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Abstract. We study the problem of root extraction in finite Abelian
groups, where the group order is unknown. This is a natural generaliza-
tion of the problem of decrypting RSA ciphertexts. We study the com-
plexity of this problem for generic algorithms, that is, algorithms that
work for any group and do not use any special properties of the group at
hand. We prove an exponential lower bound on the generic complexity of
root extraction, even if the algorithm can choose the ”public exponent”
itself. In other words, both the standard and the strong RSA assumption
are provably true w.r.t. generic algorithms. The results hold for arbitrary
groups, so security w.r.t. generic attacks follows for any cryptographic
construction based on root extracting. As an example of this, we re-
visit Cramer-Shoup signature scheme [10]. We modify the scheme such
that it becomes a generic algorithm. This allows us to implement it in
RSA groups without the original restriction that the modulus must be
a product of safe primes. It can also be implemented in class groups.
In all cases, security follows from a well defined complexity assumption
(the strong root assumption), without relying on random oracles, and
the assumption is shown to be true w.r.t. generic attacks.

1 Introduction

The well known RSA assumption says, informally speaking, that given a large
RSA modulus N, exponent e and z € Zy,;, it is hard to find y, such that y® =
2 mod N. The strong RSA assumption says that given only n,z it is hard to
find any root of x, i.e., to find y,e > 1 such that y¢ = x mod N. Clearly the
second problem is potentially easier to solve, so the assumption that it is hard
is potentially stronger.

Both these assumptions generalize in a natural way to any finite Abelian
group: suppose we are given a description of some large finite Abelian group G
allowing us to represent elements in G and compute inversion and multiplica-
tion in G efficiently. For RSA, the modulus N plays the role of the description.
Another example is class groups, where the discriminant A serves as the descrip-
tion. Then we can define the root assumption which says that given x € G and
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number e > 1, it is hard to find y such that y© = x. The strong root assumption
says that given x, it is hard to find y,e > 1 such that y°® = x.

Clearly, it is essential for these assumptions to hold, that the order of G is
hard to compute from the description of G. It must also be difficult to compute
discrete logarithms in G. Otherwise, root extraction would be easy: we would
be able to find a multiple M of the order of the element x, and then computing
z¢” mod M would produce the desired root (if ged(e, |G|) = 1).

In this paper, we study the complexity of root finding for generic algorithms,
that is, algorithms that work in any group because they use no special properties
of the group G and only use the basic group operations for computing in G.
The generic complexity of discrete logarithms was showed to be exponential
by Nechaev [18] and Shoup[24] who introduced a broader model for generic
algorithms. In both models, however, the algorithm knows the order of the group,
which means we cannot use them for studying the (strong) root assumption as
we defined it here !. Generic algorithms based on those models were studied and
discussed in [16,17,22,12,23,21]. A similar concept of algebraic algorithms was
introduced in [3].

We propose a new model, in which the group and its order are hidden from
the algorithm (as in RSA and class groups setting). More precisely, the group
is chosen at random according to a known probability distribution D, and the
algorithm only knows that the group order is in a certain interval. For instance,
if D is chosen to be the output distribution produced by an RSA key generation
algorithm, then this models generic attacks against RSA. But the same model
also incorporates generic attacks against schemes based on class groups (we
elaborate later on this).

We show that if D is a so called hard distribution, then both the root and
strong root assumptions are true for generic algorithms, namely we show ex-
ponential lower bounds for both standard and strong root extraction. Roughly
speaking, D is hard if, when you choose the group order n according to D, then
the uncertainty about the largest prime factor in n is large (later in the paper,
we define what this precisely means). For instance, if the distribution is such
that the largest prime factor in n is a uniformly chosen k + 1-bit prime, then,
ignoring lower order contributions, extracting roots with non-negligible probabil-
ity requires time Q(Qk/ 4) for a generic algorithm. More precise bounds are given
later in the paper. Our proof technique resembles that of Shoup [24], however,
we need some new ideas in order to take advantage of the uncertainty about
group order (which is known and fixed in Shoup’s case).

