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Abstract. It is a standard result in the theory of quantum error-correcting
codes that no code of length n can fix more than n/4 arbitrary errors,
regardless of the dimension of the coding and encoded Hilbert spaces.
However, this bound only applies to codes which recover the message
exactly. Naively, one might expect that correcting errors to very high
fidelity would only allow small violations of this bound. This intuition
is incorrect: in this paper we describe quantum error-correcting codes
capable of correcting up to b(n − 1)/2c arbitrary errors with fidelity ex-
ponentially close to 1, at the price of increasing the size of the registers
(i.e., the coding alphabet). This demonstrates a sharp distinction be-
tween exact and approximate quantum error correction. The codes have
the property that any t components reveal no information about the
message, and so they can also be viewed as error-tolerant secret sharing
schemes.

The construction has several interesting implications for cryptography
and quantum information theory. First, it suggests that secret sharing is
a better classical analogue to quantum error correction than is classical
error correction. Second, it highlights an error in a purported proof that
verifiable quantum secret sharing (VQSS) is impossible when the number
of cheaters t is n/4. In particular, the construction directly yields an
honest-dealer VQSS scheme for t = b(n − 1)/2c. We believe the codes
could also potentially lead to improved protocols for dishonest-dealer
VQSS and secure multi-party quantum computation.

More generally, the construction illustrates a difference between exact
and approximate requirements in quantum cryptography and (yet again)
the delicacy of security proofs and impossibility results in the quantum
model.
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1 Introduction

Quantum computers are likely to be highly susceptible to errors from a vari-
ety of sources, much more so than classical computers. Therefore, the study of
quantum error correction is vital not only to the task of quantum communica-
tions but also to building functional quantum computers. In addition, quantum
error correction has many applications to quantum cryptography. For instance,
there is a strong connection between quantum error-correcting codes and se-
cret sharing schemes [6], and that connection was combined with fault-tolerant
quantum computation to perform multiparty secure quantum computations [9].
Many quantum key distribution schemes also rely on ideas from quantum error-
correction for their proofs of security. Thus, bounds on the performance of quan-
tum error-correcting codes (QECCs) in various scenarios are relevant both to the
foundations of quantum information theory and to quantum cryptography.

It is an immediate result of the no-cloning theorem [24] that no quantum
error-correcting code of length n can fix n/2 erasures: such a code would allow
one to reconstruct two copies of an encoded quantum state from two halves of the
full codeword, which would be cloning the state. This result is valid regardless
of the dimension of the coding Hilbert space. Another well known result from
the theory of quantum error correction is that a length n code can fix t arbitrary
single position errors if and only if it can fix 2t erasure errors [11]. This follows
immediately from the quantum error-correction conditions [11]

〈ψi|E
†
aEb|ψj〉 = Cabδij (1)

(for basis encoded states {|ψi〉} and correctable errors {Ea}) and implies that
no QECC of length n can fix more than n/4 arbitrary errors, regardless of the
dimension of the coding and encoded Hilbert spaces. In contrast, a classical
repetition code can correct up to b(n− 1)/2c errors.

In this paper, we describe QECCs of length n that can correct arbitrary
errors which affect up to t = b(n− 1)/2c positions, with the guarantee that
the fidelity of the reconstructed state will be exponentially close to 1. That is,
approximate quantum error-correcting codes have the capability of correcting
errors in a regime where no exact QECC will function. The scheme is also a
secret-sharing scheme, in that no t positions reveal any information at all about
the message. The result has a number of implications for both cryptography and
quantum information theory:

◦ It may be possible to build approximate QECCs which are highly efficient and
yet useful in common error correction scenarios, improving on exact QECCs
for the same scenarios. In most cases, exact reconstruction of the quantum
state is not necessary, so a more efficient approximate QECC would be wel-
come.

◦ The connection between correcting general errors and erasure errors breaks
down for approximate QECCs. This suggests there is no sensible notion of
distance for an approximate quantum error-correcting code.



◦ The proof of the impossibility of verifiable quantum secret sharing (VQSS)
with t ≥ n/4 cheaters in [9] is incorrect, since it assumes that the t < n/4
bound on error correction extends to approximate quantum codes. In par-
ticular, the construction described here immediately yields an honest-dealer
verifiable quantum secret sharing scheme which is secure for t = b(n− 1)/2c.
Similar constructions may allow verifiable quantum secret sharing (VQSS)
with a dishonest dealer and secure multiparty quantum computation (MPQC)
beyond previously known bounds. We have devised candidate protocols for
these tasks allowing up to (n − 1)/2 cheaters, but we do not present them
here, as we have not yet proved their security and they are, in any case, quite
complex.

◦ Secret sharing may serve as a better classical analogue to quantum error
correction than does classical error correction. The sharp difference we see
between perfect and approximate quantum error correction parallels to some
extent a similar difference between error-tolerant secret sharing schemes (ex-
plained below) with zero error and those with exponentially small error [19].
The codes here use such secret sharing schemes as a building block.

