
Performance Analysis and Parallel

Implementation of Dedicated Hash Functions

Junko Nakajima, Mitsuru Matsui

Mitsubishi Electric Corporation
5-1-1 Ofuna, Kamakura, Kanagawa 247-8501, Japan

{june15,matsui}@iss.isl.melco.co.jp

Abstract. This paper shows an extensive software performance analysis
of dedicated hash functions, particularly concentrating on Pentium III,
which is a current dominant processor. The targeted hash functions are
MD5, RIPEMD-128 -160, SHA-1 -256 -512 and Whirlpool, which fully
cover currently used and future promising hashing algorithms. We try to
optimize hashing speed not only by carefully arranging pipeline schedul-
ing but also by processing two or even three message blocks in parallel
using MMX registers for 32-bit oriented hash functions. Moreover we
thoroughly utilize 64-bit MMX instructions for maximizing performance
of 64-bit oriented hash functions, SHA-512 and Whirlpool. To our best
knowledge, this paper gives the first detailed measured performance anal-
ysis of SHA-256, SHA-512 and Whirlpool.

Keywords. dedicated hash functions, parallel implementations, Pen-
tium III

1 Introduction

A one-way and collision resistant hash function is one of the most important
cryptographic primitives that require utmost speed particularly in software due
to its heavy use for creating a digital finger printing of a long message. Histori-
cally the first constructions of hash functions were based on strong block ciphers
and many efforts have since been done for their design and proof of security.
However since this design approach does not necessarily result in fast hash func-
tions in practice and often their hashing speed is much slower than underlying
block ciphers, many “dedicated hash functions” suitable for software implemen-
tation on modern processors have been proposed and are now widely used in
real world applications.
Therefore, performance analysis of hash functions in real environments is

recognized as an important research topic and many studies have been done on
this topic. Among them, a paper presented at CRYPTO’96 by Bosselaers et al.
[BGV96] showed an excellent fast implementation and performance evaluation
of dedicated hash functions (of that time) on the Pentium processor, which was
a dominant processor at the time of the publication. They also gave a thorough
critical path analysis of the MD-family, particularly concentrated on SHA-1 in
the paper presented at Eurocrypt’97 [BGV97].



Recently NIST published three new dedicated hash functions with a larger
hash size; SHA-256, SHA-384 and SHA-512 [FIP01], of which SHA-386 is essen-
tially a truncation of the hashed value of SHA-512. These new hash functions
have much more complex structure than SHA-1. Also in the European NESSIE
project, a new 512-bit hash function Whirlpool was proposed [BR00]. The struc-
ture of Whirlpool is very similar to Rijndael, where the block size of its under-
lying block cipher is 512. All these new hash algorithms are under discussion for
an inclusion in the next version of the ISO/IEC 10118 standard.

The purpose of this paper is to include these new generations as well as cur-
rently used dedicated hash functions and give an extensive performance analysis
with actual implementations and measured cycle counts in a real processor plat-
form. We particularly concentrate on the Pentium III processor, but most of our
programs also run on Pentium II and Celeron in the same efficiency since these
processors largely share their internal architecture. Note that Pentium 4 has a
new architecture with richer SIMD instructions (but some instructions take a
larger number of cycles now), which we do not deal with in this paper.

For the 32-bit oriented hash functions (MD5, RIPEMD-128, RIPEMD-160,
SHA-1 and SHA-256), we perform not only a straightforward coding using 32-bit
x86 registers, but also give an implementation method that enables fast parallel
hashing of two or even three independent message blocks in parallel using 64-bit
MMX registers (and x86 registers simultaneously) on Pentium III. Specifically,
the two-block parallel method assigns the two blocks to upper and lower 32-
bit halves of the MMX registers, and the three-block parallel method moreover
assigns the third block to the x86 registers. For the 64-bit oriented hash functions
(SHA-512 and Whirlpool), we fully utilize the MMX registers and instructions to
extract maximal hashing performance. For another example of an optimization
of a cryptographic algorithm using the MMX technology, see [Lip98].

The internal architecture of Pentium II/III is totally different from that of
Pentium. Coding on Pentium was a programmers’ paradise; estimating a cycle
count of a given piece of code is not very difficult and, consequently, serious
efforts to optimize a program by carefully arranging instructions were always
rewarded. Unfortunately this is not the case for Pentium II/III. Intel documented
the hardware architecture of Pentium II/III well [Int01][Int02][Int03], but still
it is no longer possible to correctly predict how many cycles a given code takes
without an actual measurement. This is partly due to an out-of-order execution
nature of the processor, and also probably due to undocumented and unknown
pipeline stall factors that only the hardware designers of Pentium II/III know.