Thus the distribution of the order is the only important factor. Knowledge
of the group structure, such as the number of cyclic components, does not help
the algorithm. Standard RSA key generation produces distributions that are

1 'We note that it is possible to study the generic complexity of root finding in Shoups
model, but in this setting the problem can only be hard if the “public exponent” is
not relatively prime to the order of the group. This was done by Maurer and Wolf
[16]. They show that no efficient generic algorithm can compute p’th roots efficiently
if p? divides the order of the group G and p is a large prime.



indeed hard in our sense, so this means that both the standard and the strong
RSA assumption are provably true w.r.t. generic algorithms. The results hold for
arbitrary groups, so security w.r.t. generic attacks follows for any cryptographic
construction based solely on root extracting being hard.

As an example of this, we revisit the Cramer-Shoup signature scheme [10]. We
modify it such that it becomes a generic algorithm. This allows us to implement
it in RSA groups without the original restriction that the modulus must be a
product of safe primes. It can also be implemented in class groups. Here, however,
we need a “flat tree” signature structure to make the scheme be efficient.

In all cases, security follows from a well defined complexity assumption (the
strong root assumption), without relying on random oracles (in contrast to Biehl
et al. [1]). We stress that the security proof is general, i.e., if our complexity
assumption holds, then the scheme is secure against all polynomial-time attacks,
not just generic ones. In addition, however, our lower bounds imply that the
assumption is true w.r.t. generic attacks.

Before discussing the meaning and significance of our results, we note that
one must always be careful in estimating the value of a generic lower bound. This
has been demonstrated recently where a server aided RSA protocol proposed in
[15] was proved generically secure in [17], but was later broken in [19]. This is
unrelated to our results because neither the generic proof nor the break applied
to root extraction, but to the problem of breaking a particular protocol. We
believe this demonstrates that a generic lower bound for a very specific and not
so well-studied problem is of highly questionable value: the problem may turn
out to be very easy after all, or to be so specialised that there are no variants
of it for which generic solutions are the best. From this point of view, it seems
reasonable to consider generic lower bounds for root extraction.

Nevertheless, we have of course NOT proved that RSA is hard to break,
or that root finding in class groups is hard: for both problems, there are non-
generic algorithms known that solve the problem in sub-exponential time. It
must also be mentioned that while there are groups known for which only generic
algorithms seem to be able to find discrete logs (namely elliptic curve groups),
similar examples are not known for root extraction. Despite this, we believe that
the results are useful and interesting for other reasons:

— They shed some light on the question whether the strong RSA assumption
really is stronger than the standard RSA assumption: since we show expo-
nential generic lower bounds for both problems, it follows that this question
must be studied separately for each type of group: only an algorithm directed
specifically against the group at hand can separate the two problems.

— They give extra credibility to the general belief that the best RSA key gener-
ation is obtained by choosing the prime factors large enough and as randomly
as possible, the point being that this implies that ¢(n) contains at least one
large and random prime factor, and so the distribution of the group order is
hard in our sense. Note that a generic algorithm, namely a straightforward
variant of Pollards p—1 method, will be able to find roots if all primes factors
of ¢(n) are too small. When ¢(n) contains large prime factors this attack is



trivially prevented, but our results say that in fact all generic attacks will
fail.

— The fact that no examples are known of groups where only generic root
finding works, does not mean that such examples do not exist. We hope that
our results can motivate research aimed at finding such examples.

— The generic point of view allows us to look at constructions such as the
Cramer-Shoup signature scheme in an abstract way, and “move” them to
other groups. The generic security of the scheme will be automatically in-
herited, on the other hand the real, non-generic complexity of root finding
may be completely different in different groups. Therefore, having a con-
struction work in arbitrary groups makes it more robust against non-generic
attacks.

1.1 Open Problems

It can be argued that the RSA example can be more naturally considered as a
ring than as a group. One may ask if root extraction is also hard for generic
algorithms allowed to exploit the full ring structure, i.e., it may do additions as
well as multiplications. Boneh and Lipton [2] have considered this problem for
fields, in a model called black-box fields (with known cardinality of the field),
and have shown that in this model, one cannot hide the identity of field elements
from the algorithm using random encodings: the algorithm will be able figure
out in subexponential time which element is hidden behind an encoding, and so
exponential lower bounds in this generic model cannot be shown. The black-box
field model can easily be changed to a black-box ring model. But if we do not
give the algorithm the order of the multiplicative group of units in the ring, it is
unclear whether the results of Boneh and Lipton [2] extend to black-box rings,
and on the other hand also unclear if our lower bound still holds.