◦ More generally, our results demonstrate that there can be a dramatic differ-
ence in behavior between the exact performance of some quantum-mechanical
task and approximate performance of the task, even when the approximation
is exponentially good. A similar divergence between exact and approximate
bounds has recently been seen in the context of private quantum channels
[13]. These examples serve as a caution — especially valid in cryptography —
that intuition about approximate performance of quantum protocols may be
misleading.

The idea of using a randomized encoding algorithm is not new in QECC.
In particular [4] have devised codes that can correct more (malicious) errors on
average than any deterministic QECC. However, their model significantly differs
from ours in one of two ways: they assume either that the errors occur at random
or that the code is randomly agreed on by the coder and the decoder but is kept
secret from the adversarial noise source. This model does not seem suitable
in cryptographic applications such as VQSS and MPQC [9]. In our model no
secret is shared by the coder and decoder. However, part of our code can be
viewed as providing a way for the coder to information-theoretically encrypt the
necessary secret. (This is possible since the adversary only has access to part of
the transmitted state, though it could be any part.)

A closer analogue to our codes is present in [15], which gave a pure-state
encoding to approximately correct a specific error model more efficiently than
a typical minimum-distance code. (Note, however, that the nature of the error
model in fact precludes any exact quantum error-correcting code.) Closer yet
is [21], which considered approximate quantum error correction in precisely our
sense, and studied conditions for approximate error correction to be possible.
They did not, however, present any specific codes or suggest that approximate
QECCs might allow significant improvements in the number of correctable reg-
isters.



Secret Sharing and Quantum Error Correction Classically, an (n, d)-secret shar-
ing scheme splits a secret into n pieces so that no d−1 shares reveal any informa-
tion about the secret, but any d shares allow one to reconstruct it. Such a scheme
is already an error-correcting code, since it allows one to correct up to n−d era-
sures. Error-correcting codes need not be secret sharing schemes: a repetition
code, for example, provides no secrecy at all. In the quantum world, the connec-
tion is much tighter. Cleve et al. [6] observed that any (perfect) QECC correcting
t erasures is itself a secret sharing scheme, in that no t components of the code
reveal any information about the message. This follows from the principle that
information implies disturbance. Furthermore, most known (perfect) classical
secret sharing schemes (and “ramp” schemes) can be directly transformed into
(perfect) QECC’s with the related parameters [22].

The quantum code construction described here illustrates a further connec-
tion to classical secret sharing. An error-tolerant secret sharing scheme (ETSS)
can recover the secret even when t shares have been maliciously corrupted. Or-
dinary (n, d)-secret sharing schemes are error-tolerant: such a scheme corrects
n− d erasures and hence t = (n− d)/2 errors (this fact was first highlighted for
Shamir secret sharing in [16]). If we also want any t shares to reveal no infor-
mation, then we get t < d, and thus t < n/3. This is optimal for schemes with
zero error probability. On the other hand, if one allows a small probability of
mistaken error correction, then one can in fact get error-tolerant secret sharing
schemes which correct t = b(n− 1)/2c errors (see the Preliminaries for more
details). Thus, the best classical analogue for approximate quantum codes are
error-tolerant classical secret sharing schemes which correct any t errors with
high probability. These have been studied more or less explicitly in work on
multi-party computation [19, 7, 8].

It is worth noting that the construction of quantum error-tolerant secret
sharing schemes has farther reaching implications than analogous classical con-
structions. Our approximate quantum codes correct a number of general errors
for which no exact code would suffice, whereas the classical constructions can
be better understood as reducing the number of erasures that can be corrected
via secret sharing techniques. A straightforward classical repetition code already
corrects up to b(n− 1)/2c arbitrary errors exactly, so there is no need to resort
to sophisticated techniques to achieve this with classical ECCs.

Results Our construction produces quantum codes which encode ` qubits into
n registers of `

(n−2t) + O(ns) qubits each and which correct any t adversarial

errors with probability 2−s (the bound assumes logn < ` < 2s for simplicity).
This is done by transforming [[n, 1, n/2]]n QECCs on n-dimensional registers
into better codes on 2O(ns)-dimensional registers. The codes we construct are
always decodable in polynomial time, since the only necessary operations are
verification of quantum authentication and erasure correction for a stabilizer
code, and since erasure correction for a stabilizer code only requires solving a
system of linear equations.



2 Preliminaries

Classical Authentication For our purposes, a classical (one-time) authentication
scheme is a function ha(m) that takes a secret key a and a message m as input
(and no other randomness), and outputs a tag for the message. Typically, Alice
sends the pair m,ha(m) to Bob, with whom she shares the key a. Bob receives
a pair m′, tag′ and accepts the message as valid if and only if tag′ = ha(m

′).
Bob will always accept a message that really came from Alice. The scheme has
error ε if, given a valid pair m,ha(m), no adversary Oscar can forge a tag for a
different message m′ with probability better than ε. That is, for all messages m
and all (computationally-unbounded, randomized) algorithms O(), if a is chosen
randomly from a set of keys K, then:

Pr
a←K

[m′, tag′ ← O(m,ha(m)) : tag′ = ha(m
′)] ≤ ε.