In our experiences, even a well tuned-up code on Pentium II/III usually
runs 10%-15% slower than what we expect. Filling this gap is a programmers’
nightmare; it is a groping task with endless trial and error and very often such
efforts are not rewarded at all. So in our implementations of hash functions, we
first tried to write a code so that its data dependency chain could be as short
as possible, and then re-scheduled the code to remove possible pipeline stall
factors until the measured performance became up to 10%-15% slower than our
best (fastest) estimation. This means that if a long dependency chain dominates



Table 1. Feature of dedicated hash functions

Algorithms Endianess Message Block Size Digest Size Word Size The Number Message
(bits) (bits) (bits) of Steps Scheduling

MD5 Little 512 128 32 64 NO

RIPEMD-128 Little 512 128 32 2 × 64 NO
RIPEMD-160 Little 512 160 32 2 × 80 NO

SHA-1 Big 512 160 32 80 YES
SHA-256 Big 512 256 32 64 YES
SHA-512 Big 1024 512 64 80 YES

Whirlpool Neutral 512 512 - 10∗ YES

(*) Since Whirlpool has an architecture based on a block cipher, we will use the term “round”

instead of “step” in this paper.

speed of an algorithm, Pentium may run in a smaller number of cycles than
Pentium II/III.
Our implementation and performance measurement results show that, for

MD5 and the RIPEMD family, the three-block parallel hashing on Pentium III
reduces a cycle count of one block operation significantly as compared with
the straightforward implementation. Also our instruction scheduling of SHA-
1 and SHA-256 works excellently on Pentium III. In particular, the pipeline
efficiency of SHA-1 reaches 2.52 µops/cycle. Since at most two integer/logical
µops can be executed simultaneously on Pentium III, this shows that memory
access instructions in the message scheduling part that was introduced in the
SHA family are “hidden” in other logical and arithmetic instructions, which
contributes to an effective use of the pipelines.
Another interesting result is that the two 512-bit hash functions SHA-512 and

Whirlpool run almost at the same speed on Pentium III, while these algorithms
have totally different architectures and design philosophies (and Whirlpool looks
a much simpler algorithm). This does not seem to be a part of design principles
of Whirlpool as far as we know. It should be also noted that since SHA-512 is
designed for a pure 64-bit environment, it suffers performance penalties from
some missing 64-bit instructions on Pentium III. Hence on a genuine 64-bit
processor, SHA-512 might outperform Whirlpool.

2 Dedicated Hash Functions

Table 1 shows features of seven dedicated hash functions we deal with in this pa-
per, and Table 2 summarizes the definitions of operations in these hash functions.
So far there have been a lot of concrete proposals for efficient hash functions.
The first constructions for hash functions were based on an efficient conven-
tional encryption scheme such as DES. Although some trust has been built up
in the security of these proposals, their software performance was not very well
for the practical use, since they are typically a couple of times slower than the
corresponding block cipher.

MD4, proposed by R. Rivest in 1990 [R90,R492], is the first dedicated hash
function that targeted at speed in software (MD2 has a totally different archi-



Table 2. Definitions of the operations for dedicated hash functions

Algorithm: Operations in one step Nonlinear round functions at bit level

MD5: fi(x, y, z) = (x ∧ y) ∨ (¬x ∧ z) 0 ≤ i ≤ 15
Main stream fi(x, y, z) = (x ∧ z) ∨ (y ∧ ¬z) 16 ≤ i ≤ 31
A := B + (A+ fi(B,C,D) +Xt[i] +Ki)

<<<si fi(x, y, z) = x⊕ y ⊕ z 32 ≤ i ≤ 47
fi(x, y, z) = y ⊕ (x ∨ ¬z) 48 ≤ i ≤ 63

RIPEMD-128: fi(x, y, z) = x⊕ y ⊕ z 0 ≤ i ≤ 15
Main streams 1 and 2 fi(x, y, z) = (x ∧ y) ∨ (¬x ∧ z) 16 ≤ i ≤ 31
A := B + (A+ fi(B,C,D) +Xt[i] +Ki)

<<<si fi(x, y, z) = (x ∨ ¬y)⊕ z 32 ≤ i ≤ 47
fi(x, y, z) = (x ∧ z) ∨ (y ∧ ¬z) 48 ≤ i ≤ 63
In their second stream,
fi is applied in the reversed order.

RIPEMD-160: fi(x, y, z) = x⊕ y ⊕ z 0 ≤ i ≤ 15
Main streams 1 and 2 fi(x, y, z) = (x ∧ y) ∨ (¬x ∧ z) 16 ≤ i ≤ 31
A := (A+ fi(B,C,D) +Xt[i] +Ki)

<<<si + E fi(x, y, z) = (x ∨ ¬y)⊕ z 32 ≤ i ≤ 47

C := C<<<10 fi(x, y, z) = (x ∧ z) ∨ (y ∧ ¬z) 48 ≤ i ≤ 63
fi(x, y, z) = x⊕ (y ∨ ¬z) 64 ≤ i ≤ 79
In their second stream,
fi is applied in the reversed order.

SHA-1:

Message scheduling fi(x, y, z) = (x ∧ y) ∨ (¬x ∧ z) 0 ≤ i ≤ 19
Xi := (Xi−3 ⊕Xi−8 ⊕Xi−14 ⊕Xi−16)

<<<1 fi(x, y, z) = x⊕ y ⊕ z 20 ≤ i ≤ 39
Main stream fi(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z) 40 ≤ i ≤ 59
E := A<<<5 + fi(B,C,D) +Xi +Ki + E fi(x, y, z) = x⊕ y ⊕ z 60 ≤ i ≤ 79
B := B<<<30

SHA-256:

Message scheduling Ch(x, y, z) = (x ∧ y) ∨ (¬x ∧ z)
Xi := σ1(Xi−2) +Xi−7 + σ0(Xi−15) +Xi−16 Maj(x, y, z)