2 Lower Bound on Generic Root Extraction Algorithms

2.1 Model

In our model, we have public parameters B,C and D. Here, B, C are natural
numbers and D is a probability distribution on Abelian groups with order in the
interval |B, B + C].

Let G be a finite abelian group of order n chosen according to D and let S
denote the set of bit strings of cardinality at least B + C. We define encoding
function as an injective map o from G into S.

A generic algorithm A on S is a probabilistic algorithm which gets as input
an encoding list (o(x1),....0(x)), where z; € G and o is an encoding function
of G on S. Note that unlike in Shoups’ model [24] this algorithm does not receive
the order n of the group as a part of its input.

The algorithm can query a group oracle O, specifying two indices ¢ and j
from the encoding list, and a sign bit. The oracle returns o(x; & x;) according
to the given sign bit, and this bit string is appended to the encoding list.



The algorithm can also ask the group oracle O for a random element. Then the
oracle chooses a random element r € g G and returns o(r), which is appended to
the encoding list. After its execution the algorithm returns a bit string denoted
by A(o,z1,...,xx).

Note that this model forces the algorithm to be generic by hiding the group
elements behind encodings. In the following we will choose a random encod-
ing function each time the algorithm is executed, and we will show that root
extraction is hard for most encoding functions.

2.2 Lower Bound

The distribution D induces in a natural way a distribution D,, over the primes,
namely we choose a group of order n according to D and look at the largest
prime factor in n. We let a(D) be the maximal probability occurring in D,. One
can think of a(D) as a measure for how hard it is to guess the largest prime
factor of n, since clearly the best strategy is to guess at some prime that has
a maximal probability of being chosen. We also need to measure how large p
can be expected to be. So for an integer M, let (D, M) be the probability that
p < M. As we shall see, a good distribution D (for which root extraction is
hard) has small (D) and small (D, M), even for large values of M 2. Since, as
we shall see, the only important property of D is how the order of the group is
distributed, we will sometimes in the following identify D with the distribution
of group orders it induces.
First we state a number of observations.

Lemma 1. Let n be a number chosen randomly from the interval |B, B + C]
according to the probability distribution D and let p be its biggest prime divisor.
Let a be any fized integer satisfying |a| < 2™. Then the probability that pla is at
most

ma(D).

Proof. There are at most m prime numbers dividing a, each of these can be the
largest prime factor in n with probability at most a(D).

The following lemma was introduced by Shoup [24]:

Lemma 2. Let p be prime and let t > 1. Let F(Xy,..., Xy) € Z/p'[ X1, ..., Xk
be a nonzero polynomial of total degree d. Then for random x1,...,zx € Z/p",
the probability that F(x1,...,xg) =0 is at most d/p.

Lemma 3. Let 0 < M < B and F(Xy,...,X;) = a1 X1 + -+ + ap Xy €
Z[X1,...,Xk] be a nonzero polynomial, whose coefficients satisfy |a;| < 2™.
Let the integer n be chosen randomly from the range |B, B+ C] according to the
probability distribution D. If p is the biggest prime divisor of n and t > 1, then

2 The two measures a(D), 3(D, M) are actually related, we elaborate below



for random x1, ...,z € Z/p', the probability that F(x1,...,x;) =0 in Z/p' is
at most

ma(D) + 5(D, M) + 1.
for any M.

Proof. Wlog we can assume that a; # 0. Let E be the event that F'(x1,...,2x) =
0, and A the event that p > M and p { a;. We have P(E) = P(E,-A) +
P(E,A) < P(mA)+ P(E|A). By lemma 1, and by definition of 3(D, M) we have
that

P(=4) < ma(D) + (D, M).

On the other hand, assuming that p 1 a; (and p > M), we can consider
F(X1,...,X}) as a nonzero linear polynomial in the ring Z/p'[X1, ..., X;]. Let
x1,..., ) be chosen at random in Z/p!. Then by lemma 2 we have

1 1
< — [
P(EJ4A) < - <

Now we are able to prove the main theorem.