We make no assumptions on the running time of the adversary. If the message
is ` bits long, then one can find a polynomial time authentication scheme where
both the key and the tags have length O(log `+ log ( 1

ε
)) (see, e.g., [10]).

For the remainder of this paper, we assume the reader is familiar with the
basic notions and notation of quantum computing (see a textbook such as [17]
if necessary).

Quantum Authentication Intuitively, a quantum authentication scheme [2] is a
keyed system which allows Alice to send a state ρ to Bob with a guarantee:
if Bob accepts the received state as “valid”, the fidelity of that state to ρ is
almost 1. Moreover, if the adversary makes no changes, Bob always accepts and
the fidelity is exactly 1. The following definition is from Barnum et al. [2]. We
first define what constitutes a quantum authentication scheme, and then give a
definition of security.

Definition 1 ([2]) A quantum authentication scheme (qas) is a pair of poly-
nomial time quantum algorithms A and V together with a set of classical keys
K such that:

◦ A takes as input an m-qubit message system M and a key k ∈ K and outputs
a transmitted system C of m+ t qubits.
◦ V takes as input the (possibly altered) transmitted system Ĉ and a classical
key k ∈ K and outputs two systems: a m-qubit message state M̂ , and a single
(verdict) qubit V which indicates acceptance or rejection. The classical basis
states of V are called |acc〉, |rej〉 by convention.

For any fixed key k, we denote the corresponding super-operators by Ak and Vk.

Bob may measure the qubit V to see whether or not the transmission was
accepted or rejected. Nonetheless, we think of V as a qubit rather than a classical
bit since it will allow us to describe the joint state of the two systems M̂, V with
a density matrix. Given a pure state |ψ〉 ∈ HM , consider the following test on



the joint system M̂, V : output a 1 if the first m qubits are in state |ψ〉 or if the
last qubit is in state |rej〉 (otherwise, output a 0). The projectors corresponding
to this measurement are

P
|ψ〉
1 = |ψ〉〈ψ| ⊗ |acc〉〈acc| + I

M̂
⊗ |rej〉〈rej|

P
|ψ〉
0 = (I

M̂
− |ψ〉〈ψ|) ⊗ (|acc〉〈acc|)

We want that for all possible input states |ψ〉 and for all possible interventions

by the adversary, the expected fidelity of V’s output to the space defined by P
|ψ〉
1

is high. This is captured in the following definition of security.

Definition 2 ([2]) A qas is secure with error ε for a state |ψ〉 if it satisfies:

◦ Completeness: For all keys k ∈ K: Vk(Ak(|ψ〉〈ψ|)) = |ψ〉〈ψ| ⊗ |acc〉〈acc|
◦ Soundness: For a super-operator O, let ρBob be the state output by Bob
when the adversary’s intervention is characterized by O, that is: ρBob =
1
|K|

∑

k Vk(O(Ak(|ψ〉〈ψ|))) (this is the expectation over all values of the key

of the state output by Bob). The qas has soundness error ε for |ψ〉 if for all
super-operators O,

Tr
(

P
|ψ〉
1 ρBob

)

≥ 1− ε

A qas is secure with error ε if it is secure with error ε for all states |ψ〉. We
make no assumptions on the running time of the adversary.

In order to authenticate a message of ` qubits, the authentication scheme of
[2] uses a (classical) key of length 2` + O(log ( 1

ε
)) random bits and produces a

transmitted system of `+O(log ( 1
ε
)) qubits. The large part 2` of the classical key

is used to the encrypt the quantum state, which is necessary for any quantum
authentication scheme to be secure [2]. In the special case where Alice wishes to
authenticate half of a maximally entangled state

∑

|i〉|i〉, in fact only O(log ( 1
ε
))

classical key bits are necessarily [18, 12], effectively because Alice’s message is
already a maximally mixed state, making encryption redundant.

Composability of Quantum Authentication We will need authentication protocols
that have an additional composability property: If (Ak, Vk) is a qas with error
ε for key k, then the concatenated protocol

(

n
⊗

i=1

Aki
,

n
⊗

i=1

Vki

)

(2)

should be a qas with error ε for the key (k1, . . . , kn), with the understanding
that the concatenated verification protocol accepts if and only if all of the tensor
components accept (i.e. the verdict qubit for the concatenated scheme is the
logical AND of the individual verdict qubits).

This sort of composability holds trivially for a classical authentication scheme,
although the error may increase linearly with the number of compositions. We



do not know if the same is true in general for quantum authentication schemes.
However, the quantum authentication schemes of [2] are indeed composable, with
no blow-up in the error parameter. This follows because they are constructed
from stabilizer purity testing codes (PTCs), which clearly satisfy a correspond-
ing property (if Qk is a stabilizer PTC with error ε, then

⊗n

i=1Qki
is a stabilizer

PTC with error ε).

Classical Secret Sharing and Error Correction A classical (n, d)-secret sharing
scheme [20] is a cryptographic protocol allowing a dealer to share a secret k into
n shares (s1, . . . , sn) with n share-holders P1, . . . , Pn in such a way that any d−1
si’s contains no information about k whereas any d of those si’s completely define
k. We write (s1, . . . , sn) ∈R SSn,d(k), a random instantiation of a set of shares
for secret k. The original construction of Shamir [20], based on Reed-Solomon
codes, allows one to share an `-bit secret with shares that are each max {`, logn}
bits.