16 ≤ i ≤ 63 = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)
Main stream Σ0(x) = x>>>2 ⊕ x>>>13 ⊕ x>>>22

T1 := H +Σ1(E) + Ch(E,F,G) +Ki +Xi Σ1(x) = x>>>6 ⊕ x>>>11 ⊕ x>>>25

T2 := Σ0(A) +Maj(A,B,C) σ0(x) = x>>>7 ⊕ x>>>18 ⊕ xÀ3

D := D + T1 σ1(x) = x>>>17 ⊕ x>>>19 ⊕ xÀ10

H := T1 + T2

SHA-512:

Message scheduling Ch(x, y, z) = (x ∧ y) ∨ (¬x ∧ z)
Xi := σ1(Xi−2) +Xi−7 + σ0(Xi−15) +Xi−16 Maj(x, y, z)

16 ≤ i ≤ 79 = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)
Main stream Σ0(x) = x>>>28 ⊕ x>>>34 ⊕ x>>>39

T1 := H +Σ1(E) + Ch(E,F,G) +Ki +Xi Σ1(x) = x>>>14 ⊕ x>>>18 ⊕ x>>>41

T2 := Σ0(A) +Maj(A,B,C) σ0(x) = x>>>1 ⊕ x>>>8 ⊕ xÀ7

D := D + T1 σ1(x) = x>>>19 ⊕ x>>>61 ⊕ xÀ6

H := T1 + T2

Whirlpool:

Message scheduling

E
r
i =

7
∑

j=0

Tablej [(E
r−1

⊕K
r−1

)(i−j)mod8,j ]

Main stream

X
r
i =

7
∑

j=0

Tablej [(X
r−1

⊕ E
r
)(i−j)mod8,j ]

(1 ≤ r ≤ 10)

a =











a0

a1

.

.

.
a7











=











a00 a01 · · · a07

a10 a11 · · · a17

.

.

.
.
.
.

. . .
.
.
.

a70 a71 · · · a77











a = X,E or K

A,B,C,D,E, F,G,H : Intermediate variables
K : Fixed constant value
X : Message block (and its derivatives)
xÀn, x¿n : Right/Left shift of x by n bits
x>>>n, x<<<n : Right/Left rotate shift of x by n bits



tecture and is slow). It was particularly designed to archive high performance
on 32-bit processors that were the architecture of the future at the time. The
algorithm is based on a simple set of primitive operations such as add, xor,
or etc. on 32-bit words. Additionally, MD4 was designed to be favorable to a
“little-endian” architecture, which obviously fits the Intel processor architecture
perfectly. We do not deal with MD4 in this paper because it was broken several
years ago [Dob98]. Almost all hash functions discussed hereafter are direct de-
scendants of MD4 and inherit its structural characteristics. TheMD5 algorithm
is an extension of the MD4 algorithm, increasing the number of steps from 48
to 64 [R592], and it is one of the most widely used dedicated hash algorithms
in real applications. Some weaknesses of MD5 are reported in [Dob96][Rob96],
although a collision of MD5 has not been found.

RIPEMD-128 and RIPEMD-160 [DBP96] evolved out of RIPEMD,
which was developed as a strengthened version of MD4 by the RIPE consor-
tium. RIPEMD-128 was developed out of RIPEMD-160 as a plug-in substitute
for RIPEMD. They also have a little-endian architecture. One of the new char-
acteristics of these hash functions is that they have essentially two parallel in-
stances of MD4. Each of these instances includes 64 and 80 steps for RIPE
MD-128 and RIPEMD-160, respectively. This structure has a potential ability
to realize high performance when implemented on pipelined or superscalar ex-
ecution mechanisms. Additionaly, each step of RIPEMD-160 has a rotate shift
operation by 10 bits. Both of RIPEMD-128 and RIPEMD-160 are standardized
as dedicated hash functions in ISO/IEC 10118 [ISO97].

SHA-1 [FIP95] designed by NSA and published by NIST was also based on
the design of MD4. The round functions of SHA-1 are exactly the same as those
of MD4 while the total number of steps is 80. However, the SHA family went
over to “big-endian”, throwing away suitability for Intel processors. Moreover,
it newly introduced a “message scheduling part”. The design criteria of these
new characteristics have not been made public. Although the role of the mes-
sage schedule in the SHA family is similar to that of the key schedule in block
ciphers, the message schedule must be done for each block like the on-the-fly
implementation in block ciphers. The message schedule and main stream can
be done independently, which means that it has a high capability for parallel
execution, considering its rather high complexity. SHA-1 is also standardized as
one of the dedicated hash functions in ISO/IEC 10118 [ISO97].

Recently SHA-256 and SHA-512 [FIP01] were proposed to keep up with
possible future applications where longer message digests are required . They
have almost the same basic components, except that SHA-256 operates on eight
32-bit words, while SHA-512 operates on eight 64-bit words. SHA-512 is the first
dedicated hash function designed for a genuine 64-bit processor. SHA-256 and
SHA-512 also have a message schedule part, which has a much more complex
structure than that of SHA-1, including many shift operations in both message
scheduling part and main stream. Another feature of these algorithms is that
exactly the same operations are used in all steps.