Theorem 1. Let a probability distribution D on the range |B, B + C] be given.
Let S € {0,1}* be a set of cardinality at least B+ C and A a generic algorithm
on S that makes at most m oracle queries. Let M be any number such that
2m < M. Suppose A is an algorithm for solving the strong root problem, that
is, A gets an element from S as input and outputs a number e and an element
from S. Assume loge < wv.

Now choose a group G according to D and let n be its order. Further choose
x € G and an encoding function o at random. Then the probability that A(o, z) =
e,o(y) where e > 1 and ey = x is at most

m2

B
Proof. First observe that A may output a new encoding from S that it was not
given by the oracle, or it may output one of the encodings it was given by the
oracle. Without loss of generality, we may assume that A always outputs a new
encoding s € S, if we define that A has success if this new encoding represents
an e’th root of z, or if any of the encodings it was given represents such a root.

We define a new group oracle O’ that works like O, except that when asked for
a random element, it chooses at random among elements for which the algorithm
does not already know encodings. The executions of A that can be produced using
O’ are a subset of those one can get using 0. For each query, the probability
that O chooses a “known” element is at most (number of encodings known)/
(group order). Since at most one new encoding is produced by every oracle quiry,
this probability is at most m/n. Hence the overall probability that O generates
something O’ could not is at most m?/n < m?/B. It follows that the success
probability of A using O is at most the sum of the success probability of A using
O" and m?/B.

(m3 +m? +mv+2v+m)a(D) + (m? +m+2)3(D, M)+ (m? +m+3)/M +



To estimate the success probability of A using O’, we will simulate the oracle
O’ as it interacts with the algorithm. However, we will not choose the group G or
x until after the algorithm halts. While simulating, we keep track of what values
the algorithm has computed, as follows: Let X,Y7,...,Y,, be indeterminants.
At any step, we say that the algorithm has computed a list F1, ..., Fj of linear
integer polynomials in variables X, Y7,...,Y,,. The algorithm knows also a list
01,...,0k of values in S, that the algorithm “thinks” encodes corresponding
elements in G. When we start, k = 1; F}, = X and o7 is chosen at random and
given to A. Whenever the algorithm queries two indices ¢ and j and a bit sign,
we compute Fry1 = F; £ F; € Z[X,Y1,...,Y,,] according to the bit sign. If
Fi11 = Fp for some ¢ with 1 <[ < k, we define o1 = oy; otherwise we choose

0k+1 at random from S distinct from oy, ..., 0.
When the algorithm asks for a random element from the group G, we choose
at random oy4q from S\ {o1,...,0r}. We define Fy11 =Y.

When the algorithm terminates, it outputs an exponent e, such that loge < v
and e > 1 (and also outputs some new element s in 5).

We then choose at random a group G according to the probability distribution
D and hence also order n from the interval |B, B + C].

Let p be the biggest prime dividing n. We know that for some integer r > 0

G=Z, x H.
We choose at random x,y1,...,Yyn €r G, which is equivalent to random inde-
pendent choices of 2/, y!,...,y,, €r Z,r and ", y7,... Yyl €r H.

We say that the algorithm wins if either

- Fi(@' v1,...,u,) = F;(«,91,...,y,,) mod p" and F; # F; for some 1 <1 #
j<m-+1, or:

— The new encoding s output by A is an e’th root of x, or:

— eFi(2,yy,.-.,y.,) =2’ mod p” for some 1 <i < m+ 1.

To estimate the probability that the algorithm wins, we simply estimate the
probability that each of the above three cases occur.

For this first case, recall that F;(X,Y1,...,Y,,) = a;0X+a; 1Y1+ - +aimYm,
where F1(X,Y1,...,Y,,) = X. Since at each oracle query we could only either
introduce a new polynomial Yy, add or subtract polynomials, then |a; ;| < 2™
fori=1,....m+ 1,7 =0,...,m. Lemma 3 implies that F;(2',y},...,y},) =
Fi(2',y},...,y,,) mod p" for given i # j, F; # F; with probability at most
ma(D)+ (D, M) + % Since we have at most m? pairs ¢ # j, the probability
that Fy(2', 91, ..., ym) = Fi(2', 94, ..., y,,) mod p" for some i # j, F; # F} is at
most

m? (ma(D) + B(D, M) + %) .