An important component in our construction is a classical secret sharing
scheme which allows the honest players to reconstruct the secret even if the
cheaters alter their shares. Specifically, consider the following game: an honest
dealer takes a secret, splits it into n shares s1, .., sn, and distributes the shares
amongst n participants over secure channels (i.e., player i gets only si). Next, an
adversary (adaptively) corrupts up to t = d−1 of the players. Finally, all players
send their (possibly corrupted) shares over secure channels to a trusted arbiter
who attempts to recover the secret. The secret sharing scheme is called an error-
tolerant secret sharing scheme (ETSS) and is t-error-correcting with error ε if
the arbiter can reconstruct the correct secret with probability 1− ε, regardless
of the adversary’s strategy. In other words, an ETSS is a secret-sharing scheme
which also acts as an error-correcting code correcting any t errors with high
probability.

Error-tolerant secret sharing has been studied under the names “honest-
dealer VSS with a non-rushing adversary” [8] and “non-interactive Las Vegas
perfectly secure message transmission” [23]. “Robust secret sharing” [5] is a
slightly weaker variant of the problem. Another variant, “honest-dealer VSS
with rushing” is slightly stronger than ETSS; see [8] for a discussion of the
differences.

A number of constructions of ETSS schemes appear in the literature. When
t < n/3, any ordinary secret sharing scheme is in fact an ETSS with zero error
(since it is a code correcting 2t erasures and hence t errors). This connection
was first pointed out by [16]. When t is between n/3 and n/2, one can adapt
constructions from multi-party computation protocols [19, 7, 8]. We will use a
simple construction for the case t = b(n− 1)/2c from [8]. The dealer encodes
the secret using an ordinary secret sharing scheme, and augments the shares by
creating a fresh authentication key and tag for every pair of players: Pi gets the
key aij and Pj gets the tag haij

(sj). If the adversary does not succesfully forge
any authentication tags for keys held by honest players, then the arbiter can
reconstruct the secret by accepting only shares for which at least t + 1 of the
authentication tags are valid.



The two schemes suggested above tolerate the maximum number of cheaters.
On one hand, schemes with zero error can tolerate at most n/3 errors [19].
On the other hand, it is clear that no ETSS scheme can correct more than
t = b(n− 1)/2c errors: any n− t players must be able to reconstruct the secret
alone (as the adversary could simply erase all its shares), and so we must have
n−t > t. Alternatively, one can view this as an ordinary error correction bound: if
the adversary could control half of the shares, he could make them all consistent
with a value of his choosing (say 0) and force the arbiter to reconstruct 0.

The main complexity measure of an ETSS scheme is the share size. For a
given scheme, let CC(`, ε, t) denote the maximum size (in bits) of a share held
by any player. When t < n/3, the usual Shamir secret sharing scheme is a
zero-error ETSS scheme with zero error and share size CC(`, 0, t) = `/(n− 3t)
(for ` > (n − 3t) logn). The errors can be corrected in polynomial time since
the scheme encodes data in a Reed-Solomon code. For t = b(n− 1)/2c, the
augmented scheme using authentication tags produces shares of size CC(`) =
`+O(n log ( 1

ε
)) (when ` > logn and log ( 1

ε
) > max {n, `}).

Based on [5], Cramer et al. [8] present a more compact scheme for t =
b(n− 1)/2c with share size O(`+n+log ( 1

ε
)). Unfortunately, that scheme is not

known to correct the errors in polynomial time. A second scheme, for t further
away from n/2, generates shares of size CC(`, ε, t) = Ω(n log ( 1

ε
) + `/(n− 2t)).

The same work [8] also proved a simple lower bound on the share size of ETSS
schemes: CC(`, ε, t) = Ω(log ( 1

ε
) + `

(n−2t) ). This bound is tight for log ( 1
ε
) > n

and n = 2t+ 1.

3 Definition of Approximate Quantum Codes (AQECC)

An approximate quantum error-correcting code allows Alice to send a state ρ
to Bob with the guarantee that if few enough errors occur in transmission, the
fidelity of the state received by Bob to ρ will be almost 1.

Let q = pm and Q = pN for some prime p and integers m, N . We first define
what constitutes an AQECC over FQ, and then give a definition of correctness.
(Note that the definition makes sense over any alphabet, but we restrict to prime
powers for simplicity).

Definition 3 An approximate quantum error correcting code (AQECC) is a
pair of quantum algorithms E (encoder) and D (decoder) such that:

◦ E takes as input a m-quqit message system M and outputs a (mixed state)
codeword C of n quQits.
◦ D takes as input the (possibly altered) transmitted system Ĉ and outputs a
m-quqit message state M̂ .

In our constructions, both the encoding E and error-correction algorithm D
run in polynomial time in the number of qubits of input.