Whirlpool does not belong to the MD-family nor to the SHA-family. It di-
rectly inherits its structure from Rijndael. The state of Whirlpool consists of a
8×8 matrix over GF (28), while that of Rijndael was designed on a 4×4 matrix
over GF (28). A transformation from a state to a next state is given by eight
8-bit to 64-bit look-up tables. Hence Whirlpool demonstrates best performance
in true 64-bit environments, but can also realize good performance on any pro-
cessor. Whirlpool has a message scheduling part, which is exactly the same as its
main stream. Whirlpool is endian-neutral. Recently the designer of Whirlpool
announced a tweak of the algorithm to improve its hardware efficiency. SHA-256,
-512 and this tweak of Whirlpool are under discussion for an inclusion in the
next version of the ISO/IEC 10118 standard.

3 A Brief Overview of Pentium III Processor

Pentium III supports all x86 instructions with eight 32-bit registers, and addi-
tional MMX instructions with eight 64-bit registers (MMX registers). The main
motivation of the MMX instructions is to enable 16×4 / 32×2 parallel operations
for multimedia applications. Although Pentium III is not a full 64-bit processor
such as the Alpha processor, — a 64-bit addition instruction is missing, for in-
stance —, the MMX instructions are attractive to wider applications since most
of them work in one cycle including a 64-bit memory load instruction. Pentium
III also provides XMM instructions (SSE) with eight 128-bit registers, but we
are not able to use them for fast hashing because they operate on floating-point
data elements.
The following shows some of the essential topics for optimizing on Pentium

II/III, which greatly owes to an excellent guidebook for optimizing Pentium
family written by Agner Fog [Fog00].

Instruction Decoding In the decoding stage, instruction codes are broken
down into simpler micro-operations (µops), where one instruction usually
consists of one to four µops. Pentium II/III has three decoders that can work
in parallel and theoretically can generate six µops per cycle. However due to
limitations coming from instruction fetch rules and decoder capabilities, the
code length and order of instructions heavily affect efficiency of the decoding
speed. A typical decoding rate of real applications is two to three µops per
cycle on an average.
The decoding speed is not an important issue for MD5 and the RIPEMD
family since the performance bottleneck of these hash functions is actually a
long data dependency chain, but it can be a critical factor for algorithms with
high parallel computation capabilities such as the SHA family. Generally,
optimizing decoding performance without causing other pipeline stalls is an
extremely difficult puzzle to solve.

Register Renaming After the decoding stage, all permanent registers (x86
and MMX registers) are renamed into internal registers. This mechanism
solves fake data dependency chains caused by register starvation. The re-
naming is controlled by the register alias table (RAT), which can handle



only three µops per cycle. This means that overall performance of Pentium
II/III can not exceed three µops per cycle. Moreover the RAT can read
two permanent registers in a cycle, and hence depending on the situation
we should use an absolute addressing mode instead of a register indirect
addressing mode.
Some hash functions repeatedly use a fixed constant value. If a register is
free, it is common to assign the constant value to the register, which is best
in terms of instruction length. However in order to avoid the register read
stalls, we often handled the value using an immediate addressing mode if
possible, or an absolute addressing mode via memory, particularly in the
case of MMX instructions.

Execution Units Pentium II/III has five independent execution ports p0 to
p4 to carry out a sequence of µops in an out-of-order manner. p0 and p1
are mainly for arithmetic and logical operations, p2 for load and p3 and p4
for store operations. An important consequence of this architecture is that
if arithmetic and logical operations are a dominant factor of performance,
load and store operations can be “hidden” behind them. In other words, we
should store a temporary value not in a free register but in memory in such
a case.
The SHA family requires memory operations more frequently than MD5 and
the RIPEMD family due to the existence of the message scheduling part, and
also due to a large hash size for SHA-256 and SHA-512. If properly imple-
mented these hash functions can take full advantage of hiding load/store
operations behind other operations.

Other topics In Pentium II/III, a partial register/memory access (reading
from a register/memory after writing to a part of it) causes a heavy per-
formance penalty; i.e. a register/memory must be basically read/written in
the same size at the same memory address. In this paper, the partial memory
access can be a problem only in the 64-bit oriented hash functions SHA-512
and Whirlpool as will be shown in a later section.
According to [Fog00], the retirement stage of µops can be a bottleneck of
performance. We however can do little about this stall factor, while the
partial register/memory stalls can be avoided by programmers.

4 API and How to Measure Performance

We developed our assembly language programs on the following hardware and
software environments. The size of RAM memory is not an important issue
because we designed the programs so that everything could be on the first level
cache (code 16KB + data 16KB).

Hardware: IBM Compatible PC with Pentium III 800MHz and 256MB RAM
Software: Windows 98, Visual C++ 6.0, MASM 6.15

We described a hashing logic in a subroutine form callable from C language
and measured its execution time from outside the subroutine, which reflects



hashing performance in real applications. The subroutine API is that an input
message to be compressed and a resultant hashed value are represented as a
byte sequence passed by pointers, which is also common as an interface of hash
functions. Note that this means that big-endian algorithms, specifically the SHA
family, must perform a byte-order swap operation inside the subroutine and it
is counted as a part of hashing time. We assume a padding operation is done
outside this routine.
In the next section, we will give a method of coding for hashing two or three

independent messages of the same block length in parallel. For simplicity, we
adopted the same API for this method as that for a straightforward implemen-
tation, appending the second/third message to the first/second message for each
block. Hence a procedure for combining two separate 4-byte words into one 8-
byte MMX register is also counted as a part of hashing time. If we interleave
different messages in every word (4-byte), we can skip this procedure, but did
not adopt this approach because assuming such interface looks uncommon in
real applications.
We actually measured time for hashing a total of 8KB message bytes, which

is half of the first level data cache size. To maximize speed, we unrolled an inner
loop as long as the code is fully covered by the first level code cache. The cycle
counting was done using the rdtsc (read time stamp counter) instruction, as
shown in [Fog00]. The timing was measured several times to remove possible
negative effects on performance due to interrupts by an operating system. Also
note that our programs are neither data-dependent nor self-modified.