For the second case, first observe that the probability that p|e or that p < M
is at most va(D) + (D, M), by lemma 1. On the other hand, assuming that
pteand p> M, arandom group element different from the at most m elements
the algorithm has been given encodings of is an e’th root of # with probability at



most zﬁ < Mim < % We conclude: the new encoding output by A represents

an e’th root of x with probability at most
va(D) + B(D, M) +2/M.

Finally let us consider the event eF;(2’,y],...,y.,,) = '’ mod p" for given
1 <i<m+ 1 Since F;(X,Y7,...,Y,,) is an integer polynomial and e > 1,
then eF;(X,Y1,...,Yy) # X in Z[X,Y1,...,Y,]. We know that loge < v and
coefficients a; ; of the polynomial F; satisfy the condition |a; ;| < 2™. Therefore
by lemma 3 the probability that eF;(a’,y,...,y,,) = 2’ mod p” is at most
(v+m)a(D)+ B(D, M)+ 7. Hence the event, that for some 1 < i < m+1 the
equivalence eF;(z',y],...,y.,) =’ mod p" holds, happens with the probability

(m+1) ((v +m)a(D)+ B(D, M) + %) )

Summarizing, the probability that A wins when we simulate O’ is at most
(m® +m? + mv +2v + m)a(D) + (m* +m + 2)3(D, M) + (m* + m + 3)/M.

Given this bound on the probability that A wins the simulation game, we
need to argue the connection to actual executions of A (using O’). To this end,
note that since the only difference between simulation and execution is the time
at which the group, group elements and encodings are chosen, the event that

Fi(2' vy, oym) = Fi(2' v, ... y,,) mod p” and F; # Fj

for some 1 < 7 # j < m+ 1 is well defined in both scenarios. Let BAD g,
respectively BAD.... be the events that this happens in simulation, respectively
in an execution. We let a history of execution or simulation be the choice of
group and group elements followed by the sequence of oracle calls and responses,
followed by A’s final output. We then make the following

Claim: Every history in which BADyg;,, does not happen in simulation of O’
occur with the same probability as history in which BAD¢,.. does not happen
in execution of O’. In particular, P(BADy;;,) = P(BADgec)-

Recall that we defined that A wins the simulation game if BADg;,, occurs,
or A finds a root. Therefore the claim clearly implies that our bound on the
probability that A wins the simulation game is also a bound on A’s success
probability in a real execution.

The proof of the claim is available in the full version of the paper [11]. a

We now consider the case, where we have a family of values of the parameters
B,C, D, i.e., they are functions of a security parameter k. As usual we say that
a function of k is negligible if it is at most 1/p(k) for any polynomial p() and all
large enough k.

Definition 1. Let {D(k)| k = 1,2,...} be a family of probability distributions,
where D(k) ranges over Abelian groups of order in the interval |B(k), B(k) +
C(k)]. The family is said to be hard if a(D(k)) and % are negligible in k.



In the following, we will sometimes write just D in place of D(k) when the
dependency on k is clear. We can observe:

Fact 1 If {D(k)| k = 1,2,...} is a hard family, then there exists M(k), such
that B(D(k), M (k)) and ﬁk) are negligible in k.

_ 1 1 _ . o .
Proof. Let M (k) = NGO Clearly 3755 = a(D(k)) is negligible.
Now let n be the order of a group chosen according to D(k). What is the
probability that the biggest prime factor of n is smaller than M (k)? We have at

most M (k) prime factors smaller than M (k). Each can be chosen with probability
at most a(D(k)). Therefore

B(D(k), M(k)) < M(k)a(D(k)) = ———===a(D(k)) = v a(D(k)),

which is negligible.

Corollary 1. Let the family {D(k)| k = 1,2,...} be hard. We choose randomly
an abelian group G of order n according to the distribution D(k). Let x € G be
chosen at random. Consider any probabilistic polynomial time generic algorithm
A. The probability that A given x outputs a natural number e > 1 and an encoding
of an element y € G such that y© = x is negligible.

Proof. Let M be such that a(D), 3(D, M) and 4; are negligible in k. Let m be
the number of group queries made by the algorithm A. Then m and loge are
polynomial in k, so clearly 2m < M for all large enough values of the security
parameter. It follows from Theorem 1 that the probability that A succeeds is
negligible.