We will define the correctness of an AQECC on pure states, but it follows
from a result of Barnum, Knill and Nielsen ([3], Thm 2) that the output of the



AQECC also has high fidelity to an input which is mixed or part of an entangled
state.

Given a pure state |ψ〉 ∈ HM , consider the following test on the system M̂ :
output a 1 if the first k quqits are in state |ψ〉 (otherwise, output a 0). The
projectors corresponding to this measurement are

Pψ = |ψ〉〈ψ|

P⊥ψ = (I
M̂
− |ψ〉〈ψ|)

We want that for all possible input states |ψ〉 and for all possible interventions
by the adversary, the expected fidelity of Bob’s output to the space defined by
Pψ is high. This is captured in the following definition of correctness.

Definition 4 An AQECC is t-correct with error ε for a state |ψ〉 if for all super-
operators O acting on at most t quQits (that is, O can be written as In−t ⊗ Õt
for some partition of the system into n− t and t quQits),

Tr (PψρBob) ≥ 1− ε,

where ρBob is the state output by Bob when the adversary’s intervention4 is
characterized by O, that is:

ρBob = D(O(E(|ψ〉〈ψ|))).

An AQECC is t-correct with error ε if it is t-correct with error ε for all states
|ψ〉.

4 A length 3 quantum code approximately correcting one
arbitrary error

We start with a small example, from a well known code. The code c corrects one
erasure error:

|0〉 → |000〉+ |111〉+ |222〉

|1〉 → |012〉+ |120〉+ |201〉 (3)

|2〉 → |021〉+ |102〉+ |210〉

Let H1 ⊗H2 ⊗H3 be the coding space of the original code

c|ψ〉 ∈ H1 ⊗H2 ⊗H3,

and let (Ak , Vk) be a quantum authentication scheme as constructed in [2].
We construct a three-component code c′ as follows:

c′|ψ〉 = ( Ak1(H1), k2, k3 ) ,

( Ak2(H2), k1, k3 ) , (4)

( Ak3(H3), k2, k1 ) .

4 We make no assumptions on the running time of the adversary.



Let H ′1 ⊗H
′
2 ⊗H

′
3 be the coding space of the new code

c′|ψ〉 ∈ H ′1 ⊗H
′
2 ⊗H

′
3

Note that k1, k2, and k3 are random classical strings which we use as keys for
the quantum authentication protocol Ak. Thus, the H ′is contain both quantum
and classical information. Intuitively, we use the qas to ensure that an adversary
cannot change the quantum state of a single register without being detected;
thus, we can transform general errors into erasure errors, allowing us to correct
one faulty register out of three (no exact QECC can do this). Then we distribute
the authentication keys among the three registers so that Bob can recover them.
We must, however, do so in a way that prevents an adversary with access to a
single register from either learning the key applying to her own register (which
would allow her to change the quantum state) or from preventing reconstruction
of the classical keys.

Theorem 1 If Ak is a qas secure with error ε then c′ is a 1-correct AQECC
with error prob. poly(ε), correcting one arbitrary error.

We omit the proof of this theorem, as in Section 5 we will prove a more
general result.

4.1 Reconstruction

In all cases, the reconstruction has two phases. First we reconstruct the classical
keys and use them to verify and decode the quantum authentications. This may
result in discarding one register, but at least two remain, which is enough for
the erasure-correcting code to recover the original encoded state. Consider the
following cases:

◦ All ki’s agree in H ′1, H
′
2, H

′
3:

Recover ki from either H ′j , j 6= i, check that Aki
(Hi) properly authenticates

Hi. If one authentication fails, ignore the improperly authenticated Hi and
reconstruct the valid codeword as c|ψ〉 ∈ H1 ⊗ H2 ⊗ H3 using the erasure
recovery algorithm from both Hj , j 6= i.

◦ Some H ′i disagrees with H ′j , H
′
h on both keys kh and kj :

Discard register i, which must be corrupted. Recover kj from H ′h and kh from
H ′j , and decode the authentications Akj

(Hj) and Akh
(Hh) (which should

both pass, since only one register can fail). Reconstruct the valid codeword as
c|ψ〉 ∈ H1 ⊗H2 ⊗H3 using the erasure recovery algorithm from Hj and Hh.

◦ H ′i and H ′j disagree on key kh, while H ′h agrees with everyone:
Either register i or j is corrupt. Get ki and kj from H ′h and check that
Aki

(Hi) properly authenticates Hi, and that Akj
(Hj) properly authenticates

Hj . If neither fails, reconstruct the valid codeword as c|ψ〉 ∈ H1 ⊗H2 ⊗H3

using the erasure recovery algorithm fromHi andHj . If one fails, say Aki
(Hi),

then conclude register i is corrupt and recover kh from H ′j , decode Akh
(Hh),

and reconstruct the valid codeword as c|ψ〉 ∈ H1⊗H2⊗H3 using the erasure
recovery algorithm from Hh and Hj .



Other cases cannot arise, since only one register can have been changed from
the original encoding.

