the two external S-box layers. Since
the inputs go through the additional S-box layer S1, we can no longer argue
that for any Ci, P1 ⊕ Ci and P2 ⊕ Ci will have a zero difference at the input to
some S-box in S2 whenever P1 and P2 have this property. We thus have to use
a more structured set of modifiers which can be nonzero only at the inputs to
the S-boxes in which P1 and P2 are identical.
For the sake of simplicity, we consider in this section only the standard pa-

rameters. We use 216 chosen plaintexts with the multiset property PPCk−2 (the
two P ’s could be placed anywhere, and we could reuse the chosen plaintexts
from the first phase of the attack). There are 215 different ways to choose a pair
of values from the first P . For each such pair (a1, a2), we generate a group of
28 pairs of extensions of the form (a1, b0, c, d, . . .) and (a2, b0, c, d, . . .) where b0

is any common element from the second P , and c, d, . . . are the constants from
Ck−2. We claim that all these 28 pairs will have the same difference at the output
of S1, since the first S-box gets a fixed pair of values and the other S-boxes get
identical inputs in each pair. We can now apply the low rank test since we have
sufficiently many choices of (a1, a2) to get a zero difference at the input to each
S-box in S2 with high probability, and for any such (a1, a2) we have sufficiently
many pairs with the same difference in order to reliably test the rank of the out-
put vectors. Once we discover the partition of the output space into 16 different
linear subspaces of dimension 120, we can again find the intersection of any 15
of them in order to find the 8 dimensional subspace generated by the outputs of
each one of the 16 S-boxes. We fix A′

2 by choosing any set of 8 arbitrary spanning
vectors in each one of the 16 subspaces, and this is the best we can possibly do
in order to characterize A′

2 due to the existence of equivalent keys.
One possible problem with this compact collection of plaintexts is that the

attack may fail for certain degenerate choices of affine mappings. For example, if
both A1 and A2 are the identity mapping, the insufficiently mixed intermediate
values always lead to very low output ranks. However, the attack was always
successful when tested with randomly chosen affine mappings.
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After peeling off the computed A′
2, we are now left with a S′

2A1S1 structure,
which is different from the A′

2S2A
′
1 structure we faced in the original attack.

We have already discovered in the previous part of the attack many groups of
256 pairs of plaintexts, where in each group we know that the XOR of each
pair of inputs to any particular S-box in S ′

2 is the same constant. We do not
know the value of this constant, but we can express this property as a chain of
homogeneous linear equations in terms of the values of the inverse S-box, which
are indexed by the known outputs from the S ′

2A1S1 structure. A typical example
of the equations generated from one group is

S−1(1)⊕ S−1(72) = S−1(255)⊕ S−1(13) = S−1(167)⊕ S−1(217) = . . .

If we need additional equations, we simply use another one of the 215 possible
groups of pairs, which yields a different chain of equations (with a different un-
known constant). Note that these sparse linear equations are completely different
from the dense equations we got in the first phase of the attack, which expressed
the B property by equating the XOR’s of various random looking subsets of 256
variables to 0m.
We are finally left with a simple A′

1S1 structure. It can be attacked in a
variety of ways, which are left as an exersise for the reader.

Comments:

– The attack works in exactly the same way if the affine mappings are over
finite fields with even characteristic. In particular, it can be applied to
Rijndael-like schemes in which the affine transforms are over GF (28).

– The attack can be extended to the case where S2 contains arbitrary random
(not necessarily bijective) S-boxes with a small penalty in the number of
chosen plaintexts. Direct application of our attack will not work, since the P
property at the input to some S-box in layer S2 may not result in a balanced
output after S2 if this particular S-box is non-bijective. In order to overcome
this dificulty we can work with double-sized 2m-bit S-boxes at layer S1.
We consider a projection mapping PT1 from 2m to m bits (in the affine
mapping A1) which necessarily has a non-zero kernel (and thus always has
the E property which is preserved even by non-bijective S-boxes, and not
the P property which is not preserved by non-bijective S-boxes). The attack
works in exactly the same way with the exception that we pay a factor of
2m in data and in the process of equation preparation (now each equation is
the XOR of 22m variables instead of 2m). The total complexity of the attack
becomes 23m chosen plaintexts and k23m steps.

– We can attack the scheme even if a sparse linear mapping (a bit permutation
or a mapping that mixes small sets of bits like the Serpent [1] mappings) is
added to the the input. The attack works as long as we can guess columns
of the linear mapping that correspond to the inputs of one particular S-box
in S1. If we add an initial bit permutation with the standard parameters,
we can guess which 8 plaintext bits enter this S-box, and construct the
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Ci−1PCk−i structure we need to get each linear equation with just this
knowledge. Note that to generate the P property we can choose these 8 bits
in an unordered way, and to generate the other Ck−1 property we don’t care
about the destination of the other bits under the bit permutation, and thus
the number of cases we have to consider is at most

(

128
8

)

≈ 240. By increasing
the time complexity of the attack by this number, we get a (barely practical)
attack on this six layer scheme. By symmetry, we can also attack the scheme
in which the additional bit permutation layer is added at the end, and with a
somewhat higher complexity we can attack the seven layer scheme in which
we add unknown bit permutations both at the beginning and at the end of
the scheme. It is an open problem whether we can attack with reasonable
complexity six layer schemes with a general affine mapping added either at
the beggining or at the end.

– We can attack the scheme even if the S-boxes have inputs of different sizes
which are unknown to the attacker, since this information will be revealed
by rank analysis.

– We can attack modified schemes which have various types of feedback con-
nections between the S-boxes in the first and last rounds (see Figure 2 for
one example). The idea is that we still have some control over multisets
in such construction: We can cause the rightmost S-box to run through all
the possible inputs (if the XORed feedback is a constant) and thus can force
multisets to have the Ck−1P property after S1 even when the indicated feed-
back connections are added. The extraction of the S-boxes in the last layer
S3 has to be carried out sequentially from right to left, in order to take into
account the effect of the feedbacks at the bottom.

– The attack stops working if S3 contains non-bijective S-boxes. One can es-
timate the sizes of the equivalence (collision) classes of the outputs of the
particular S-box. However even writing the linear equations does not seem
possible: If we get the same output value twice in our structure, we cannot
tell which variables should be used as the input of the S-box in each case.
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Fig. 2. Modified scheme with S-box feedbacks.