5 Implementations of Hash Functions on Pentium III

5.1 Implementation methods

We designed three types of assembly language codes for 32-bit oriented hash
functions (MD5, RIPEMD-128 -160, SHA-1 -256); namely, straightforward, two-
block parallel and three-block parallel as follows. The second and third methods
fully extract the power of parallel execution capabilities of MMX. For 64-bit
oriented hash functions (SHA-512 and Whirlpool), we implemented the straight-
forward version only (no way to parallelize).

Method 1: Straightforward

MD5, RIPEMD-128, RIPEMD-160, SHA-1
All words of the main stream are always held in four or five x86 registers
and the remaining registers are used as temporary variables. This is the most
common implementation of dedicated hash functions in software.

SHA-256, SHA-512
All eight 32-bit/64-bit words of the main stream are stored in memory be-
cause of the register starvation of the Pentium family, and x86/MMX regis-
ters are basically used only as temporary variables. Additionally, for SHA-
512, 32-bit x86 registers are essentially used to realize a 64-bit addition
operation, which is a missing instruction in Pentium III.



Whirlpool
A 64-byte state matrix is always held in all eight MMX registers. However,
since the state information of the preceding round is necessary to generate
the state matrix of the next round, it must be, after all, stored in memory
at the end of each round.

Method 2: Two-block parallel

This method is applied only to 32-bit oriented hash functions (MD5, RIPEMD
-128, RIPEMD-160, SHA-1, SHA-256), where a word of one message is
loaded on the upper half of 64-bit register/memory and a word of another mes-
sage is loaded on the lower half. This enables fast parallel hashing computation
of two independent messages, but the following penalties peculiar to Pentium
III should be taken into consideration.

1. The code length of an MMX instruction is usually longer (typically by one
byte) than that of an equivalent x86 instruction, which may lead to a per-
formance penalty due to an inefficient instruction decoding.

2. Since MMX instructions do not have an immediate addressing mode, a 64-bit
immediate value must be processed via memory, which increases the number
of memory access µops (p2, p3 and p4). But this penalty is often able to be
hidden in integer µops (p0 and p1).

3. A parallel rotate shift instruction is missing (if a shift count is not a multiple
of 16). To do this on Pentium III, four instructions are needed; that is, movq
(copy), psrld (right shift), pslld (left shift) and pxor (xor).

Our implementation will show that gains by parallel computation exceed the
penalties caused by these factors.

Method 3: Three-block parallel

This method is a combination of the two methods above, which is hence appli-
cable to 32-bit oriented dedicated hash functions. Since methods 1 and 2 use
different types of registers, these two programs can “coexist”, that is, can be
executed in parallel without depriving each other of hardware resources. Al-
though this is not an essential methodological improvement of implementation,
it is expected that a better instruction scheduling leads to further improvement
of hashing speed, particularly if a long data dependency chain dominates the
speed of a target algorithm. Possible penalties that should be noted in this case
are:

1. Code size: The code size becomes big because the entire code is simply a
merged combination of the two implementations. But this does not lead to
an actual big penalty issue as long as the entire code is within the first level
cache.

2. Register read stall: The heavy simultaneous use of x86 and MMX registers
easily create register read stalls. It is often very difficult to completely remove
the possibility of this stall without causing other penalties.



Our implementation will show that this three-block method actually gives a
performance improvement for MD5, RIPEMD-128, RIPEMD-160.

5.2 Implementation results and discussions

Table 7 shows our implementation results of the seven dedicated hash functions.
We manually counted the number of µops of one block operation, referring to
[Fog00]. “p01” denotes logical and integer µops that use pipes p0 and/or p1.
“p2” and “p34” denote memory read/write µops that use pipes p2 and p3, p4,
respectively. Note again that the cycle counts of the SHA family include time
for endian conversion and that the cycle counts of methods 2 and 3 include time
for merging two 32-bit words into one 64-bit register.

MD5
The performance of our straightforward implementation of MD5 on Pentium
III is approximately the same as that shown in [Bos97] on Pentium. This
reflects the fact that the frequency of memory access operations is very low
and a long data dependency chain is an actual dominant factor of its hashing
speed. In fact, the µops/cycle value of our program is only 1.64 while the
maximal performance that Pentium III can achieve is 3 µops/cycle.

The two-block and three-block parallel implementations significantly im-
prove the efficiency of hashing. In particular, it can be seen that the three-
block version is almost perfectly scheduled (1.83 p01 µops/cycle) and 30%
faster than the straightforward version.