5 A general n-component approximate QECC family
correcting up to d − 1 < n/2 arbitrary errors

In order to generalize the above construction to cases with n registers, we need
to systemize the distribution of the classical keys. Again, it is helpful to imagine
that we are trying to defeat an adversary with access to t < n/2 components of
the code. Recall that we needed two conditions: First, the adversary should not
be able to learn the classical key for her register, but the receiver Bob should
be able to reconstruct the keys. Second, the adversary should not be able to
interfere with Bob’s reconstruction of the keys.

These are precisely the properties of an ETSS. This suggests the following
strategy for building a t-correct AQECC: encode |ψ〉 using a distance t+1 QECC,
authenticate the n components using keys k = k1, ..., kn, and then share k using
a classical ETSS. The result could be considered to be a quantum ETSS (that
is, an ETSS for quantum data). However, the ramifications of this construction
for quantum data are more far-reaching than for the classical protocol. Not
only does the quantum ETSS have potential cryptographic applications, but
it demonstrates the possibility of exceeding the no-cloning bound on QECCs.
Indeed, any QECC, exact or approximate, is in some sense a quantum ETSS —
the ability to (approximately) correct erasures on a set of registers implies that
an adversary with access to those registers can gain (almost) no information
about the encoded data [21].

Let Q be a QECC that can correct d − 1 < n/2 arbitrary erasure errors:
Q = [[n, k, d]]. Such a code can be constructed over sufficiently large dimension
Q; for instance, use a polynomial quantum code [1]. The coding space of Q is
defined as

Q|ψ〉 ∈ H1 ⊗H2 ⊗H3 ⊗ ...⊗Hn.

We assume dim(H1) = dim(H2) = ... = dim(Hn).
We construct a new code Q′ over larger Hilbert spaces that can correct

d − 1 < n/2 arbitrary errors except with small probability. Register i of the
n-component code Q′ contains the following:

〈Aki
(Hi), si, [aij(∀j 6= i)], [haji

(si)(∀j 6= i)]〉, (5)

where we have used the classical authentication scheme (in systematic form):

m, a→ (m,ha(m)), (6)

which has error ε, and (s1, . . . , sn) ∈R SSn,d(k1, . . . , kn), a secret sharing scheme
such that any d− 1 si’s contains no information about (k1, . . . , kn) whereas any
d of those si’s completely define (k1, . . . , kn). The combination of classical secret
sharing and classical authentication forms an ETSS [8], as described above; in
fact, any ETSS would do.



For instance, the n = 3 case of this construction is as follows:

c′|ψ〉 = ( Ak1 (H1), s1, [a12, a13], [ha21
(s1), ha31

(s1)] ) ,

( Ak2 (H2), s2, [a21, a23], [ha12
(s2), ha32

(s2)] ) , (7)

( Ak3 (H3), s3, [a31, a32], [ha13
(s3), ha23

(s3)] ) .

Note that this is more complicated than the scheme in section 4. Instead of
giving the keys ki to the other two players, we have instead shared them among
all three players, so no single component has access to any of the three keys used
for quantum authentication. In section 4, we were able to use the fact that the
quantum register attacked by the adversary must be the same as the classical
register attacked, so it is only necessary to protect information about one of the
keys ki, not all of them. With the extra flexibility granted the adversary by being
able to attack multiple registers, it is more straightforward to protect all n keys
with the classical ETSS.

We are now ready for our main result. Let H ′1 ⊗H
′
2 ⊗ ...⊗H

′
n be the coding

space of the new code

Q′|ψ〉 ∈ H ′1 ⊗H
′
2 ⊗ ...⊗H

′
n

Theorem 2 If Ak is a qas secure with error ε, Q is a non-degenerate stabilizer
code with distance d, and ha(·) is a classical authentication scheme with error
ε, then Q′ is an approximate quantum error-correcting code correcting d − 1
arbitrary errors with error at most 2n2ε.

5.1 Reconstruction

The reconstruction procedure is similar to that for the previous protocol, but
slightly more involved, since we must verify the classical authentications as well.
Rather than breaking the procedure into different cases, in this version of the
protocol, we can systematically go through four steps: First, verify the classical
authentications and discard any invalid classical share. Second, reconstruct the
keys ki. Third, verify and decode the quantum authentications. Fourth, discard
any invalid quantum register and reconstruct the encoded quantum state.

1. Verify classical authentications:
For each si, consider it valid if at least half its authentications are correct
according to aji, j 6= i. Discard any share si which is not valid.

2. Reconstruct the keys ki:
Up to d − 1 shares si can have been discarded in the first stage, so at least
n− d+ 1 ≥ n/2 + 1 > d shares remain. Use these to reconstruct (k1, . . . , kn).
If the remaining shares are not all consistent with a single value of the secret,
Bob aborts and outputs the quantum state |0〉.

3. Verify and decode the quantum authentications:
Use the key ki to verify and decode the quantum authentication Aki

(Hi).



4. Reconstruct the encoded quantum state:
Discard any registers which failed the quantum authentication, and use the
remaining registers to reconstruct the valid codeword as c|ψ〉 ∈ H1⊗ . . .⊗Hn

using the erasure recovery algorithm. (At most d− 1 have been discarded.) If
the remaining registers are not consistent with a single quantum codeword,
Bob aborts and outputs the quantum state |0〉.