One may note that if «(D(k)) and 1/B(k) are exponentially small in k (as it
is in the concrete examples we know), say a(D(k)) < 27 for a constant ¢ > 0
and B(k) > 2% for a constant d > 0. Suppose the running time of a generic

algorithm A is O (20,’“) where ¢/ < min(¢/4,d/2). Then it follows from the

concrete expression in Theorem 1 and the proof of Fact 1 that A has negligible
success probability. Thus for such examples, we get an exponential generic lower
bound. For instance, if D(k) is such that the largest prime factor in the order
is a uniformly chosen k + 1-bit prime, then certainly B(k) > 2%, and also by
the prime number theorem a(k) ~ 27F+1°¢%n 2. Now, if we ignore lower order
contributions we get that root extraction requires time Q(Zk/ 4). We present some
proven or conjectured examples of hard families of distributions below in next
subsections.

Applying the results to the standard root problem. What we have said so
far concerns only the strong root assumption. For the standard root assumption,
the scenario is slightly different: A group G and a public exponent e > 1 are
chosen according to some joint distribution. Then e and an encoding of a random



element x is given as input to the (generic) algorithm, which tries to find an e’th
root of z. Clearly, if we let D be the distribution of G given e, Theorem 1 can
be applied to this situation as well, as it lower bounds the complexity of finding
any root of x.

Now consider a family of distributions as above {D(k)| k = 1,2, ...}, where
each D(k) now outputs a group G and an exponent e, let D(k, e) be the distri-
bution of G given e, and |B(k, e), B(k, e) + C(k, )] be the interval in which |G|
lies, given e. The family is said to be hard if Maz.(a(D(k,e))) and Maxe(m)
are negligible in k, where the maximum is over all e that can be output by D(k).
One can then show in a straightforward way a result corresponding to Corollary
1 for the standard root problem.

2.3 RSA

For the RSA case, it is clear that any reasonable key generation algorithm would
produce hard distributions because it is already standard to demand from good
RSA key generation that the order of the group produced contains at least one
large and random prime factor.

Furthermore, the fact that a public exponent e with (e, |G|) = 1 is given
does not constrain seriously the distribution of the group, i.e., it remains hard.
Consider, for instance, the distribution of random RSA moduli versus random
RSA moduli where 3 is a valid public exponent. Since essentially half of all
primes p satisfy that 3 does not divide p — 1, the uncertainty about the largest
prime factor in the group order remains large.

2.4 The Uniform Distribution

Assume our distribution D is such that the group order n is chosen from the
interval |B, B + C] according to the uniform distribution, and such that both
B and C are at least 2¥, where k is the security parameter. We prove that this
uniform distribution is hard.

Let u = Vk. Wlog we can assume that u is a natural number. Let M = 2%,
Clearly % is negligible in k.

We prove that in this case a(D) and S(D, M) are also negligible.

2.5 Class Groups

Buchmann and Williams [4] proposed a first crypto system based on class groups
of imaginary quadratic orders (IQC). We describe briefly class groups and their
application in cryptography.

Let A be a negative integer such that A = 0,1 mod 4. The discriminant A
is called fundamental if % or A is square free for A =0 mod 4 or A =1 mod 4,
respectively. Given A it is possible to construct an abelian finite group called
class group and denoted by CI(A). The order of the class group is denoted by
h(A) and called class number. We denote the cardinality of the odd part of a
class group Cl(A) by hodaa(A).



There is no known efficient algorithm to compute class number h(A) if the
discriminant A is fundamental. See [14]) for the discussion of the problem of
computing class numbers.

Hamdy and Méller [13] analyze the smoothness probabilities of class numbers
based on heuristics of Cohen and Lenstra [7] and Buell [5]. Hamdy and Moller
provide examples of discriminants with nice smoothness properties.. One of them
is A = —8pq where p and ¢ are primes such that p =1 mod 8, p+ ¢ = 8 mod 16

and the Legendre symbol (%) is equal —1.

We assume that a discriminant A is chosen randomly from some interval
(under the restriction in above example) and that results in a distribution D of
class numbers. In provided example we have that 3(D, M) and % are negligible
(% is trivially negligible).