RIPEMD-128, RIPEMD-160
The same tendency can be seen for RIPEMD-128 and RIPEMD-160 as
for MD5. One possible reason that RIPEMD-160 has a better µops/cycle
value for two-block and three-block versions is the existence of the operation
“B<<<10” that was introduced in RIPEMD-160. This operation takes four
µops on MMX, which can be executed independently with other operations.

[Note] Since the RIPEMD family has two parallel instances, it is possible
to assign each of the two instances to each of two types of registers, that is,
one to 32-bit registers and the other to 64-bit MMX registers. This makes a
parallel execution inside one message block possible, but unfortunately this
did not run very fast, probably because assigning the full 64-bit registers for
only one instance execution was too inefficient reducing overall performance.
Another possibility to utilize the parallelism of the RIPEMD family might
be interleaving the first instance and the second instance (our current code
executes the second one after finishing the first one). Although this method
leads to an increase in a total number of µops due to the register starvation,
the parallelism of the resultant code will be improved. However we have
not succeeded, so far, in a speed-up of a straightforward implementation of
RIPEMD-128 or RIPEMD-160 using this technique.

SHA-1
One big difference between the SHA family and the (RIPE)MD family is



Table 3. Coding example of one step of round 2 of RIPEMD-128 on a Pentium III
processor. The chaining variable A,B,C,D is stored in x86 registers eax through edx

or MMX registers mm0 through mm3. In the three-block parallel implementation, these
codes are interleaved.

Straightforward code using x86 Two-block code using MMX

mov esi, edx paddd mm0, [eax+8*X]

add eax, (X+4)[edi] movq mm5, mm3

xor esi, ecx pxor mm5, mm2

and esi, ebx paddd mm0, K

xor esi, edx pand mm5, mm1

lea eax, [eax+esi+K] pxor mm5, mm3

rol eax, s paddd mm0, mm5

movq mm5, mm0 ; left rotate
pslld mm0, s ; shift of mm0
psrld mm5, 32-s ; by s bits
pxor mm0, mm5 ;

the existence of a message scheduling part. The message scheduling part of
the SHA family is independent of the main stream and contains many mem-
ory access operations enabling the straightforward SHA-1 implementation
to optimally exploit the increased hardware parallelism of Pentium III. The
value 2.52 µops/cycles of our straightforward version is the highest of our
programs.

Because of this highly parallel feature of SHA-1, the performance improve-
ment of the two-block version is not so big as that of the (RIPE)MD family.
Moreover the three-block version is rather slower than the two-block version.
This suggests that, as far as an instruction scheduling efficiency of SHA-1
is concerned, our implementation has reached almost an optimal level on
Pentium III (1.82 p01 µops/cycle).

SHA-256
SHA-256 (and SHA-512) uses eight words and it is no longer possible to
keep all internal values on the permanent registers. They must be stored in
memory and be read from/written to memory in each step, which inevitably
increases the frequency of memory access. However, since these memory
access µops can be mostly carried out in parallel with logical and integer
uops, the pipeline scheduling of SHA-256 works excellently (2.32 µops/cycle).

The two-block parallel implementation of SHA-256 runs 15% faster than
the straightforward implementation, but this improvement is smaller than
that in other hash algorithms. This is because SHA-256 (and SHA-512) has
many rotate shift operations in both the message scheduling part and the
main stream, which causes a non-negligible increase of the number of µops
when realized in 64-bit MMX registers. The performance of the three-block
parallel version was not good for the same reason as for SHA-1.



Table 4. Coding example of one step of round 2 of SHA-1 on a Pentium III processor.
The chaining variable A,B,C,D,E is stored in x86 registers eax,ebx,ecx,edx,ebp

or MMX registers mm0 through mm4. In the three-block parallel implementation, these
codes are interleaved. Instructions marked “m.s.” are for message scheduling part.

Straightforward code using x86 Two-block code using MMX

mov esi,W+(s*4) ; m.s. movq mm6,WW+(s*8) ; m.s.
mov edi,edx movq mm5,mm1

xor esi,W+(s1*4) ; m.s. pxor mm6,WW+(s1*8) ; m.s.
xor edi,ecx pxor mm5,mm2

xor esi,W+(s2*4) ; m.s. pxor mm6,WW+(s2*8) ; m.s.
xor edi,ebx pxor mm5,mm3

xor esi,W+(s3*4) ; m.s. pxor mm6,WW+(s3*8) ; m.s.
add ebp,edi paddd mm4,mm5

rol esi,1 ; m.s. movq mm7,mm6 ; m.s.
mov edi,eax paddd mm4,CONSTonMEM

add ebp,esi paddd mm6,mm6 ; m.s.
rol edi,5 psrld mm7,31 ; m.s.
rol ebx,30 movq mm5,mm1

lea ebp,[ebp+edi+CONST] pxor mm6,mm7 ; m.s.
mov W+(s*4),esi ; m.s. psrld mm1, 2

paddd mm4, mm6

movq WW+(s*8),mm6 ; m.s.
pslld mm5,30

movq mm6,mm0

movq mm7,mm0

pslld mm6,5

paddd mm4, mm6

psrld mm7,27

pxor mm1,mm5

paddd mm4,mm7

[Note] The architecture of SHA-256 is quite different from that of SHA-1.
But interestingly, the rate of the number of memory access µops to all µops
is almost the same (approximately 30%), which is ideal in terms of Pentium
III scheduling. Is this a hidden design criteria of the SHA family??