We prove this assuming the original QECC Q is a nondegenerate CSS code
(which is sufficient to demonstrate that AQECCs exist correcting up to (n−1)/2
errors), but the proof can easily be extended to an arbitrary stabilizer code.

Proof (of Theorem 2). If no errors occurred, the above procedure will exactly
reconstruct the original encoded state. We need to show that it still approx-
imately reconstructs the state when there are up to d − 1 arbitrary errors in
unknown locations. Let B be the set of registers attacked by the adversary, and
let A = [n] \B be the registers held by honest players.

The intuition for the proof is simple. With high probability, the authenti-
cation keys will be reconstructed correctly; conditioned on that event, all com-
ponents of the QECC which pass the authentication test should be “close” to
the encoding of |ψ〉 restricted to those positions, and applying erasure correction
should yield a state very close to |ψ〉. Formalizing this intuition is more delicate
than it would be if the data involved were classical. The quantum version of the
statement “such-and-such event holds with probability 1− ε” is “the state of the
system has fidelity at least 1− ε to the subspace such-and-such.” The problem
lies in the fact that the union bound from ordinary probability, which is the basis
of the intuition outlined above, does not always hold in the quantum world. Our
solution follows the lines of the “quantum to classical reductions” in [14, 9]. We
define a set of “target” subspaces whose projectors commute (in other words,
there exists a single basis of the state space in which all the projectors are diag-
onal), and show that the system lies close to each of these target subspaces. For
commuting subspaces, the union bound does hold: if the system has high fidelity
to each of the subspaces, then in fact it has high fidelity to their intersection. To
complete the proof it is sufficient to show that for states in the intersection, the
initial input |ψ〉 is reconstructed exactly.

The first step is to take care of the classical component of the encoding
(composed of the shares si, classical authentication keys aij and tags haij

(sj)).
We rely on three observations. First, we may assume w.l.o.g. that the recov-
ery procedure measures all the classical components in the computational basis
before doing any processing; thus, the state received by the reconstructor Bob
is a mixture (not a superposition) over different bit strings which he might be
sent instead of the original ones. Second, the classical information held by the
adversary is statistically independent of k = (k1, ..., kn), the vector of quantum
authentication keys. (This follows from the fact that any t of the shares s1, ..., sn
are independent of the shared secret.) Third, any classical authentication tags
changed by the adversary will be rejected by Bob with probability at least 1− ε.

We define our first target subspace S0 by the statement “the keys k recon-
structed by Bob are equal to the original keys.” This statement can fail only



if some tag changed by the adversary is accepted by Bob, and by a (classical)
union bound this can occur with probability at most tnε < n2ε. The fidelity to
S0 is thus at least 1− n2ε.

We now look at what happens within the subspace S0. Consider the follow-
ing set of measurements which might be performed by Bob after verifying the
authentications, but before applying erasure correction to the code. We assume
for simplicity that the adversary holds the wires B = {1, ..., t}, and the wires
A = {t+ 1, ..., n} are untouched.

– For each register i ∈ [n], |reji〉〈reji| measures whether or not Bob rejected
the authentication of the i-th quantum system (correspondingly, |acci〉〈acci|
measures whether or not Bob accepts).

– We use the fact that the quantum error-correcting code is a nondegenerate
CSS code. The code can be defined by a sequence of parity checks performed
in two bases: the standard computational basis and the rotated Fourier (or
“diagonal”) basis. We assume there are r independent parity checks in the
rotated basis and s independent parity checks in the standard basis. Denote
by V the linear space of parity checks satisfied in the computational basis,
and by W the corresponding set for the Fourier basis. If the QECC code has
distance at least t+ 1, then there is a basis v1, ..., vs of V such that, for any
i ∈ B, position i is only in the support of vi. Same for W : there is a basis of
parity checks w1, ..., wr such that only wi involves the i-th component of the
code for i ∈ B. We denote by Πvi

, Πwi
the corresponding projectors (that

is, Πvi
preserves the supspace in which the parity check vi is satisfied).

The sets of projectors {|reji〉〈reji|}i∈[n], {Πvi
}i∈[s] and {Πwi

}i∈[r] all com-
mute with each other. The only possible interaction comes from the fact that
the operators {Πvi

} and {Πwi
} operate on the same space, but they commute

by definition of CSS codes. We may ignore projectors with indices i > t since
they correspond to checks which will always be passed within the subspace S0:
Therefore the system will have fidelity 1 to the subspaces defined by {Πvi

} and
{Πwi

} for i > t.