We believe it is reasonable to conjecture that the distribution induced by
choosing discriminant as described above is indeed hard. For more detailed dis-
cussion of this problem see the full version of the paper [11].

3 Generic Cryptographic Protocols

Based on our model of generic adversary, we look at the notion of generic crypto-
graphic protocols. Such protocols do not exploit any specific properties of group
element representation. They are based on a simple model of finite abelian group
with unknown order.

One advantage of this approach is an easy application of generic protocols in
any family of groups of difficult to compute order. As a first example we note
the family of RSA groups (without necessarily restricting the RSA modulus to
a product of safe primes). Another example is class groups.

This generic approach has been used earlier: Shoup [24] proved the security
of Schnorr’s identification scheme [20] in the generic model with public order of
the group. Biehl et al. [1] introduced some generic cryptographic protocols and
applied them in class groups.

In this section we propose a generic signature scheme which can be seen as
an abstraction of Cramer-Shoup signature scheme [10]. We will show security of
this protocol against arbitrary attacks, given certain intractability assumption
(strong root assumption), which we have proven in our generic model. This
immediately implies provable security with respect to generic attacks.

3.1 Protocol

For this signature scheme, we assume that we are given D, a probability distri-
bution over Abelian groups with order in the interval | B, B+ C]. We also assume
for this version of the scheme that one can efficiently choose a group according
to D, such that the order of the group is known (the assumption about known
order is removed later). Moreover, we assume a collision-resistant hash function

H whose output is a natural number smaller than %.



Key Generation. We choose G of order n according to the probability distribu-
tion D. A description of the group G is announced, but its order remains hidden
(for RSA, for instance, this amounts to publishing the modulus).

We choose randomly elements h €g G and x €gr< h >(let < h > denote
the cyclic subgroup generated by h). Let ¢’ be a prime satisfying B+ C < ¢’ <
2(B+C).

The public key is (h,z,€’).

The private key is n.

Signing Protocol

1. When a message M (it can be a bit string of arbitrary size) is requested to
be signed, a random prime e # ¢’ is chosen such that B4+C < e < 2(B + C).
A random element ¢’ € G is chosen.
2. We compute
oo W)
hH (M)

and )
Y= <:chH(“’/)) ‘.

Note that the signer can invert e, since he knows the order n of the group
G.
3. The signature is defined to be (e, y,y’).

Signature Verification. To verify that (e,y,y’) is a signature on a message M,
we perform the following steps.

1. We check that e is an integer from interval |B + C,2 (B + C) [ and different
from €’ ,

2. We compute z’ = (y)¢ h=HOD),

3. We verify that z = yh~H ("),

3.2 Security Proof

First we state our intractability assumption:

Congecture 1. We choose randomly an abelian group G of order n, where n €
|B, B + C], according to the probability distribution D. Let = € G be chosen at
random. Consider any probabilistic polynomial time algorithm A. The probabil-
ity that A, given the description of G and z, outputs e > 1 and y € G such that
y® = x is negligible.

In our generic model, where A knows only D and encodings of group elements,
and assuming that D is from a hard family, it follows from the results we proved
above that this assumption is true.

The following fact is easy to proof:



Fact 2 For any E > 0, given natural numbers ey, ...,e; smaller than E and
an element g in a finite abelian multiplicative group G, we are able to compute
gllizi forall j=1,...,t using O (tlogtlog E) multiplications in G.

We prove that our signature scheme is secure against chosen message attacks.
We stress that this security proof holds for any type of polynomial-time attack
(not just generic ones), as long as the conjecture holds.

Theorem 2. The above signature scheme is secure assuming the conjecture 1
and that H is collision-resistant.

The proof is somehow standard and it is available in the full version of the
article [11].

Corollary 2. The above signature scheme is secure against chosen message at-
tack performed by any generic algorithm if we assume that D is a hard probability
distribution.

3.3 Concrete instances of the generic scheme

Known order. If we are able to choose a random group of order known for us
and hidden for others, then we have a very efficient signature scheme, secure
assuming our conjectures.

The original Cramer-Shoup signature scheme [10] is a special case of this,
where the RSA keys are restricted to safe prime products. But our generic scheme
can also be instantiated with general RSA groups without restricting the keys
to safe primes.