SHA-512
SHA-512 is a 64-bit oriented hash function and hence it is essential to uti-
lize MMX registers and instructions. However, since Pentium III does not
have a 64-bit addition instruction (but fortunately it does have a 64-bit shift
operation! Pentium 4 supports both instructions), we realized it by simply
combining two 32-bit additions. Although this naive method obviously suf-
fers a non-negligible performance penalty from 32-bit from/to 64-bit register
transfer, we do not know a faster method to do this. Another penalty that
we should note is a partial memory access. Below left is a straightforward
method for coding the last part of one step, but this causes a partial memory



access at the beginning of the next step. Below right is the corrected code
we adopted, which is free from the penalty and additionally saves one µop.

The pipeline scheduling of our implementation is good (2.24 µops/cycle),
but we feel that there is still room for performance improvement since the
hash algorithm itself allows higher parallel execution capability.

Table 5. 64-bit addition and partial memory stall on a Pentium III processor.

µops µops
add [mem+0],eax ; 4 add eax,[mem+0] ; 2
adc [mem+4],ebx ; 6 adc ebx,[mem+4] ; 3

movd mm0,eax ; 1
movd mm1,ebx ; 1

(next step) punpckldq mm0,mm1 ; 1
movq mm0,[mem] ; 1 ← Stall movq [mem],mm0 ; 2

Whirlpool
The simplest realization of Whirlpool is to keep the state matrix in eight
MMX registers and eight 8-bit to 64-bit look-up tables on memory, but
these tables completely cover all the 16KB data cache of Pentium III, which
leads to data cache miss penalties. We hence had only four tables on memory
and generated the remaining from them when necessary using the pshufw
(packed shuffle word) instruction.

This instruction works only in Pentium III (not in Pentium II and Celeron);
all other instructions throughout our codes run on Pentium II and Celeron.
Also taking into consideration reducing the frequency of memory access and
removing the possibility of partial register/memory stalls, we wrote the entire
algorithm by repeating the piece of code shown in Table 6.

The pipeline of this program works very well, achieving 2.29 µops/cycle. The
resultant hashing speed (cycles/byte) is more than 3.5 times faster than that

Table 6. An essential part of Whirlpool on a Pentium III processor.

mov edx,[Matrix Address] ; preceding state matrix
movzx esi, dl ; address generation
pxor mm0, Table1[esi*8] ; current state matrix
movzx esi, dh

pxor mm1, Table2[esi*8]

shr esi, 16

movzx esi, dl

pxor mm2, Table3[esi*8]

movzx esi, dh

pxor mm3, Table4[esi*8]



Table 7. Performance Figure

Algorithm µops/block cycles cycles µops/cycle size (bytes) Pentium[Bos97]
method [p01] [p2] p[34] [total] /block /byte [p01] [total] code data #inst. cycles i/c

MD5 1 503 69 10 582 354 5.53 1.42 1.64 1750 32 577 337 1.71
MD5 2 783 148 40 971 276 4.31 1.42 1.76 3331 704
MD5 3 1283 217 50 1550 234 3.66 1.83 2.21 5259 736

RIPEMD-128 1 875 141 18 1034 602 9.41 1.45 1.72 2707 48 1024 592 1.73
RIPEMD-128 2 1379 252 48 1679 477 7.45 1.45 1.76 5703 280
RIPEMD-128 3 2251 393 66 2710 425 6.64 1.77 2.13 8379 320

RIPEMD-160 1 1421 176 22 1619 911 14.23 1.56 1.78 4227 56 1639 1013 1.62
RIPEMD-160 2 2533 383 52 2968 738 11.53 1.72 2.01 10110 320
RIPEMD-160 3 3951 559 74 4584 726 11.34 1.81 2.10 14305 376

SHA-1 1 1100 295 174 1569 623 9.73 1.77 2.52 4664 356 1469 837 1.76
SHA-1 2 1928 389 170 2487 531 8.30 1.82 2.34 8567 248
SHA-1 3 2977 684 376 4037 559 8.73 1.78 2.41 13175 340

SHA-256 1 2491 609 418 3518 1519 23.73 1.64 2.32 10202 144

SHA-256(∗) 2 4385 689 418 5492 1318 20.59 1.66 2.08 6705 1232

SHA-256(∗) 3 6921 1352 852 9125 1417 22.14 1.63 2.15 14142 1816

SHA-512(∗) 1 8828 1522 1186 11536 5143 40.18 1.72 2.24 7203 1496

Whirlpool(∗) 1 3328 1634 384 5346 2337 36.52 1.42 2.29 2456 8496

(*) only partially loop-unrolled in a message block to reduce code size within the first level cache

(16KB). All other implementations are fully loop-unrolled.

of the designers’ C implementation [BR00]. Very interestingly, this perfor-
mance is almost the same as that of SHA-512; Whirlpool is slightly (within
10%) faster than SHA-512, but this difference looks within “a margin of
implementation”.

6 Conclusions

This paper showed a performance analysis and speeding-up method of dedicated
hash functions on the Pentium III processor. A further improvement of software
performance is ongoing.