We would like to claim that, whenever Bob accepts the set R of registers, R
satisfies all the parity checks restricted to R. We can quantify this as follows: for
all i between 1 and t, the system should lie in the subspace defined by

Pi = (Πvi
Πwi

⊗ |acci〉〈acci|) + (I ⊗ |reji〉〈reji|). (8)

where I is the identity operator. The security of the quantum authentication
scheme, and the fact that the adversary doesn’t learn anything about the keys
from the classical secret sharing, imply that the fidelity to each of these sub-
spaces is at least 1 − ε (note: this requires the quantum authentication scheme
to be secure even when composed up to t times). For 1 ≤ i ≤ t, we can de-
fine the subspaces S1, . . . , St corresponding to the projectors P1, . . . , Pt. By a
union bound, the state of the whole system has fidelity at least 1− n2ε− tε to
the intersection S =

⋂t

i=o Si. In words, S is the space of states for which Bob



reconstructs the correct authentication keys, and for which the set of registers
accepted by Bob satisfies all the parity checks restricted to that set.

It remains to prove that within the space S, Bob will always recover the
input state |ψ〉 exactly. We may assume w.l.o.g. that Bob will measure all n of
the registers which indicate whether the authentication failed or not in the basis
{|rej〉, |acc〉}. Thus, the global state may be seen as a mixture over possible
sets of registers accepted by Bob. If Bob also performs the measurements Pi, he
will, with probability at least 1− n2ε− tε, find that the state actually satisfies
all parity checks restricted to the set R of registers he accepts.

When this occurs, it then follows that applying erasure correction to R yields
the same result as if we had used only registers untouched by the adversary. For
a detailed proof of this fact, we refer the reader to Proposition 2.2 in [9]. The
intuition behind it is straightforward: Suppose s registers are discarded, leaving
up to t− s registers attacked by the adversary. But because s+ (t− s) < d, the
QECC can both correct s erasures and detect an additional t− s errors, so the
adversary is unable to reach any state in S except the correct input state |ψ〉.
We can conclude that Bob recovers a state ρ with fidelity at least 1− 2n2ε to ψ,
as desired.

5.2 Specific Constructions and Parameters

As mentioned above, it is natural to instantiate our construction using the poly-
nomial codes (quantum Reed-Solomon codes) of Aharonov and Ben-Or [1]. These
are nondegenerate CSS codes over an alphabet of size q whenever q is a prime
power and greater than n− 1. For any t < n/2, one can find a [[n, n− 2t, t+ 1]]q
code (i.e. which encodes (n − 2t) log q qubits and has distance t + 1). This
means that to encode ` > n qubits, each component of the code will consist
of `/(n− 2t) qubits. The components of the approximate QECC then consist of
`/(n− 2t) +O(log ( 1

ε
)) qubits and CC(2`/(n− 2t) +O(log ( 1

ε
)), ε, t) bits (where

CC() is the share size of the classical ETSS).

For 2t < n−1, we can modify the ETSS above to get shares of sizeO(n log ( 1
ε
))

+ `/(n − 2t). Putting these constructions together, we can get quantum codes
where each register contains O(n(`/(n− 2t) + log ( 1

ε
))) qubits.

An immediate improvement can be made to these parameters by noting that,
for any distance d nondegenerate stabilizer code, including the polynomial codes
used here, the state of any d − 1 registers is maximally entangled with the
remaining registers. Therefore, as noted in section 2, a much shorter classical
key suffices for quantum authentication. In particular, a classical key of length
O(log `+log ( 1

ε
)) is sufficient to authenticate ` EPR halves. This leads to an ap-

proximate quantum code where each component consists of `/(n−2t)+O(log ( 1
ε
))

qubits and CC(n log ( 1
ε
), ε, t) bits (when ε < 1/`). This gives a total size of

`/(n− 2t) +O(n log ( 1
ε
)).

Corollary 3 (to Theorem 2) For t < n/2, there exists an approximate QECC
correcting any t errors with error ε, where each component consists of O(`/(n−



2t) + n log ( 1
ε
))) qubits. When n = 2t + 1, we get components of size O(` +

n log ( 1
ε
)).

6 Discussion and open questions

We have constructed quantum error correcting codes that are capable of cor-
recting general errors when up to half the registers are affected. This contrasts
considerably with known upper bounds that limit a QECC to correcting errors
on less than one-fourth of all registers. The price for being able to violate this
bound is that we only correct the state approximately; however, we do so with
exponentially good fidelity.

In general, extrapolating from exact performance of a quantum task to ap-
proximate performance is dangerous, but possible. Factors of the dimension may
arise, and since the dimension is exponential in the number of qubits, dramat-
ically different behavior becomes possible. This phenomenon is likely behind
the performance of our codes, and suggests that high-fidelity AQECCs are only
possible when working in high dimension.

Our codes instead consist of a small logical subspace and large registers
containing both quantum and classical information. As such, they are not so
useful for practical problems in quantum error correction, but do serve as an
interesting in-principle demonstration of the potential power of approximate
error correction. In addition, they act as quantum ETSS schemes, and may be a
useful stepping stone towards building VQSS and MPQC with a large number
of cheaters. Any such construction must be more complex, however, to take
account of dishonest senders and receivers, and to allow the participants in the
protocol to alter a state in the correct way without altering it in any unapproved
manner. Indeed, it remains possible that the prior bound of n/4 cheaters does in
fact restrict VQSS and MPQC; however, we have shown here that the existing
proof of that bound does not apply to VQSS and MPQC protocols which only
guarantee approximate reconstruction of the quantum state.
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