Unknown order. If we do not know how to generate a group of known for us
order, we cannot use the signing algorithm we specified above. Instead, we can
use the method based on Fact 2 and given in the simulation from the proof in
order to sign messages. This requires O(ktlogt) group operations, where ¢ is the
number of the messages to be signed and k the security parameter. Moreover we
need to keep t exponents e in our memory.

Our signature scheme in such form can be applied, for instance, in class
groups where we do not know how to generate efficiently a discriminant together
with the corresponding class number. However, as ¢ becomes large, this scheme
becomes rather inefficient. In the following section we describe a solution to this.

4 Tree Structured Signature Scheme in groups with
unknown order

Here, we describe a generic signature scheme, which can be applied, e.g, in
class groups, is more efficient than the previous scheme and still provably secure
without assuming the random oracle model.

We recall the idea of authentication “flat tree” [8,9,6] and put it on top of
our signature scheme.



4.1 Description of the Scheme

Let [ and d be new integer parameters. We will construct a tree of degree [ and
depth d.

As in the original protocol we choose an abelian group G of a random order
n according to the distribution D.

We generate a list of | primes eq,...,e; such that B+ C <¢; < 2(B+C)
foreach 1 <7 <.

Let us consider the root of the authentication tree. As in the simulation in
the security proof of the original protocol we choose random zp,wy € G and a
prime ¢’ satisfying B+ C < e’ < 2(B+C) and ¢ # ¢; for all 1 <i <. We

T, ese) e ycies e
compute hg =z, ="='" and zg = wy ==L

The values hg, z¢g and €’ are publicly known.
For each child 7 of the root we choose random elements 2 ;,w1; € G and

Micj<i€i Mi<j<i€ . . .
compute hy; = z; ;=" and z1; = w; ;="' 7. Now as in the simulation we
can sign the pair hy;,x1; using hg,zo and the exponent e;. Let o1; be that

signature.

If we repeat that authentication procedure for each node using its signed
values h and x together with exponent e’, we can construct a tree of degree [
and depth d. We will have [¢ leaves. Instead of constructing new values h and z
for each leaf we will sign messages using leaves. Hence we will be able to sign 1%
messages (one message for each leaf).

It is important to note that we don’t need to remember the whole tree
in order to sign messages. If we use leaves in order “from the left”, the path
from the root to the leaf is sufficient to construct a signature of a new message
(for details see [8,9,6]). Let the nodes on the path be (hg, zg, hi,z1 with sig-
nature o1,...,h4—1,24—1 with signature o4_1). Using the values hgy—1, x4_1,
the public exponent e’ and appropriate exponent e; we sign a message m.
That gives us the signature o4. Finally the signature of message m is the list
g = (h1,$1,0'1,...,hd_l,l‘d_l,O'd_l,O'd).

To verify the signature o we verify partial signatures o1, ..., 04 consecutively
using the original scheme with appropriate values of z, h and e;.

4.2 Security Proof.

Theorem 3. Let I% be polynomial in the security parameter k. Assume that
the signature scheme from previous scheme was unforgeable under adaptively
chosen message attack. Then our tree authentication scheme is unforgeable under
adaptive chosen message attack.

4.3 Efficiency Analysis

Each signature contains d partial signatures. Hence the size of the signature is
O(dk).

The signer has to keep the list of [ primes, which corresponds to O(kl) bits
and a path of size O(dk) bits.



For signing a new signature the signer has to move to a new path. It requires
computing at most d partial signatures, on average less than 1+2/¢. Computing
a new partial signature in a straightforward way requires O(lk) group operations
(generally computing roots takes this time).

It follows from Fact 2 that we could have done some precomputation for
each node requiring O (kllog¢) multiplications in G. That would give us on
average O (klog¢) group operations for each partial signature. Then it would be
sufficient to use O(k) group multiplications for each partial signature. However
this solution requires keeping O(kl) bits in memory for each node. If we store
the results of precomputation for each node on the path, it will occupy O(kld)
bits in the memory of signer.

The verifier just checks d partial signatures (see previous section for details).

4.4 Realistic Parameters

Let | = 1000 and d = 3. Then we are able to sign one billion messages, which
should be sufficient in real life applications. Signing messages will be still fast
and the signer’s system will require a reasonable amount of data to be stored.
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