An overall performance of a processor can be achieved by (1) high instruc-
tion parallelism, (2) high SIMD parallelism and (3) high clock frequency. The
index “cycle/byte” is the most common performance measure of cryptographic
algorithms, which direct reflects (1) and (2), but not (3). So we should note that
this measure is appropriate to compare software performance of given crypto-
graphic algorithms on a fixed target processor, but not necessarily appropriate
to evaluate hardware performance of given processors on a fixed cryptographic
algorithm.

High processor performance has been achieved by improving (1) and (3) in
the past, but in recent processors this seems to be rapidly shifting to (2) and
(3). This means that use of parallel execution of multiple blocks will be much
more important and have a practical impact in near future.



Acknowledgments

We would like to thank Antoon Bosselaers for his careful reading and many
valuable remarks.

References

[BR00] P. Barreto, V. Rijmen, “The Whirlpool hashing function,” First open NESSIE
Workshop record, Leuven, 13-14 November 2000. The document is available at
http://www.cryptonessie.org/workshop/submissions/whirlpool.zip.

[BGV96] A. Bosselaers, R. Govaerts, J. Vandewalle, “Fast hashing on Pentium,” Ad-
vances in Cryptology, Proceedings Crypto ’96, LNCS 1109, N. Koblitz, Ed.,
Springer-Verlag, 1996, pp. 298-312.

[BGV97] A. Bosselaers, R. Govaerts and J. Vandewalle, “SHA: A design for parallel
architectures?,” Advances in Cryptology, Proceedings Eurocrypt’97, LNCS 1233,
W. Fumy, Ed., Springer-Verlag, 1997, pp. 348-362.

[Bos97] A. Bosselaers, “Even faster hashing on the Pentium,” presented at the rump
session of Eurocrypt’97. Available at http://www.esat.kuleuven.ac.be/cosicart
/pdf/AB-9701.pdf.

[Dob98] H. Dobbertin, “Cryptanalysis of MD4,” J. Cryptology, Vol. 11, pp. 253-271,
1998.

[Dob96] H. Dobbertin, “The status of MD5 after a recent attack,” Cryptobytes, Vol.
2, No. 2, pp. 1-6, 1996. Available at ftp://ftp.rsasecurity.com/pub/cryptobytes/
crypto2n2.pdf

[DBP96] H. Dobbertin, A. Bosselaers, B. Preneel, “RIPEMD-160, a strengthened
version of RIPEMD,” Fast Software Encryption, LNCS 1039, D. Gollmann,
Ed., Springer-Verlag, 1996, pp. 71-82. The final version is available at http://
www.esat.kuleuven.ac.be/cosicart/pdf/AB-9601.pdf

[FIP95] Federal Information Processing Standards (FIPS) Publication 180-1, Secure
Hash Standard (SHS), U.S. DoC/NIST, April 17, 1995.

[FIP01] Draft Federal Information Processing Standards (FIPS) Publication 180-2,
Secure Hash Standard (SHS), U.S. DoC/NIST, May 30, 2001.

[Fog00] Agner Fog, How to Optimize for the Pentium Microprocessors, 03 July 2000.
Available at http://www.agner.org/assem/

[Int01] Intel, Intel Architecture Optimization. Reference Manual, 1999. Order Number
245127-001. Available at http://www.intel.com/design/pentiumIII/manuals/

[Int02] Intel, Intel Architecture Optimization Manual, 1997. Order Number 242816-
003. Available at http://www.intel.com/design/pentium/manuals/

[Int03] Intel, Intel Architecture Software Developer’s Manual, 2001.
Volume 1 Basic Architecture (Order Number 245470)
Volume 2 Instruction Set Reference (Order Number 245471)
Volume 3 System Programming Guide (Order Number 245472)
Available at http://www.intel.com/design/pentiumIII/manuals/

[ISO97] ISO/IEC 10118-3, “Information technology - Security techniques - Hash-
functions -Part 3: Dedicated hash-functions,” IS 10118, 1997.

[Lip98] H. Lipmaa, “IDEA, A Cipher for Multimedia Architectures?,” Selected Areas
in Cryptography ’98, LNCS 1556, Henk Meijer, Eds., Springer-Verlag, 1998,
pages 248–263. Available at http://www.tcs.hut.fi/ helger/papers/lip98/.



[PRB98] B. Preneel, V. Rijmen, A. Bosselaers, “Recent developments in the design
of conventional cryptographic algorithms,” Computer Security and Industrial
Cryptography, State of the Art and Evolution, LNCS 1528, B. Preneel, V. Rij-
men, Eds., Springer-Verlag, 1998, pp. 106-131.

[R90] R.L. Rivest, “The MD4 message digest algorithm,” Advances in Cryptology,
Proceedings Crypto ’90, LNCS 537, S. Vanstone, Ed., Springer-Verlag, 1991,
pp. 303-311.

[R492] R.L. Rivest, “The MD4 message-digest algorithm,” Request for comments
(RFC) 1320, Internet Activities Board, Internet Privacy Task Force, April 1992.

[R592] R.L. Rivest, “The MD5 message-digest algorithm,” Request for comments
(RFC) 1321, Internet Activities Board, Internet Privacy Task Force, April 1992.

[Rob96] M. Robshaw, “On recent results for MD2, MD4 and MD5,” RSA laborato-
ries’ Bulletin, No. 4, November 1996. Available at ftp://ftp.rsasecurity.com/
pub/pdfs/bulletn4.pdf


